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C. M. Bishop. Novelty detection and neural network validation.
2 IEE Proceedings - Vision, Image and Signal Processing, 1004.
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Proposition (informal): No method can guarantee performance better than
random guessing without assumptions on the out-distributions.
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Test statistics and their relevant out-distributions

* Detection based on likelihood: low density under a given parametrization
* Detection based on likelihood ratio: low density ratio relative to a specified base distribution

* Detection based on some alternative statistic? Need to justify the definition of anomalous!

But sometimes alternative statistics just work well empirically...how do we reason about this?

Lily H. Zhang, Mark Goldstein, Rajesh Ranganath.
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* MLE does not prioritize the bits of information most important for detection:

* Epupl=logpolx, »)I = By Epipl—10g polx [ )] + ([ —10g py(y)]

 For uniform class distribution, second term is log K, where K = # classes
* Many more bits associated with generating the object

 To prioritize important information in modeling, employ representation learning!
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* We do not want representations that depend on z within each class or overall

. argmax p,, (y|r(x)) s.t. r(x) 1, z and r(x) 1, z |y

 r(x) WL, z:py(r(X),2) = py (r(X)py (Z)

» r(x) W, z|y:py(r(X),z|y) =py (rX) | Y)pu(Z]y)
Add a mutual information penalty:
pu(r(x),y, z)
pu(r(x),y)p.(z)
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Representation learning for anomaly detection

* We want representations that can distinguish between classes y
. arg mraXp(y | (X))

* We do not want to rely on known spurious signal zZ that happens to be correlated with'y
. arg mgxm(y | (X))

* We do not want representations correlated with z within each class or overall

. argmaxp (y|r(x)) s.t. n(xX) 1, zandr(x) lL, z |y

r

Lily H. Zhang and Rajesh Ranganath. “Robustness to
Spurious Correlations Improves Semantic Out-of-
distribution Detection.” AAAI 2023.

26



Representation learning for anomaly detection

‘ Y: Label, Z: Search Feature X: Inputs,Y: Label, Z: Search Feature @‘ Calculate weights W:
W = p(Y)/p(Y|Z)
1 @ ~ (estimated by discretizing Z)
‘Wei Classifier
W:Weights el @ @ Train main classifier
via gradient optimization of L
r(x):N-1 Layer
v v For each gradient step:
v@ r(x),,[Z,Z"] @ @Calculate I by training
Critic critic to convergence
g
Output
L = f(Output,Y) *W + I. @

N

Critic Output

Abhijith Gandrakota®*, Lily H. Zhang*, Aahlad Puli,

‘Cc = f(Critic Output) *W Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath,
Nhan Tran. “Robust Anomaly Detection for Particle
27 Physics using Multi-Background Representation

Learning.” MLST 2024.
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Representation learning for anomaly detection

‘ Y: Label, Z: Search Feature X: Inputs,Y: Label, Z: Search Feature @‘ Calculate weights W:
< W = p(Y)/p(Y|Z)
1 @ (estimated by discretizing Z)
‘Wei Classifier
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via gradient optimization of L
r(x):N-1 Layer
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Multi-Background and Nuisance-Aware Representation Learning

Train time: r e Data:
' )

<®, m(<®) ®» | Neural network |® r(<®) » l(<®)=QCD é@f m(‘é@() l(é@(kw/z
L), m(H), (<) =Top
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= maximum logit
®» | Neural network » /| »o® T,
<@ »| (<® ) fin = Mahalanobis distance
/

Abhijith Gandrakota®*, Lily H. Zhang*, Aahlad Puli,
Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath,
Nhan Tran. “Robust Anomaly Detection for Particle

32 Physics using Multi-Background Representation
Learning.” MLST 2024.
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Multi-Background and Nuisance-Aware Representation Learning

Train time: r critic Data:
L) <) m(<{h. (<{h=qcp

<®, m(<®) ®» | Neural network |® r(<®) » l(@)=QCD é% m(é@(), l(é@()=w/z
<X, m(<R), 1<) = Top

Test time:
_ Anomaly score:
= maximum logit
®» | Neural network » /| o I
<@ » r(<® ) fup = Mahalanobis distance
/

Method AUROC (1) JSD{) L2WD{) SI()

VAE 0.881 0.255 34.3 2.03 Abhijith Gandrakota*, Lily H. Zhang*, Aahlad Puli,

nurd-ml 0.914 0.168 24.4 2.32 Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath,

nurd-md 0.884 0.118 19.1 2.23 Nhan Tran. “Robust Anomaly Detection for Particle
32 Physics using Multi-Background Representation

Learning.” MLST 2024.
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4
7. r critic
Ny *
Y <® m(@) ®» | Neural network [mp| #( @) » <®) =QCD
_2 0 2 4
The “right” method depends on assumptions on out-distributions. ~ Rather than rely entirely on generative models, consider learning good representations.
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