Detecting New Physics as cata anomalies at the Iransitioning from toy datasets to

Thea Klæboe Årrestad PHYSTAT Statistics meets ML (London September 9-12)

ZIFICH

millions of proton collisions

Semi-supervised permutation invariant particle-level anomaly detection Gabriel Matos (Columbia U.), Elena Busch (Columbia U.), Ki Ryeong Park (Columbia U.), Juli e-Print: 2408.17409 [hep-ph] pdf E cite claim	Accelerating Resonance Searches via Signature-Oriented Pre-training Congqiao Li (Peking U., SKLNPT), Antonios Agapitos (Peking U., SKLNPT), Jovin Drews (Han SKLNPT) et al. (May 21, 2024) e-Print: 2405.12972 [hep-ph] pdf	Machine learning for anomaly detection in particle physics Vasilis Belis (Zurich, ETH), Patrick Odagiu (Zurich, ETH), Thea Klaeboe Aarrestad (Zurich, ETH) Published in: Rev.Phys. 12 (2024) 100091 · e-Print: 2312.14190 [physics.data-an]
RODEM Jet Datasets Knut Zoch (Geneva U. and Harvard U.), John Andrew Raine (Geneva U.), Debajyoti Sengupt e-Print: 2408.11616 [hep-ph]	Incorporating Physical Priors into Weakly-Supervised Anomaly Detection Chi Lung Cheng (Wisconsin U., Madison and LBNL, Berkeley and Sao Paulo, IFT), Gurpreet Si Berkeley and Sao Paulo, IFT and UC, Berkeley) (May 14, 2024)	Residual ANODE Ranit Das (Rutgers U., Piscataway), Gregor Kasieczka (Hamburg U.), David Shih (Rutgers U., I
pdf		
Interplay of Traditional Methods and Machine Learning Algorithms for Tag Camellia Bose (Bangalore, Indian Inst. Sci.), Amit Chakraborty (Unlisted, IN), Shreecheta Cl e-Print: 2408.01138 [hep-ph]	Date of paper ("anomaly detection")	Selected Papers: 39 Ulators Total Papers: 39 (LBNL, Berkeley and Service of Northeastern)
▶ pdf ② DOI 🖃 cite 🗟 claim		Way and Northeastern C
Accelerating template generation in resonant anomaly detection searches Matthew Leigh (Geneva U.), Debajyoti Sengupta (Geneva U.), Benjamin Nachman (LBL, Ber e-Print: 2407.19818 [hep-ph]	and (hep-ex or hep-ph or hep-th)	Year: 2023
▶ pdf 🖃 cite 🗟 claim		c for Anomaly Detection in the CMS Global Trigger
Anomaly Detection Based on Machine Learning for the CMS Electromagn		Selected Papers: 16
CMS Collaboration • Abhirami Harilal (Carnegie Mellon U.) et al. (Jul 25, 2024) Contribution to: CALOR2024 • e-Print: 2407.20278 [physics.ins-det]		Total Papers: 16
Unsupervised Beyond-Standard-Model Event Discovery at the LHC with a Callum Duffy (University Coll. London), Mohammad Hassanshah (University Coll. London), Coll. London) (Jul 10, 2024)		Year: 2024
e-Print: 2407.07961 [quant-ph]	2001 20	24
pdf cite claim Universal Anomaly Detection at the LHC: Transforming Optimal Classifiers		tic gauge couplings at muon colliders using the au
Sascha Caron, José Enrique García Navarro, María Moreno Llácer, Polina Moskvitina, Mats F e-Print: 2406.18469 [hep-ph]	Nathaniel Craig (Unlisted and Santa Barbara, KITP), Jessica N. Howard (Santa Barbara, KITP) e-Print: 2401.15542 [hep-ph]	Published in: <i>Phys.Rev.D</i> 109 (2024) 9, 095028 • e-Print: 2311.16627 [hep-ph]
pdf ⊡ cite claim	Ď pdf ⊡ cite 🗟 claim	🔓 pdf 🖉 DOI 🖃 cite 🗟 claim
Review of searches for new physics at CMS Anne-Mazarine Lyon (Zurich, ETH) (Jun 4, 2024) Contribution to: Moriond QCD 2024 • e-Print: 2406.02010 [hep-ex]	Robust Anomaly Detection for Particle Physics Using Multi-Background Re Abhijith Gandrakota (Fermilab), Lily Zhang (New York U., Courant Inst. and Rochester U.), Aa Cranmer (Wisconsin U., Madison), Jennifer Ngadiuba (Fermilab) et al. (Jan 16, 2024) e-Print: 2401.08777 [hep-ex]	Ryan Liu (LBL, Berkeley), Abhijith Gandrakota (Fermilab), Jennifer Ngadiuba (Fermilab), Maria Contribution to: NeurIPS 2023 • e-Print: 2311.17162 [hep-ex]
	🔓 pdf 🕜 links 🖃 cite 🔂 claim	🔀 pdf 🕜 links 🖃 cite 🗟 claim

("anomaly detection" and "ATLAS") and (hep-ex or hep-ph or hep-th)

Selected Papers: 39 Total Papers: 39 Year: 2023

("anomaly detection" and "CMS") and (hep-ex or hep-ph or hep-th)

ture-Oriented Pre-training Peking U., SKLNPT), Jovin Drews (Ham	Machine learning for anomaly detection in particle physics Vasilis Belis (Zurich, ETH), Patrick Odagiu (Zurich, ETH), Thea Klaeboe Aarrestad (Zurich, ETH Published in: <i>Rev.Phys.</i> 12 (2024) 100091 · e-Print: 2312.14190 [physics.data-an]				
nomaly Detection o Paulo, IFT), Gurpreet Si	Residual ANODE Ranit Das (Rutgers U., Piscataway), Gregor Kasieczka (Hamburg U.), David Shih (Rutgers U., Piscataway), Gregor Kasieczka (Hamburg U.), David Shih (Rutgers U., Piscataway) e-Print: 2312.11629 [hep-ph]				
et Physics Tasks and Sao Paulo, IFT and U	Anomaly detection with flow-based fast calorimeter simulators Claudius Krause (Heidelber David Shih (Rutgers U., Pisc Published in: Phys.Rev.D 11				
24) ar 20, 2024)	 pdf O DOI E Testing a Neural Netw CMS Collaboration • Noah Published in: JINST 19 (20) pdf O DOI E Cite O Claim 				
th normalizing flows ra U.), Constança Providência (Coimbra Print: 2403.09398 [nucl-th]	Classifying anomalies through outer density estimation Anna Hallin (Rutgers U., Piscataway), Joshua Isaacson (Fermilab), Gregor Kasieczka (Hambu Piscataway), Benjamin Nachman (LBNL, Berkeley) et al. (Sep 1, 2021) Published in: Phys.Rev.D 106 (2022) 5, 055006 · e-Print: 2109.00546 [hep-ph]				
I Anomaly Detection at the Larg essica N. Howard (Santa Barbara, KITP)	Searching 1 Yu-Ting Zhan Published in: / pdf // pdf				
cs Using Multi-Background Re I., Courant Inst. and Rochester U.), Aa Fermilab) et al. (Jan 16, 2024)	Fast Particl Ryan Liu (LBL Contribution t Rode (Fe 2311.11 Pdf Image: New Year (Fe Image: Pdf Image: Pinks E cite Image: Pdf Cites Image: Pdf Image: Pdf				

Publisher's Note: Search for Dijet Resonances in 7 TeV pp Collisions at CMS [Phys. Rev. Lett. 105, 211801 (2010)]

V. Khachatryan et al.* (CMS Collaboration) (Received 5 January 2011; published 13 January 2011)

DOI: 10.1103/PhysRevLett.106.029902

PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.-j, 99.10.Fg

PHYSICAL REVIEW D 87, 114015 (2013) Search for narrow resonances using the dijet mass spectrum in pp collisions at $\sqrt{s} = 8 \text{ TeV}$

S. Chatrchyan et al.* (CMS Collaboration) (Received 19 February 2013; published 17 June 2013) Ş

Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at $\sqrt{s} = 13 \text{ TeV}$

V. Khachatryan et al.

(CMS Collaboration)

(Received 3 December 2015; published 18 February 2016)

Publisher's Note: Search for Dijet Resonances in 7 TeV pp Collisions at CMS [Phys. Rev. Lett. 105, 211801 (2010)]

V. Khachatryan et al.* (CMS Collaboration) (Received 5 January 2011; published 13 January 2011)

DOI: 10.1103/PhysRevLett.106.029902

PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.-j, 99.10.Fg

S

Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at $\sqrt{s} = 13 \text{ TeV}$

V. Khachatryan et al.

(CMS Collaboration)

(Received 3 December 2015; published 18 February 2016)

CONCERCICULAR CONCERCIÓN

$M_{jj} = 8 \text{ TeV}$

222222222222

$M_c = 1.8 \text{ TeV}$

$M_b = 1.8 \text{ TeV}$

$M_a = 8 \text{ TeV}$

B

-SECERECESSES

$M_{jj} = 1.8 \text{ TeV}$

M_{jjjj} = 8 TeV

Signal might still be present in our data, but might look different

QCD dijet

N-prong dijet, any mass

VS

Anomaly detection in analysis

Before cut on anomaly score **CMS** Simulation Preliminary (13 TeV) GeV Inclusive: $X \rightarrow YY$, σ =24 fb 100 Signal + Background Fit Signal Events Background χ^2 /ndf = 27.11/31 = 0.87 Prob = 0.66710³ 10^{2} 10 <u>Data-Fit</u> Unc. 2000 3000 5000 6000 4000 Dijet invariant mass (GeV)

After cut on anomaly score

Variational autoencoder

Unsupervised

Variational autoencoder

Unsupervised

Signal-hypothesis dependence

 $n \times m$

5 ways of identifying anomalous dijet events Â X E.g 3-prong gluino fat jet $n \times m$ $n \times m$ \mathfrak{R}^k

Variational autoencoder

Unsupervised

 $n \times m$

Variational autoencoder

Unsupervised

Weakly supervised

M2

Variational autoencoder

Unsupervised

Weakly supervised

 $n \times m$

Variational autoencoder CWoLa, TnT and CATHODE

Unsupervised

Weakly supervised

 $n \times m$

Variational autoencoder CWoLa, TnT and CATHODE

Unsupervised

Weakly supervised

Signal-hypothesis dependence

Hybrid

 $n \times m$

Variational autoencoder

Unsupervised

CWoLa, TnT and CATHODE (Likelihood-ratio based) Weakly supervised

Signal-hypothesis dependence

QUAK (Log-likelihood based) Hybrid

Why so many methods?

Identify single anomalous jet

Variational autoencoder CWoLa, TnT

> Low-level constituent information

High-level substructure information

Identify anomalous dijet system

CATHODE

QUAK

High-level substructure + dijet information

Why so many methods?

 $X \rightarrow YY' \rightarrow qq qq$

ion F	Preliminary	·	(13 TeV)	V)	V)
15	0.17	0.39	0.44		
	0.65	0.18	0.14		-
65		0.25	0.30		
18	0.25		0.62		
14	0.30	0.62			The Land
>	ANT CS	ATHODE	QUAY		

QCD background

Getting a VAE for AD to work in practise \hat{x}

Getting a VAE for AD to work in practise

 $n \times m$

 $n \times m$

Submission

Where do you train?

Δη_{jj} between jets (Signal s-channel, QCD ~t-channel)

Invariant mass sculptin

Δη_{jj} between jets (Signal s-channel, QCD ~t-channel)

 $\mathbf{C} \mathbf{D}$

Quantile regression

Getting weak supervision to work in practise

Dijet invariant mass

CWoLa, TnT and CATHODE

Getting weak supervision to work in practise

Mixed sample definition:

CWoLa: From M_{ii}

Tag N Train: Autoencoder to further increase purity

CATHODE: Learn density from SB, interpolate into SR and sample

Dijet invariant mass

CWoLa, TnT and CATHODE

Getting weak supervision to work in practise

12 windows with different trainings and selection. Hardest part is to decorellate features from m_{ii}!

Weak supervision limit-setting

$N_{sig}(\sigma) = \sigma \times \mathscr{L} \times A \times \epsilon$

Weak supervision limit-setting

$N_{sig}(\sigma) = \sigma \times \mathscr{L} \times A \times \epsilon$

$N_{sig}(\sigma) = \sigma \times \mathscr{L} \times A \times \varepsilon(\sigma)$

Weak supervision limit-setting

$N_{sig}(\sigma) = \sigma \times \mathscr{L} \times A \times \epsilon$

To set limits: Inject signal, retrain each algorithm and estimate efficiency! SIZ

- 1. Inject signal, measure $\epsilon(\sigma)$
- 2. Gives number of selected signal events
- 3. Find intersection with obs/exp limit

And how about look-elsewhere effect?

Each signal region fully independent search (trial factor = 12) Toys to compute effective trial factor based on mass points (usual way)

 $p-value_{global} = p-value_{local} \times Trial Factor_{SR} \times 12$

Setting limits on ~50 New Physics hypo sea

ypothesis in one go, many which have never a searched for!

5% internet traffic to L1 [63 Tb/s]

A

L1 trigger:

Decide which event to keep within ~4 µs latency

Discard >99% of collisions!

Anomaly Detection triggers

Trigger threshold

Energy (GeV)

Level-1 rejects >99% of events! Is there a smarter way to select?

Anomaly Detection triggers

Trigger threshold

Energy (GeV)

- - LOST DATA SELECTED DATA - - POSSIBLE NP SIGNAL

Everything here is normal

Everything here is abnormal

AD threshold

Anomaly Detection in the CMS Level 1 μ GT taking 300 events/second now!

AXOLITL

loss = $|| \mathbf{x} - \mathbf{x}^{\prime} ||^{2} + KL[N(\mu_{x}, \sigma_{x}), N(0, I)]$

COPAXOL ITL

125 ns != 50 ns

μ_x σ_x

MAXOL ITL

50 ns 🗸

AXOLITL

 μ_{x} σ X $N(\mu_x, \sigma_x)$ loss = $|| \times - \hat{x} ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

KL[N(μ_x,σ_x), N(0, I)]

-1)	250	CMS	LHC De CMS Re	
Total integrated luminosity (fb	100 50	Train AXO	Deploy new trigger firmware + Datataking	C r

E.g Higgs \rightarrow A(15 GeV) A(15 GeV) \rightarrow 4b

AXOL1TL Rate	1 kHz	5 kHz	10 kHz
Signal Efficiency Gain	46%	100%	133%

E.g Higgs \rightarrow A(15 GeV) A(15 GeV) \rightarrow 4b

We can do both of these efficiently, model-agnostic and datadriven!

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-06 05:06:55.343296 GMT Run / Event / LS: 322332 / 851591650 / 487

VAE says:

$M_{jj} = 3.5 \text{ TeV}$

two anomalous jets

20

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

SUEPs ?

Backup

Input features (from B. Maier)

