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Proposition (informal): No method can guarantee performance better than 
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Test statistics and their relevant out-distributions

• Detection based on likelihood: low density under a given parametrization

• Detection based on likelihood ratio: low density ratio relative to a specified base distribution

• Detection based on some alternative statistic? Need to justify the definition of anomalous!

But sometimes alternative statistics just work well empirically…how do we reason about this?
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But the typical set assumes that relevant out-distributions 
overlap in support with the data distribution…
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An Alternative Explanation
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• 𝔼p(x,y)[−log pθ(x, y)] = 𝔼p(y)𝔼p(x|y)[−log pθ(x |y)] + 𝔼p(y)[−log pθ(y)]

• For uniform class distribution, second term is , where # classeslog K K =
• Many more bits associated with generating the object

• To prioritize important information in modeling, employ representation learning!
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Takeaways

Generative models exhibit detection failures.

The “right” method depends on assumptions on out-distributions.

Failures can result from even minimal estimation error.

Rather than rely entirely on generative models, consider learning good representations.

Alternative test statistics can correct for estimation error.
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1
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