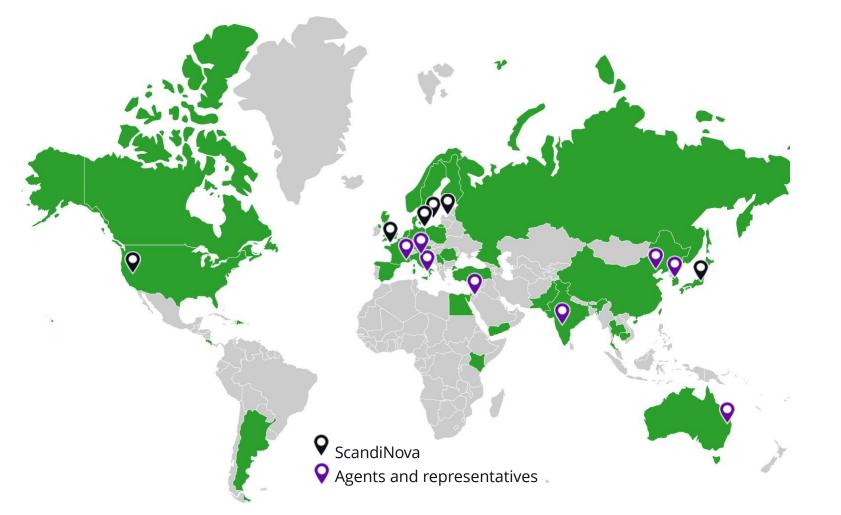

Pulse modulators for science

Kevin Pepitone, PhD, RF Application specialist Workshop on efficient RF Source, Toledo, 23-25 Sept. 2024

Scandi<mark>Nova</mark>

Scandi<mark>Nova</mark>

A full product range for a variety of applications



A standardized modular concept, adaptable for specific needs

4

ScandiNova

Deliveries

2024 April Installations: 320 (3220 modulators delivered)

Countries:

50

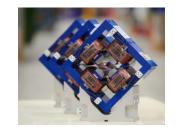
Operation Hours: **4 071 047**

ScandiNova goup

A wide range of high-end critical sub systems

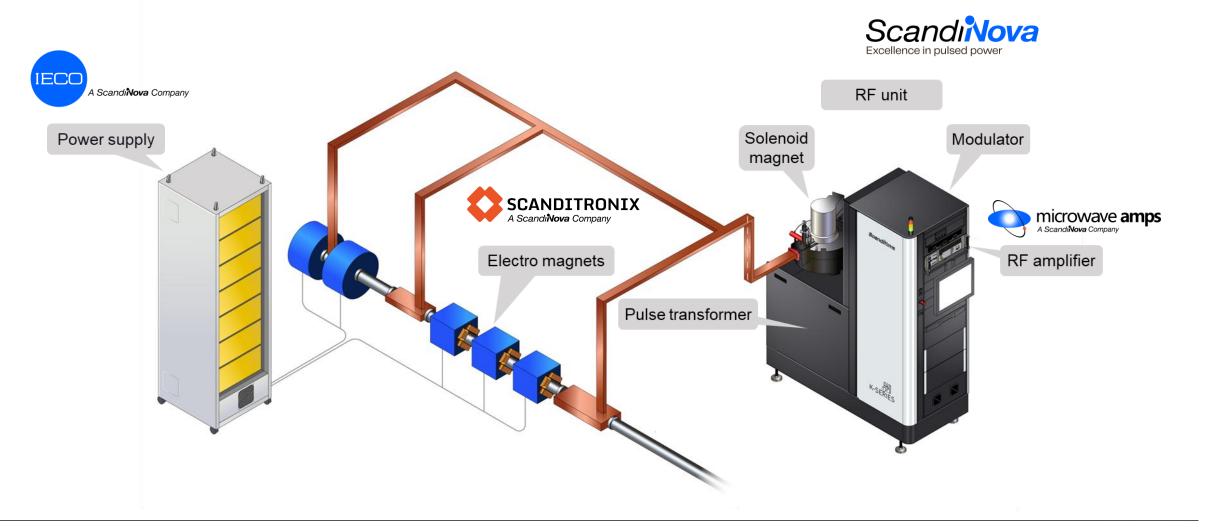
RF and microwave amplifiers High-voltage pulse modulators and RF-systems Scandi Nova Microwave amps A ScandiNova Company Excellence in pulsed power


Power amplifiers and precision power supplies



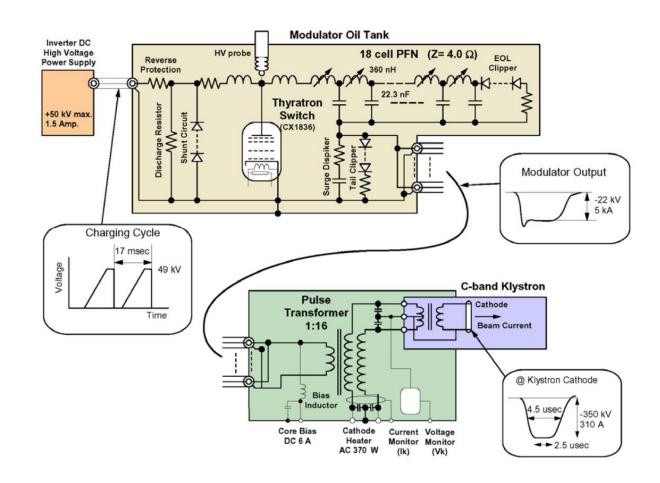
IECO

Magnets and coils



ScandiNova group

Increase offering



Modulator technologies

Modulator technologies

PFN

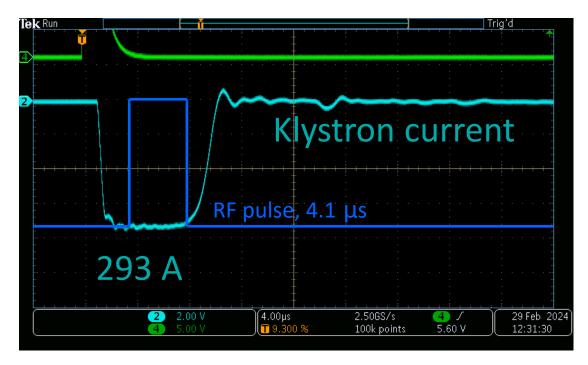


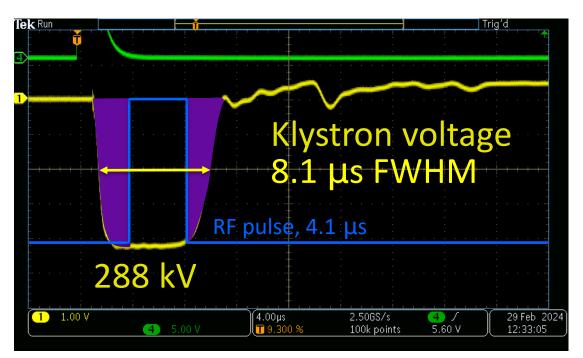
- Approved technology
- Very robust
- High voltage
- Bulky
- AC cooling
- Flatness
- Fixed pulse duration
- Need impedance matching

Modulator technologies

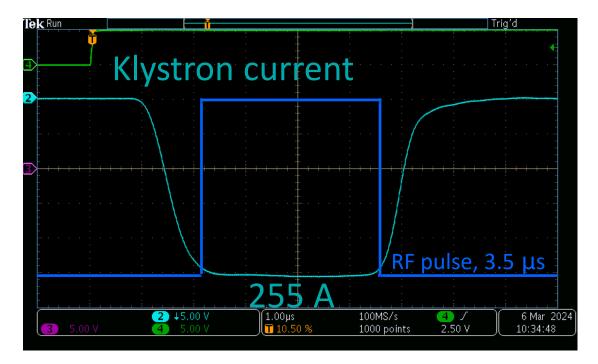
ScandiNova

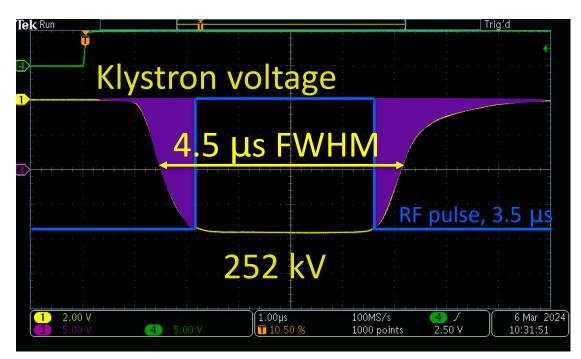
Solid-state pulsed power technology




- Approved technology
- Robust
- Compact and fully integrated
- Water cooling
- Flexibility (pps, pulse duration)
- Low insertion loss
- Low voltage
- Many parts
- Need expert to install and maintain

Pulse PFN modulator

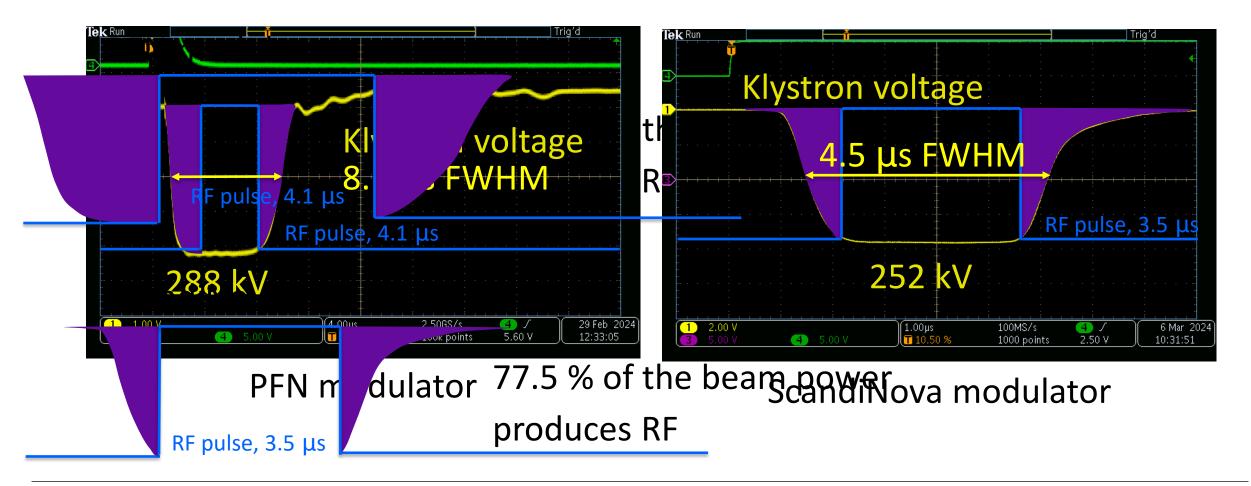

PFN modulator


PFN modulator

Courtesy A. Chauchet, S. Curt

12

Pulse ScandiNova modulator


ScandiNova modulator

ScandiNova modulator

Courtesy A. Chauchet, S. Curt

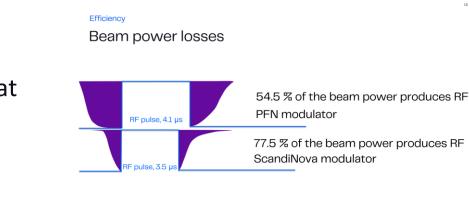
13

Beam power losses

CERN case #1

PFN modulator: TH2100 – 10 Hz	ScandiNova modulator: TH2100 – 10 Hz	Equipment
0.1 nA – 3-5 kV	0.1 nA – 3-5 kV	lon pump
AC (primary): 3.1A – 258 V Total = 0.8 kW	DC: 23.1 A - 26.5 V Total = 0.6 kW	Klystron heater
Ibucking: 18.3 A – 4 V IfocalA: 166 A – 21.6 V IfocalB: 148 A – 19.2 V IfocalC: 160 A – 19.9 V Total = 10.0 kW	Ibucking: 18.3 A – 4 V IfocalA: 183 A – 25.6 V IfocalB: 133 A – 17.2 V IfocalC: 165 A – 21.3 V Total = 10.5 kW	Solenoids
4 A – 147 V (86.4 A – 6.3 V) Total = 0.6 kW	-	Thyratron heater
200 mA – 39 kV Total = 7.8 kW peak	-	Thyratron
Body: 13.7 L/min Solenoid: 11.4 L/min Collector: 108.4 L/min -	Body: 13.7 L/min Solenoid: 11.4 L/min Collector: 108.4 L/min CCPS (1-4) and SU: 8.3 L/min	Water flow
200 W RF peak	200 W RF peak	RF amplifier
Needed	-	Air cooling
293 A – 288 kV-> Electric power= 37.6 MW RF 4.5 us, 10 Hz -> RF power= 22% (+ cooling)	255 A – 252 kV -> Electric power= 24.6 MW RF 4 us, 10 Hz -> RF power= 35% (+ cooling)	Modulator

Courtesy A. Chauchet, S. Curt


Energy saving for the RF pulse

Let's consider a klystron producing 40 MW, 4 μs RF and operating at 100 Hz.

The RF average power is 16 kW.
Let's consider that the klystron has an efficiency of 45%
If it operates 10 hours/day and 5 days a week

After 1 year the consumption is 64 500 kWh/year

A PFN modulator will consume 93 500 kWh/year A ScandiNova modulator will consume 79 000 kWh/year

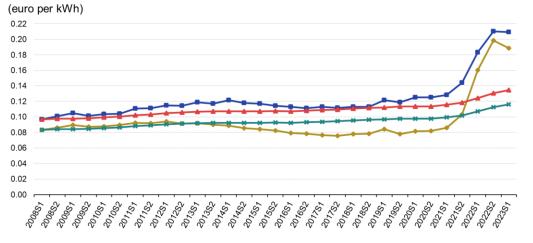
ScandiNova

ScandiNova Sv

Energy saving for the cooling

Let's consider a klystron producing 40 MW, 4 μ s RF and operating at 100 Hz. It operates 10 hours/day and 5 days a week

- PFN modulator is air cooled
- A ScandiNova modulator is water cooled


	ScandiNova modulator	PFN modulator
Average modulator heat	6.1 kW	24.8 kW
Air conditioning*	0.3 tons	9 tons
Water cooling*	1.7 tons	0

*A ton refers to the amount of heat it takes to completely melt a ton of ice

A PFN modulator will consume 90 500 kWh/year A ScandiNova modulator will consume 22 300 kWh/year

Cost

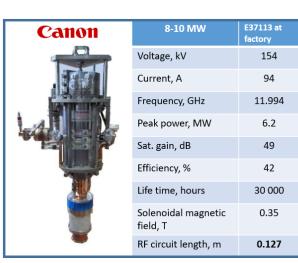
Development of electricity prices for non-household consumers, EU, 2008-2023

Source: Eurostat (online data codes: nrg_pc_205)

eurostat 🖸

	ScandiNova modulator	PFN modulator
Energy consumption to produce the RF pulse	79 000 kWh/year	93 500 kWh/year
Energy consumption to cool down the system	22 300 kWh/year	90 500 kWh/year
Total consumption	101 300 kWh/year	184 000 kWh/year
Price	21 300 €/year	39 000 €/year
Saving	46 %	

Klystron modulator – K300 and S-band klystron


Total Power	Detail	Total	Percentage	15/11/2023 21:08:05 ScandiNova CVD: 148.4 kV AccessLeve1: ScandiNov M1784-2 CT: 104.2 A
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Fercentage	F1: Toggle help Type Timestamp TrigId Text
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %	State 15/11/2023 20:11:31:606 18013 Trig CCPS SWITCH TANK KLY VoitSet 1250.0 V PiswthSet 17.0 us DiaCvdRead 148:4 kV FosCurset1 10.5 A RESET
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %	Ps1votRead 1239.4 V Su IO I
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %	Prite FRIGR INT
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %	PDU Deverset 2.7 dBm Loci CurRead 0.9 µA Paulo Paulo
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %	Ccoss&Flow3 12.8 l/m ColRtnTempRead 30.2 c RtOutFwdRead 7.6 MW 98.80 dBm BodyFlow 28.0 l/m RtOutFwdRead 73.2 dBm CirculatorFlow 12.5 l/m CollectorPower 58.6 kW SolFlow 12.5 l/m CollectorPower 58.6 kW Load1Flow 12.3 l/m CollectorPower 58.6 kW RtfDuffwdRead 4.9.7 W 46.96 dBm RtfDuffwdRead 0.1 dBm RtfDrfwdRead 0.1 dBm RtfnFwdRead 0.1 dBm WinFlow 4.8 l/m RtfnFwdRead 1.01 Mte: 10 10 10.0 µs
				Dualteer Event Config Matrix

S-band

Calculation inspired by DOI: 10.1109/PAC.1997.749775

Wasted beam power

Total Power	Detail	Total	Percentage
Total Tower	400 Vac, 178 A, cosф=0.92	113.4 kW	Fercentage
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %

т	н	۸	L	Ε	S

Building a future we can all trust

		VKX-8311A	HEX COM_M (CERN/CPI)
	Voltage, kV	420	420
ti di Sifren	Current, A	322	204
	Frequency, GHz	11.994	11.994
	Peak power, MW	49	59
	Sat. gain, dB	48	59
	Efficiency, %	36.2	66
	Life time, hours	30 000	85 000
	Solenoidal magnetic field, T	0.6	0.37
VKX-8311A	RF circuit length, m	0.316	0.316

Retrofit design

154

94

11.994

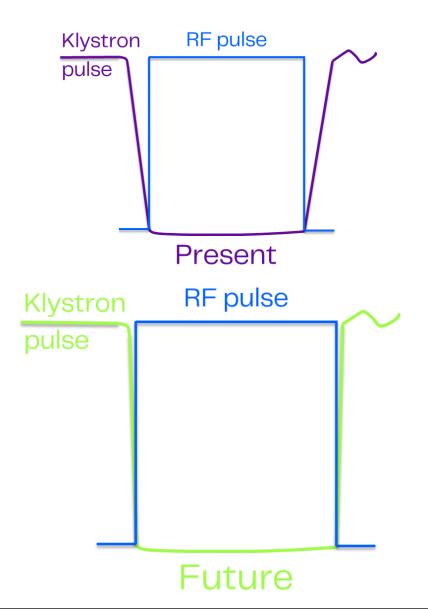
8.1

48

56.4

30 000

0.42


0.127

High Efficiency Klystrons project at CERN: Status and updates. I. Syratchev for HE project team at CERN & Lancaster

Wasted pulse power

Total Power	Detail	Total	Dorcontago
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Percentage
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %

Charging losses

Total Power	Detail	Total	Dorcontago
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Percentage
RF power	7.5 MW, 10 μs, 506 Hz	38.0 kW	33.5 %
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %

Use of DMPS (Digitally Modulated Pulse Shaping, also known as Softgating) on all the modulators

Auxiliary power supplies

Total Power	Detail	Total	Percentage
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Fercentage
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %

Use permanent magnets or superconducting magnets

High efficiency klystrons. I. Syratchev CERN

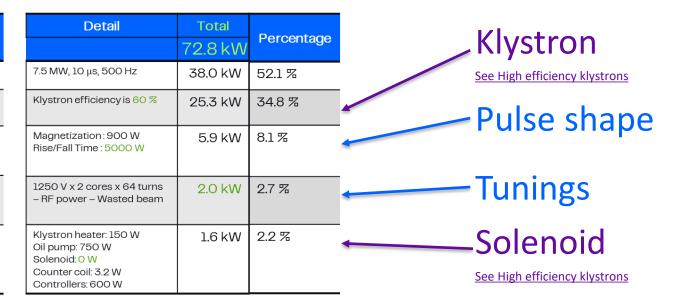
Optimized model

Total Power	Detail	Total	Dorcontago
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Percentage
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %

Efficiency issue in C-band klystron-modulator system for linear collider J.S. Oh; M.H. Cho; W. Namkung; T. Shintake; H. Matsumoto; K. Watanabe; H. Baba *Proceedings of the 1997 Particle Accelerator Conference*

Table 4: Power distribution of a C-band system.

	114 0,000	
Total Power = 51,371 W		
1. RF Power	12,488	(24.3%)
2. Wasted Beam Power	15,263	(29.7%)
3. Wasted Pulse Power	12,071	(23.5%)
4. Charging Loss	7,072	(13.8%)
5. Aux. Power	4,477	(8.7%)
Wasted Pulse Power		
a. Rise/Fall Time Loss	9,991	(19.45%)
b. Magnetizing Loss	929	(1.81%)
c. Thyratron Loss	416	(0.81%)
d. Eddy Current Loss	463	(0.90%)
e. RC Snubber Loss	272	(0.53%)
Aux. Power		
a. Klystron Magnet	3,000	(5.84%)
b. Thyratron Heater	567	(1.10%)
c. Cooling Fan	450	(0.88%)
d. Klystron Heater	316	(0.62%)
e. Core Bias	100	(0.19%)
f. Thyratron Reservoir	44	(0.09%)


DOI: 10.1109/PAC.1997.749775

Optimized model

Total Power	Detail	Total	Dercentage	Detail	Total	Deveentege	
Total Power	400 Vac, 178 A, cosф=0.92	113.4 kW	Percentage		72.8 kW	Percentage	
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %	7.5 MW, 10 μs, 500 Hz	38.0 kW	52.1 %	
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %	Klystron efficiency is 60 %	25.3 kW	34.8 %	
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %	Magnetization : 900 W Rise/Fall Time : 5000 W	5.9 kW	8.1 %	
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %	1250 V x 2 cores x 64 turns – RF power – Wasted beam	2.0 kW	2.7 %	
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %	Klystron heater: 150 W Oil pump: 750 W Solenoid: 0 W Counter coil: 3.2 W Controllers: 600 W	1.6 kW	2.2 %	

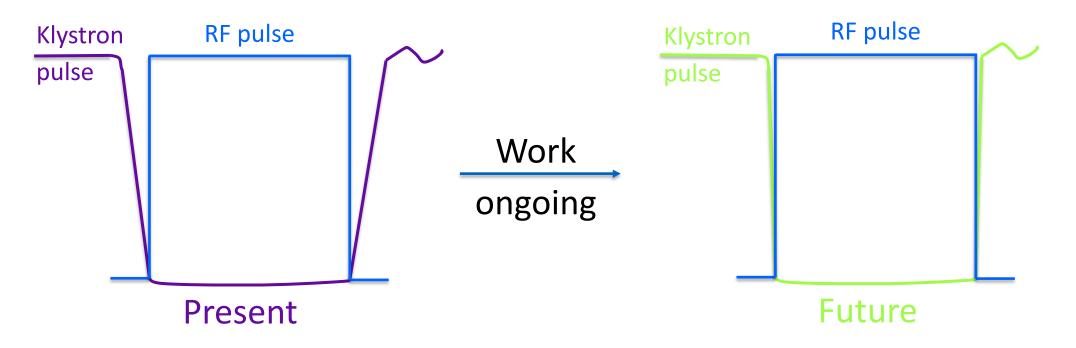
Impact on the bill

Total Power	Detail	Total	Percentage	
TOLAIPOWEI	400 Vac, 178 Α, cosφ=0.92	113.4 kW		
RF power	7.5 MW, 10 μs, 500 Hz	38.0 kW	33.5 %	
Wasted beam power Power dumped in the collector	Klystron efficiency is 44.7 %	47.0 kW	41.4 %	
Wasted pulse power Power which doesn't contribute to the RF pulse	Magnetization : 900 W Rise/Fall Time : 15300 W	16.2 kW	14.3 %	
Charging losses Losses in the transformer and tuning elements	1250 V x 2 cores x 64 turns – RF power – Wasted beam	7.6 kW	6.7 %	
Auxiliary power supplies	Klystron heater: 150 W Oil pump: 750 W Solenoid: 3060 W Counter coil: 3.2 W Controllers: 600 W	4.6 kW	4.1 %	

Electricity price 0.21€/kWh It operates 10 hours/day and 5 days a week

Total price to produce 38 kW average of RF power: 61 900 €/year

Each kW saved on the modulator will help to save 550 €/year

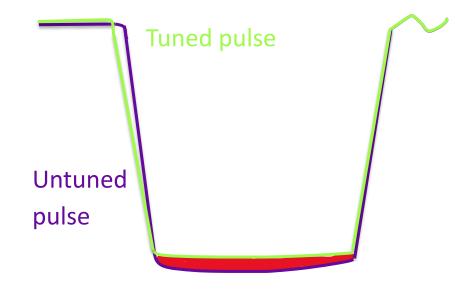


Rise/Fall time improvement

Implemented on the M060

We are working on improving transformer size to **reduce leakage inductance** Also looking into **improvements** on the **inductance of the primary side of the transformer**

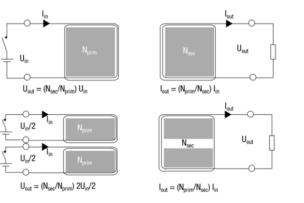
Future – work ongoing


Pulse droop losses

Implemented on the M060

To compensate for the droop of capacitor bank an amount of **energy is burned to "flatten" the pulse**

This is something we are looking into to improve


Big capacitor bench

Future – work ongoing

Easier impedance matching with klystrons

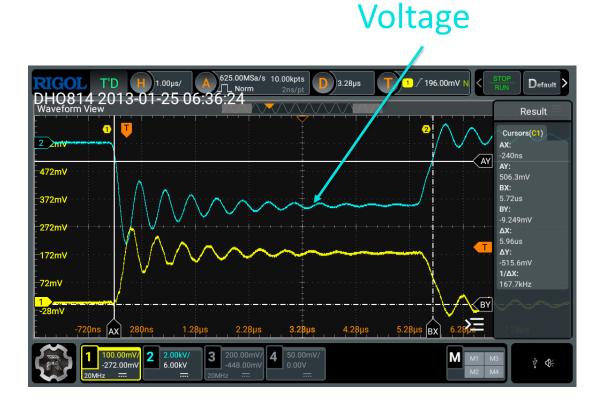
Split Core[™] – the secret of ScandiNova

Parallel Switching[™]

Implemented on the M060

Work

ongoing


Asynchronus parallel switching

By sequentially triggering the split cores the overshoot that is otherwise tuned by other means can be reduced

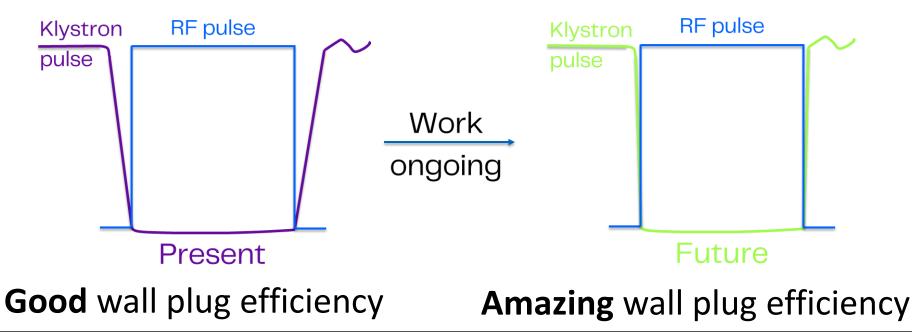
Covered by a split core patent

Future – work ongoing

Experimental results

Rise/Fall time improvement

Voltage


All the improvements

ScandiNova

Conclusions and future developments

To achieve future state, we are looking into **3 main parameters**

- Rise/Fall time improvement
- Pulse droop losses
- Easier impedance matching with klystrons

Thanks for your attention!

info@scandinovasystems.com +46 18 480 59 00 Typsnittsgatan 15 754 54 Uppsala Sweden

ScandiNova