2nd Workshop on efficient RF sources

L-Band High-Efficiency IOT

Mohamed Othman, PhD

SLAC National Accelerator Laboratory

Tuesday September 24, 2024

SLAC

Brandon Weatherford Carlos Munos Ann Sy Bradley Shirley Erik Jongewaard Emilio Nanni Cho-Kuen Ng

Stellant Systems Inc.

Michael Boyle Holger Schult John Cipolla

DOE ARDAP Accelerator Stewardship

Motivation

High average power accelerator systems for environmental and energy applications

Need high efficiency RF sources for next generation high average power accelerators

of Accelerators, DOE report 2015

Peak Power Cost and Scaling with Pulse Length of RF Source (from AC in to RF at Accelerating Structure) SLAC

- Meeting the decadal goal of 70% efficiency at \$2/kW is an *extremely* difficult challenge, regardless of frequency
- Peak power cost of RF source also scales with duty

Cost-scaling with duty has big impact – Model needs refinement as we progress towards decadal goal of \$2/kW peak

The Present State of the Art Is Not Close to Fulfilling the Need: Basic and Applied R&D is Necessary

	Efficiency	\$/ kW _{peak}
Scandinova Modulator	90%	\$10/kW
SLAC ILC Marx	88%	\$40/kW
SLAC XL-4	40%	\$20/kW
Common Household Cooker Magnetron	65%	\$13/kW
CPI VKS-8262	45%	\$8/kW
Total System Goal*	70%	\$2/kW

Must increase total efficiency from 40% up to 70%, while decreasing cost by 10x

Research Thrusts RF and Beam Physics

Novel

Toppologies

*System goals come from the 2017 DOE RF Accelerator R&D Strategy Report

Research Objectives

SLAC

Low-Cost Systems

High Efficiency Systems

High Efficiency Inductive Output Tubes (HEIOTs)

- Toward >80% DC-to-RF efficiency at 1 MW
- Efficiency is critical, must be maintained at variable output power levels
- Target: MW of CW at 1.3 GHz
 - 100 kW single RF source
 - Power combing
- Industrial partnership: Stellant system
- Applications: high average power accelerators

Single-beam Prototype: 1.3 GHz / 100 kW CW / 80% efficiency

High Efficiency Inductive Output Tubes (HEIOTs)

SLAC

Parameter	Value
Cathode Voltage	40 kV
Frequency	1.3 GHz
Input RF power	550 W
Grid Bias	-220 V
Average Beam Current	3.2 A
Peak Focusing B-Field	470 G
Output power	100 kW
Peak efficiency	80%
Cavity 1 frequency	1.315 GHz
Cavity 2 frequency	2.615 GHz
Output cavity frequency	1.305 GHz
Output external Q	100

SLAC Stellant IOT 4447 is in production

IOT limitation in frequency can be pushed through understanding RF and beam dynamics in 3D

THis effort needed a rigorous understanding of the design complexity and how to leverage commercial part to optimize cost and efficiency

Parallel Electromagnetic Code Suite ACE3P

Conformal, higher-order, massively-parallel finite-element based electromagnetic codes running on NERSC

ACE3P: Parallel Finite Element EM Code Suite (<u>A</u>dvanced <u>C</u>omputational <u>E</u>lectromagnetics, <u>3</u>D, <u>P</u>arallel)

ACE3P Module	Accelerator Physics Application
<u>Frequency Domain</u> :	Omega3P – Eigensolver (w/ damping) S3P – S-Parameter
<u>Time Domain:</u>	T3P– Transients & WakefieldsPic3P– Particle-In-Cell (self-consistent)
<u>Particle Tracking</u> : <u>Multi-Physics</u> :	Track3P – Dark Current and Multipacting TEM3P – EM-Thermal-Mechanical
Fidelity	Speed Scale

Particle in Cell Module for RF Gun Design: PIC3P

- Low-energy space-charge calculations
 - Self-consistent modeling of RF guns up to ~ 10 MeV (e-)
 - Space-charge, image charge effects, time retardation and wakefield effects are included from first principles, no "knobs" to turn
 - Load RF map(s) (Omega3P or HFSS) and solenoid map(s)
 - Causal moving window technique for efficiency

Particle distributions

- Simple distribution generator
- Read-in of arbitrary distributions
- Field emission, thermionic emission models

Diagnostics

- Full 6D phase space dump at given times
- Automatic calculation of moments (1st & 2nd order) and emittances
- Visualization through commercial and in-house codes

SLA0

IOT Simulation Workflow

Elements of RF IOT Gun Simulations in ACE3P

IOT RF Gun Design and Simulation Setup

Design parameters

Simulation parameters

Parameter	Value	Parameter	Value
Beam Voltage (kV)	40	Mesh type	Tetrahedra
Anode Diameter (mm)	25.4	Mesh density	Gradient
Grid bias (V)	-200	Number of particles	~5x10 ⁵
Cathode to Anode distance (mm)	20	Number of nodes	16
Frequency (GHz)	1.3	Number of codes/node	32
Cathode-grid separation (mm)	0.3	Time step size	~ 1 ps
Beam average current (A)	3.2	Simulation time	~ min/node/time
Peak to average current ratio	26%	*Also used UHF model to benchmarking	step
Peak axial magnetic field (G)	600		13

Benchmark Against Experimental Data of L4444 UHF Gun

Model of L-Band IOT RF Gun Beam Dynamics with PIC3P SLAC

 Understanding beam transient 6D phase-space is essential to optimize the RF circuit downstream

HE IOT

- Fundamental and second harmonic cavities have been designed to ٠ achieve high efficiency
 - Cavity design with high R/Q cavities
- 3D simulations predicted >80% efficiency with 100 kW power at 1.3 GHz
 - Design includes tolerances study and detuning effects
 - Cavities were designed for high R/Q and low thermal load ٠
- Thermal and mechanical design: •
 - Heat loads from RF power loss and from e- beam deposited power to design water cooling channels
 - Output slots/transitions to reduce multipactor
 - Braze assembly is designed for compact and efficient assembly Simulated transfer curve Simulated thermal load

emperature [oC]

450

400

350

300

250

200 150

100

50

Production of L-Band SLAC/Stellant HEIOT

- The following major components have been designed and manufactured:
 - Input cavity
 - Gun assembly ✓
 - Collector assembly ✓
 High power RF load ✓
 - RF window ✓
 - Mechanical design features some advanced features:
 - Easier machining of iris coupling to window waveguide
 - <u>Multipactor suppression</u> and prevention of electrons from collector
 - Selection of <u>new UHV seal</u> for L-band window and modification of matching waveguide flange

Collector ceramics

Solenoids (TY 4) ✓

- Modifications on <u>cooling loops</u> based on thermo-mechanical analysis
 - Required water flow to cool cavity body at 100 kW average power
 - Correct for throttle losses and water pressure

4447 HEIOT assembly

Production of L-Band SLAC/Stellant HEIOT

- <u>3 sets of body parts are being manufactured, contingencies for modifications</u>
- Testing is planned starting Fall 2024
 - Long lead items were manufacturing of body, RF load (1.5 year), seals, etc.
 - Plan for <u>assembly and test at Stellant</u> L-Band test stand
- CPC amplifier shipped and received by Stellant
- RF water load manufactured and shipped to Stellant
- RF high power window manufactured, cold tested, QC and shipped to Stellant

RF window manufactured and cold test

4447 HEIOT assembly

Conclusion

- HE IOT design paves the way for novel accelerator application
- Production of IOT is a major challenge
 - Working with industrial partner leverage expertise in procurement and testing
 - Supply chain issues for ceramics, weldments, etc
- Plans for testing in end of 2024
- Extension to multi-beam IOT with output combiner is in progress

Benchmark Against Experimental Data of L4444 UHF Gun

Model of L-Band IOT RF Gun Beam Dynamics with PIC3P SLAC

Particle distribution shows a signature of the harmonic contents of the bunch