THALES

Building a future we can all trust

TH2167HE KLYSTRON FOR LHC

K. Haj Khlifa, A. Beunas, Thales AVS MIS

I. Syratchev, N. Catalan Lasheras, C. Marrelli, O. Brunner, CERN

Workshop on efficient RF sources, Toledo, Spain, 23-25 September 2024

TH2167HE Workshop on efficient RF sources_Toledo_23-25 September 202-1 www.fnalesgr.comp.comp.vstems / Template: 87211168-DOC-GRP-FR-00 OPEN {OPEN}

- TH2167 upgrade objectives
- Simulation results
- Mechanical design & manufacturing

OPEN

- Measurement results
- Conclusion

TH2167 upgrade objectives

- 30 TH2167 klystrons delivered to CERN (400 MHz, 300 kW CW at 58 kV, 8.4 A, ~60-62% efficiency)
- Developed in 2002, with 16 units commissioned in 2008
- High Luminosity LHC upgrade requires more RF power
- Target: at least 350 kW per klystron at ~58 kV, 9 A
- Efficiency needs to increase to a minimum of 67%.
- This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730

TH2167 upgrade objectives

Air tank Supporting frame **Klystron body** Parts redesigned **Electromagnet** for the high efficiency TH2167 Coaxial to WR2300 waveguide transition Toledo 23-25 September 2024 OPEN

{OPEN}

Main requirements

Parameters	Unit	TH2167	TH2167HE
Frequency	MHz	400.8	
Power	kW	300	350
Efficiency	%	60-62	> 67
Gain	dB	37	36
Bandwidth	MHz	+/- 1	+/-0,7

Simulation results

CERN DESIGN (by I. Syratchev & J. Cai)

- New interaction structure design with harmonic 3 cavity
- Baseline structure from KLYC and CST 3D simulations
- > Predicted power is 368 kW at 58kV 9A with 70,5% efficiency and 36,5dB gain (at saturation)
- 173 mm shorter than the initial structure

OPEN {OPEN}

Simulation results

Electron beam

- > Same beam as TH2167 generated from a triode gun; low convergence beam with 14,2 mm radius; ripple is about 14% (= (rmax-rmin) / (rmax+rmin)),
- Drift tube radius 25 mm
- Operating point at 57.7 kV x 9 A with a mod anode voltage of 31.2 kV; beam perveance is 0,65 uperv

OPEN

, published, translated, in any way, in whole or in part t of Thales - © Thales 2016-2019 All rights reserved.

| Electromagnet modifications

- Re-adjusted the position of some coils and supporting plates to allow the access to cavities tuners.
- increase coil current from 9,4 A to 10,5A
- second power supply added for the last two coils to optimize magnetic field profile close to the OP cavity,

Building a future we can all trust

TH2167 Vs TH2167HE

- ▶ Beam wave simulation with KlyC & internal PIC code Klys2D
- > TH2167_ Bz@lcoil=9.4 A, TH2167HE_ Bz@lcoil=10.5A
- Klys2d input data aligned with KlyC, coupling factor from HFSS simulation of cavities
- Predicted efficiency with Klys2d 67.3% (350kW saturated), 3 pts less than KlyC;

OPEN
{OPEN}

Simulation results

TH2167 Vs TH2167HE (Klys2d)

- Bandwidth is shorten at lower edge due to Harmonic 3 cavity
- ➤ The gain variation within +/- 0.7 MHz of the center frequency is less than 1 dB at Sat-1dB.

OPEN

Collector resizing

- Increase inner diameter and length of the collector
- To have more margin in case we need to increase the beam power

OPEN

Mechanical design & manufacturing

Design changes (pumped tube)

OPEN {OPEN}

Parts assemblies

gun

Input cavity

Intermediate cavities

penultimate and last cavities + window

collector

Mechanical design & manufacturing

Inside the baking & exhaust station

do_23-25 September 202

_

OPEN {OPEN}

Measurement Vs simulations

- > 70 % efficiency measured @ 57.7 kV
- Good agreement between Measurement and KlyC calculations @ nominal voltage
- > High efficiency (61%) maintained at 200 kW (mode I), 6 points higher than the TH2167
- > Discrepancies are mainly due to tube adjustments, not fully evaluated for retro-simulation yet.

Measurement Vs Simulations (KlyC)

@ Psat-1dB_57.7 kV, 9A

- > Good agreement between measurement and KlyC calculations
- > The bandwidth is compliant

Side bands

- Sidebands appeared at 403.5 MHz before saturation.
- Attenuated and pushed after saturation by adjusting cavity 5
- Eliminated by adjusting the current of the main coils.

-54.15 dBm

403.50 MHz

Multipactor: Disturbance of the transfer curve and the pulse signal.

Green: The output signal pulse Yellow: cathode current pulse

Blue color → sign of overheating Copper color →no overheating

Multipactor: CERN simulation (F. Peauger)

200

300

RF output power [kW]

0.0

100

With static magnetic field

- > The Multipactor phenomenon was demonstrated through simulation
- Emissions would occur at surfaces A, B, and C
- > It can be eliminated by applying a static magnetic field along the coaxial axis

400

Multipactor: elimination of disturbances with a static magnetic field.

- Monotonous transfer curve
- No more coax overheating

- New klystron with 3rd Harmonic cavity designed by CERN and manufactured by Thales
- The prototype achieves an efficiency of 70%, as calculated by the KLYC and CST codes.
- The klystron will be delivered and tested at CERN to confirm the factory performances
- Collaboration with CERN has been highly successful and very close, from design to testing
- Significant advances in simulation, usable as a "digital tuning."

Merci

DE VOTRE ATTENTION