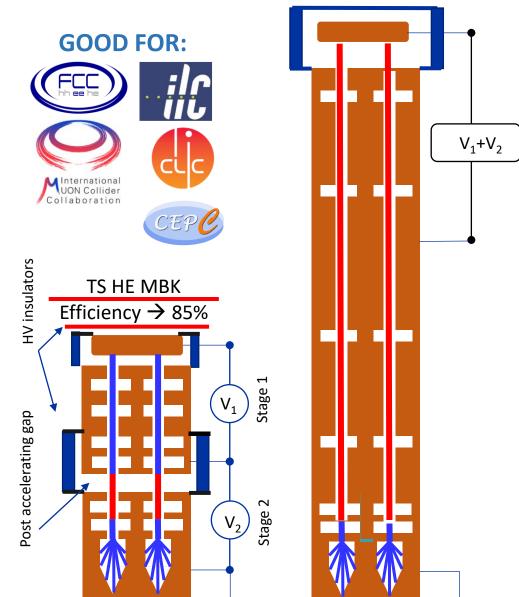
High Efficiency Klystrons

Design, Fabrication, and HV Testing of a HV RF Feedthrough (HVRFT) for a 1 MW CW TS-MBK

Anisullah Baig^{1,2}, Graeme Burt^{2,3}, Igor Syratchev¹

¹CERN (SY-RF-MKS), Switzerland ²Lancaster University, UK ³Cockcroft Institute, UK

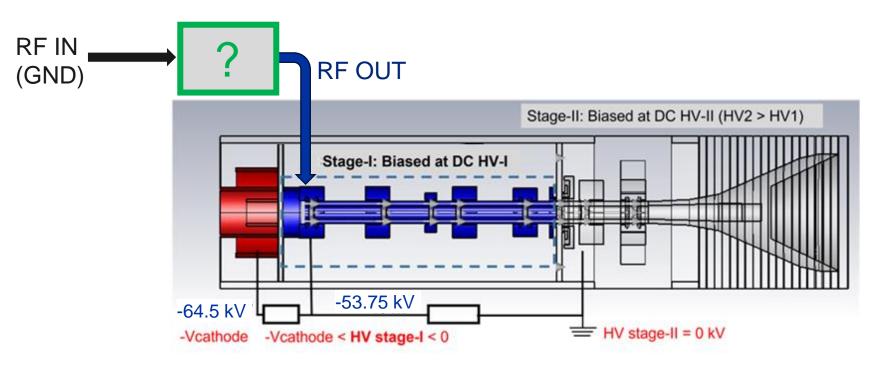

Two-Stage Multi Beam Klystron (TS-MBK) Technology in L-band

Features:

- 1. Bunching at a low voltage (high perveance). Very compact RF bunching circuit.
- 2. Bunched beam acceleration and cooling (reducing $\Delta p/p$) along the short DC voltage post-accelerating gap.
- 3. Final power extraction from high-voltage (low perveance) beam → High efficiency.

Additional advantages:

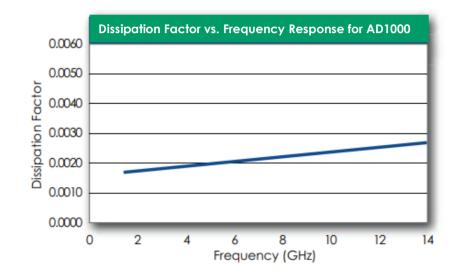
- 1. For pulsed tubes, the second HV stage can be operated in DC mode. Thus, simplifying the modulator topology (cost/volume) and increasing the modulator efficiency.
- 2. Simplified feedback for the first stage pulsed voltage. Improved klystron RF phase and amplitude stability.

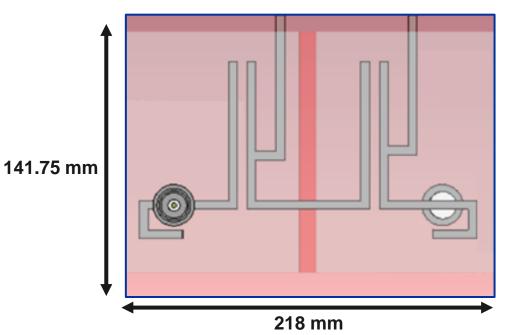


Commercial HE MBK ($\eta \approx 70\%$)

Motivation:

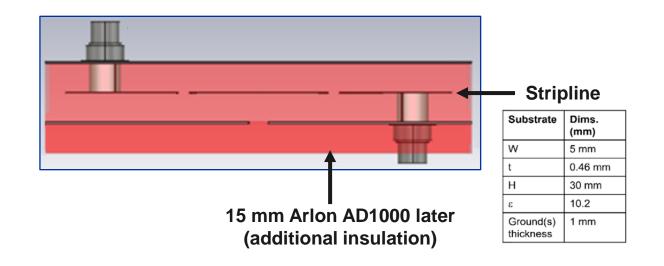
- ✤ The input RF section of the TS-MBK is held at a potential of approximately -54 kV.
- To inject an RF while isolating the low power RF source from the HV DC side a highvoltage RF feedthrough (HVRFT) is required.

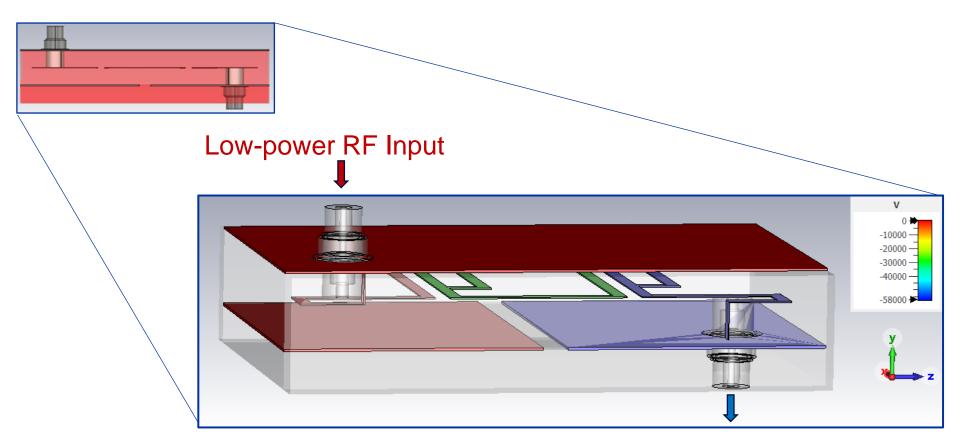



Requirements:

- To do so, a UHF band PCB microstrip filter was envisaged. A high dielectric constant, a high electrical breakdown strength, and a low dissipation factor are key requirements.
- Arlon AD1000 (woven glass reinforced PTFE/ceramic filled) meets these requirements and was selected. Rogers corporation is the sole manufacturer of this material.

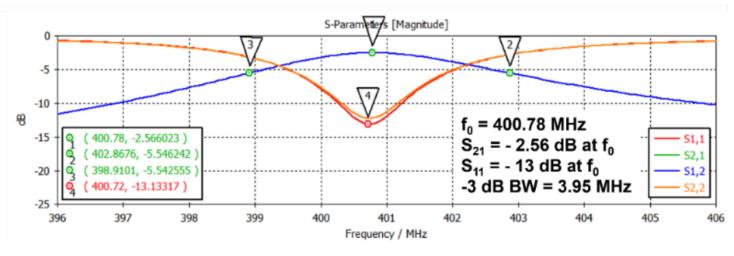
ypical Properties:		AD1000	
Property	Units	Value	Test Method
. Electrical Properties			
Dielectric Constant (may vary by thickness)			
@1 MHz	-		IPC TM-650 2.5.5.3
@ 10 GHz	-	10.20	IPC TM-650 2.5.5.5
Dissipation Factor			
@ 1 MHz	-		IPC TM-650 2.5.5.3
@ 10 GHz	-	0.0023	IPC TM-650 2.5.5.5
Temperature Coefficient of Dielectric	-		
TCεr @ 10 GHz (-40-150°C)	ppm/°C	-380	IPC TM-650 2.5.5.5
Volume Resistivity			
C96/35/90	MΩ-cm	1.40x10 ⁹	IPC TM-650 2.5.17.1
E24/125	MΩ-cm	5.36x10 ⁷	IPC TM-650 2.5.17.1
Surface Resistivity			
C96/35/90	MΩ	1.80x10 ⁹	IPC TM-650 2.5.17.1
E24/125	MΩ	3.16x10 ⁸	IPC TM-650 2.5.17.1
Electrical Strength	Volts/mil (kV/mm)	622 (24.5)	IPC TM-650 2.5.6.2
Dielectric Breakdown	kV	>45	IPC TM-650 2.5.6
Arc Resistance	sec	>180	IPC TM-650 2.5.1

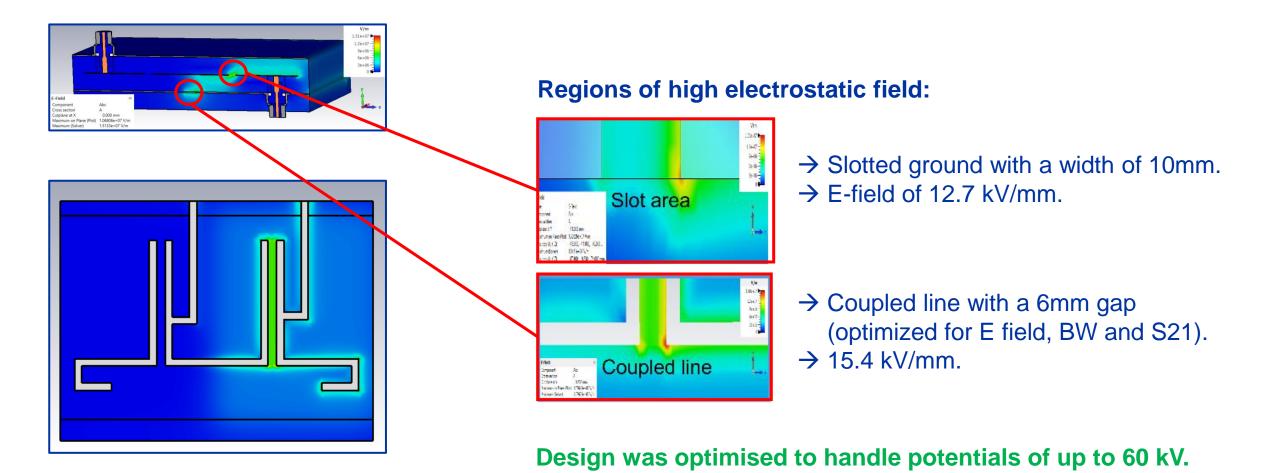




Stripline Layout

Arrangement of Layers


Low-power RF output (-53.75 kV side)


Taking Arlon AD1000 as the substrate (ϵ =10.2, tan δ =1.6e-3):

- ✓ Freq: 400.8 MHz,
- ✓ S_{21} : -2.56 dB (with dielectric losses).
- ✓ BW: ~ 3.95 MHz
- ✓ Electric strength: 24.5 kV/mm
- ✓ DC isolation: 60 kV (tested)
- ✓ Compact (UHF band): 218mm x
 167mm x 46mm

Simulated S-Parameters

Prototyping: A Two(ish)-Pronged Approach

- (a) HVRFT-I → The prototype for high-voltage tests, built using a resin with similar HV properties to AD1000. The multi-layer fabrication and HV testing steps also provide valuable experience.
- (b) HVRFT-II → The real deal. To be assembled in AD1000 at CERN's PCB lab. Prior to this the assembly process will also be tested with FR-4 to ensure conformity.

Overview:

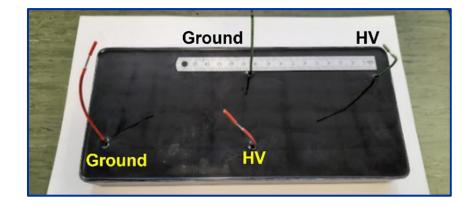
Model	Material	Fabrication	Status/HV Testing
HVRFT-I (for HV test only)	SikaBiresin® RE 891-98 RESIN (similar HV specs → 27kV/mm dielectric strength vs Arlon's 24 kV/mm)	CERN's Polymer Lab (3-layer process).	Completed in 2023.
HVRFT-II Rogers Arlon AD1000 (high HV and RF performances)		CERN-MPT (PCB) Lab Stack description: 4-layers thick, 166.75mm x 218mm x 56.565mm.	Material procured and assembly in progress – to be tested in late 2024/early 2025.

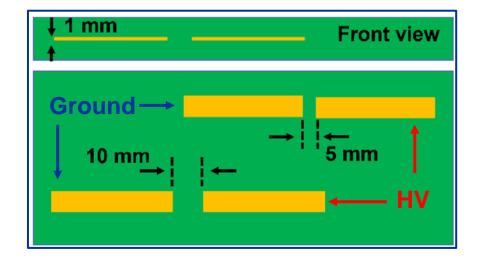
Prototyping: A Two(ish)-Pronged Approach

- (a) HVRFT-I → The prototype for high-voltage tests, built using a resin with similar HV properties to AD1000. The multi-layer fabrication and HV testing steps also provide valuable experience.
- (b) HVRFT-II → The real deal. To be assembled in AD1000 at CERN's PCB lab. Prior to this the assembly process will also be tested with FR-4 to ensure conformity.

Overview:			
Model	Material	Fabrication	Status/HV Testing
HVRFT-I (for HV test only)	SikaBiresin® RE 891-98 RESIN (similar HV specs → 27kV/mm dielectric strength vs Arlon's 24 kV/mm)	CERN's Polymer Lab (3-layer process).	Completed in 2023.
HVRFT-II	Rogers Arlon AD1000 (high HV and RF performances)	CERN-MPT (PCB) Lab Stack description: 4-layers thick, 166.75mm x 218mm x 56.565mm.	Material procured and assembly in progress – to be tested in late 2024/early 2025.

I'll focus on how we got here first.

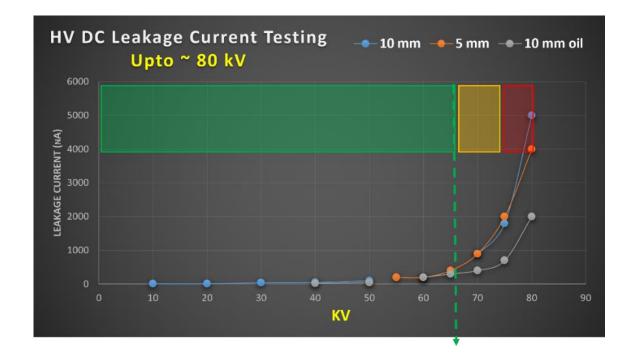



•

Experiment: Microstrip HV Test in SikaBiresin® RE 891-98

A preliminary high-voltage test was first conducted with the resin.

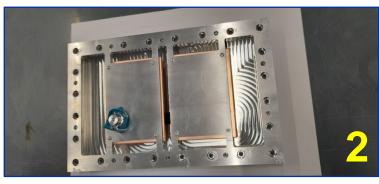
- Parallel microstrip lines were embedded, as pictured on the right.
- Gaps of 5 and 10 mm were present in the adjacent lines.

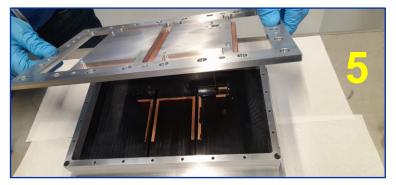


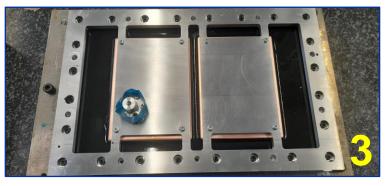
Experiment: Microstrip HV Test in SikaBiresin® RE 891-98

- No substantial leakage current below 60 kV was observed during testing, for sets of parallel strips with gaps of both 5 mm and 10 mm.
- However, for DC voltages of >60 kV, leakage current develops through combination of local discharges and surface conduction.
- After 70 kV, a sharp rise in leakage current was observed.
- \rightarrow Onwards to assembly!

HVRFT-I (for HV test only): Assembly Process


✤ Copper striplines prepped.

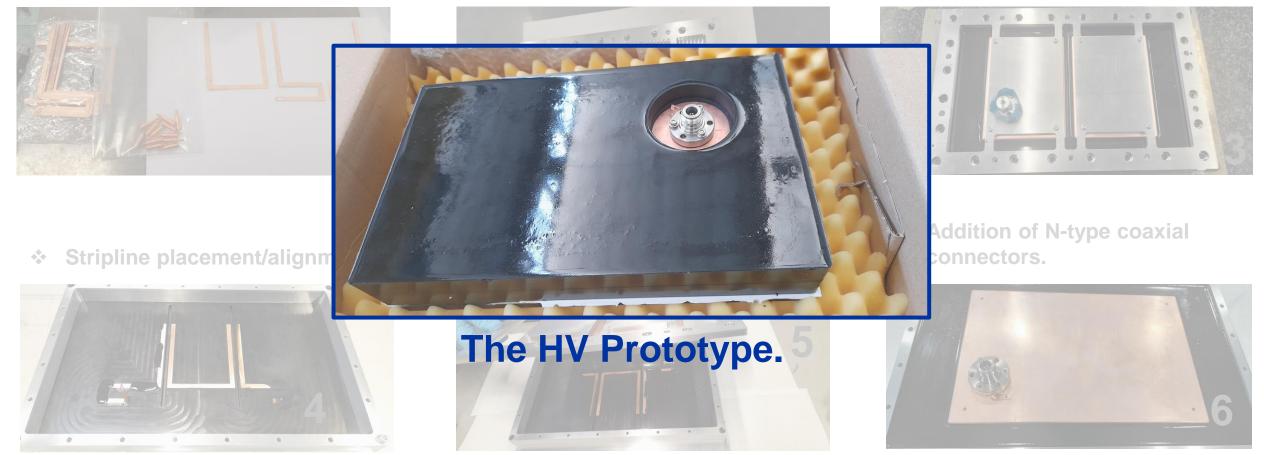

Stripline placement/alignment.


 Mould and slotted ground plane ready for 1st layer of resin.

Top plane, and addition of 2nd layer of resin.

 After addition of 1st layer, resin at room temp/pressure.

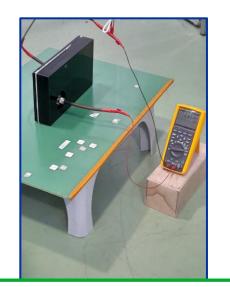
 Addition of N-type coaxial connectors.


Thanks to Gianfranco Ravida (MKS) and Sebastien Clement (CERN Polymer Lab)!

HVRFT-I (for HV test only): Assembly Process

* Copper striplines prepped.

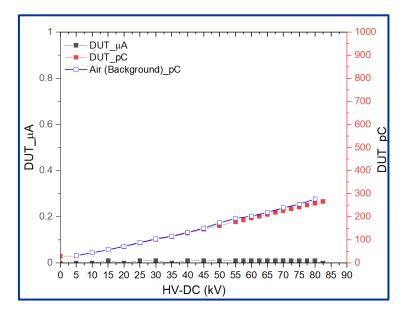
- Mould and slotted ground plane ready for 1st layer of resin.
- After addition of 1st layer, resin at room temp/pressure.



Thanks to Gianfranco Ravida (MKS) and Sebastien Clement (CERN Polymer Lab)!

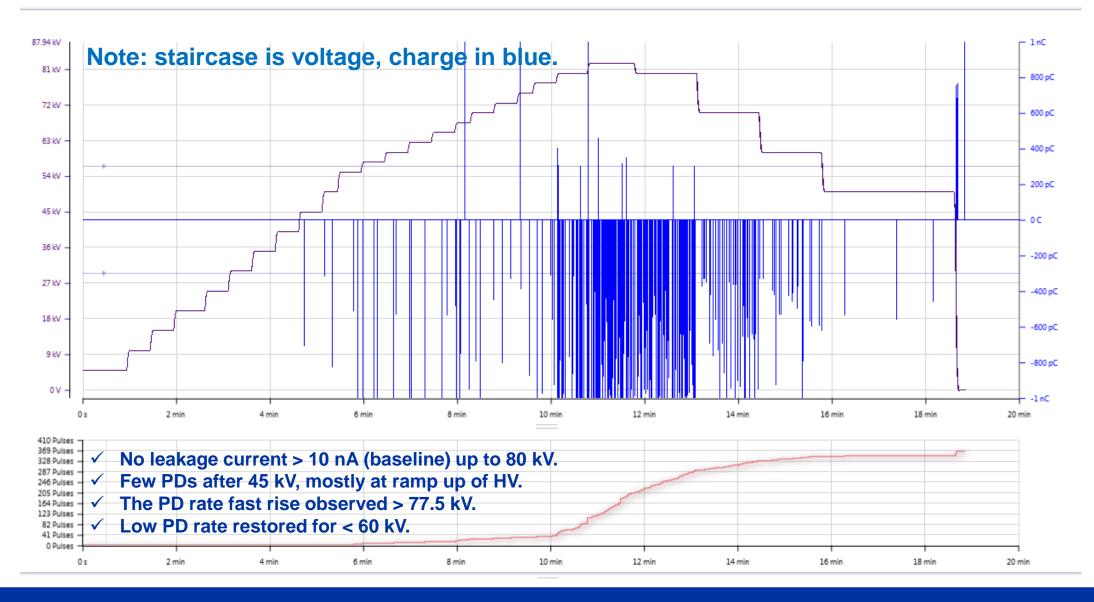
HVRFT-I: High-Voltage Test

60 kV Test



Leakage current = 0.00 mA (supply) Leakage current = 10 nA (ammeter) Almost 100 hrs+ (endurance test !)

80 kV Test setup


80kV Test Results

- No leakage current observed during 60 kV tests shown on the left (sensitivities of 10 nA at ammeter and 10 μA on supply).
- ✓ 80 kV testing at Partial Discharge (PD) facility showed leakage current/charge close to background values (as in air without DUT).

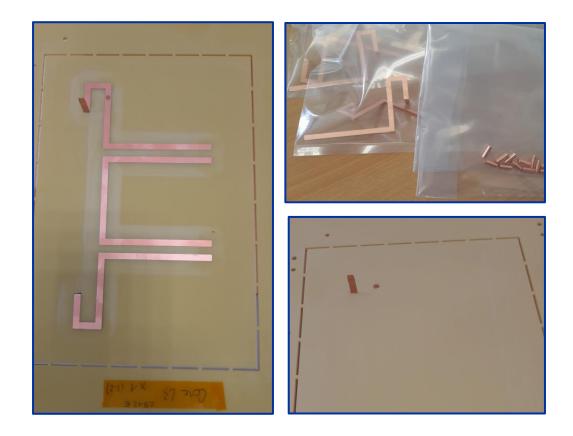
HVRFT-I: Partial discharge (PD) Measurements

Prototyping: A Two(ish)-Pronged Approach

- (a) HVRFT-I → The prototype for high-voltage tests, built using a resin with similar HV properties to AD1000. The multi-layer fabrication and HV testing steps also provide valuable experience.
- (b) HVRFT-II → The real deal. To be assembled in AD1000 at CERN's PCB lab. Prior to this the assembly process will also be tested with FR-4 to ensure conformity.

Overview	1		
Model	Material	Fabrication	Status/HV Testing
HVRFT-I (for HV test only)	SikaBiresin® RE 891-98 RESIN (similar HV specs → 27kV/mm dielectric strength vs Arlon's 24 kV/mm)	CERN's Polymer Lab (3-layer process).	<u>Completed in 2023.</u>
HVRFT-II	Rogers Arlon AD1000 (high HV and RF performances)	CERN-MPT (PCB) Lab Stack description: 4-layers thick, 166.75mm x 218mm x 56.565mm.	Material procured and assembly in progress – to be tested in late 2024/early 2025.

And now, where we're heading next.

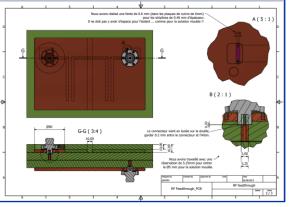


Overview

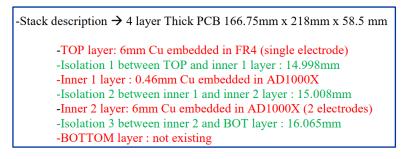
HVRFT – II (Arlon): Situation Report

- Components and material procured (AD1000 laminate/glue, stacking layout ready).
- Striplines have been prepped and connectors soldered.
- A pre-AD1000 assembly is currently being prepared prior to doing so in Arlon ("one and done" for final assembly).
- A 5x5 cm AD1000 sample is being stacked and prepared for pre-fabrication measurement of dielectric properties (done inhouse at CERN).

 \rightarrow Onwards!



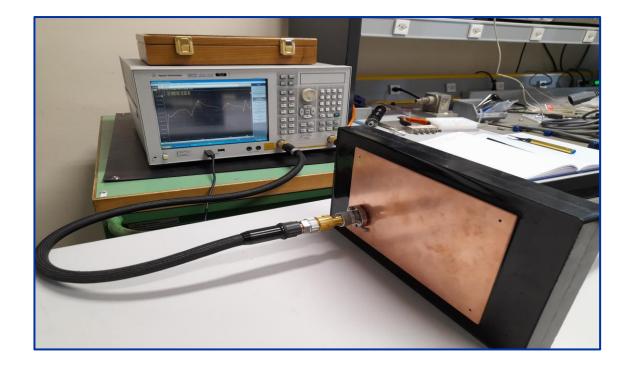
Summary:

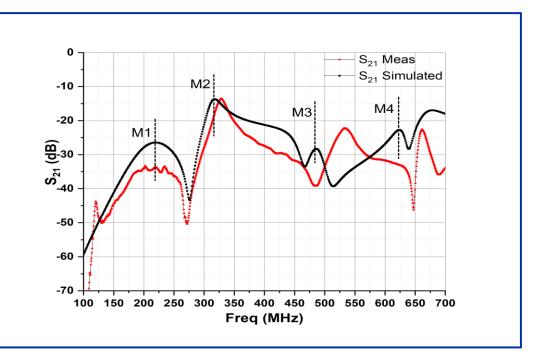

- ✓ HVRFT-I prototype has been shown to withstand 60 kV for 100+ hours (completed in 2023).
- HVRFT-II plan: Production is underway at CERN Micropattern technologies workshop (PCB Lab)

	July		Oct	L	ate 2024/Early 2025.	
•	Stripline prep Pin soldering. Mock stacking	•	Stacking at MPT workshop	1	Device completion, then RF and HV tests.	

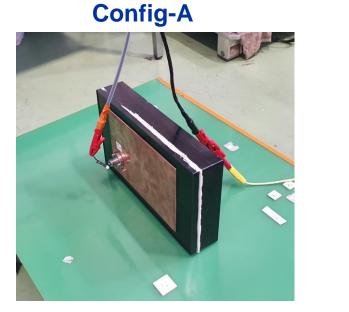
(b) Mechanical drawings prepared.

(c) AD1000 laminate/glue stacking layout prepared.


Thank you !


Bonus Slides

HVRFT-I (for HV test only): RF Measurement



Simulation: $\varepsilon = 4$, tan $\delta = 0.04$ @ 100 Hz

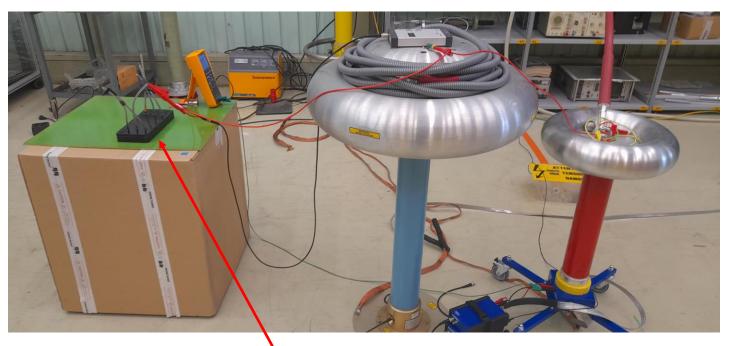
HVRFT-I: Testing Configurations

Config-B

Config-D

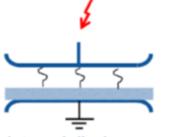
Α	centre pin-I to centre pin-II	58 kV – No leakage (res 10µA), <u>Humming sound</u>
В	ground conn-I to ground conn-II	> 50 kV – leakage 10µA (humming)
С	Connector's both pins @ same DC (using cable)	> 39/40 kV – leakage 10µA (humming)
D	Same as C – biased separately	Same as C

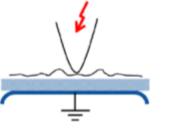
- HV Testing in different configurations showed leakage current 0.01 mA (scale in Henzinger supply) = 10 micro Amps (10,000 nA), for HV-applied > 40 kV (full connector engaged)
- * The leakage/local surface conduction we saw was merely an artifact of the measurement setup.



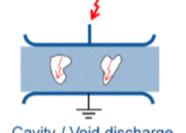
PD testing instrument control

For charge calibration


- Striplines in epoxy under test.
- To compare leakage current and PD charge measurements, before actual test on HVRFT-I.


Partial Discharge

What is it?


- Localized electrical discharge that only partially bridges the insulation between conductors ... [IEC 60270].
- Releases energy where the constructor didn't plan.
- Decomposes the surrounding materials.
- Reduces the lifetime.
- Initiating the final breakdown.

Internal discharge in laminated material

Surface Discharge

Cavity / Void discharge

Treeing

Corona discharge

in gaseous media <u>e.g.</u> around conductors

New Coaxial Cable

From Tobias, CERN HV team.

Inner Insulation

[1]