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FIG. 2. Upper limits on the coupling of a Z
0
! qq̄ as a function of its mass [1]. Data scouting at HLT allows to perform dijet

searches down to 500 GeV.

with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.

Scouting at 40 MHz: Recently, it has been proposed to acquire the L1 trigger data at the full bunch crossing rate

of 40 MHz and analyzing certain interesting topologies at the full rate [4, 5]. A proof-of-principle system connected

directly to the L1 trigger through 25 GB/s optical links and fed to a bu↵ering/analysis system consisting of FPGAs

and GPUs has been successfully tested. This was done using inputs from the CMS Global Muon Trigger, logging the
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Figure 5.11: The e↵ect of softdrop on a signal jet (left) and a background jet (right) for di↵erent
values of the tuned parameters �. � = 0 corresponds to the Modified Mass Drop Tagger, which is
the default Softdrop setting in CMS [42].

5.5.2 N-subjettiness

After using the algorithms above, there is still information in the jet structure itself that can

distinguish W/Z jets from quark/gluon jets. A W or Z jet consists of two well-defined high-pT

subjets. A quark/gluon jet instead is made from a single parton, and consists of several large

angle, asymmetric splittings, as illustrated in Figure 5.12. The N-subjettiness algorithm [46]
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Figure 5.12: A jet stemming from the decay of a W will usually have two well-separated high-pT

subjets, while a jet with a single-prong origin consists of several large angel splittings.

takes advantage of this fact by attempting to count the number of hard sub-elements within a jet.

This is quantified through the n-subjettiness variable, ⌧N , defined as

⌧N =
1

d0

X

k

pT,kmin(�R1,k, �R2,k..., �RN,k), (5.10)

where k runs over all the jet constituents, pT,k is the constituent transverse momentum, and

�Ri,k is the distance between the constituent and candidate subjet axes. These subjet axes are

78Eventreconstruction

 (GeV) gen -m reco m
-100-80-60-40-20020406080100

ar
bi
tra
ry
 u
ni
ts

0

2000

4000

6000

8000

10000

12000

 WW, Anti-kT (R=0.8) → RSGraviton 

>=40 PU <n

 > 300 GeV
T
p

| < 2.5 η|

PF + CHS with softdrop

13 TeV CMSSimulation Preliminary

=1 β

RMS = 12.4 GeV
mean = -3.2 GeV

=0 β

RMS = 14.8 GeV
mean = -3.4 GeV

=2 β

RMS = 11.8 GeV
mean = -2.6 GeV

Ungroomed
RMS = 12.8 GeV
mean = -4.6 GeV

 (GeV) jet m
020406080100120140

N
or
m
al
iz
ed
 to
 u
ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

=0.05
frac

=0.2,pT sub r

=0.03
frac

=0.1,pT sub r

=0.03
frac

=0.2,pT sub r

=0.03
frac

=0.3,pT sub r

ungroomed

CMSSimulation Preliminary13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T
p

|< 2.5 η |
> = 40 PU <nPF+CHS with trimming

 (GeV) jet m
020406080100120140

N
or
m
al
iz
ed
 to
 u
ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

=0.5
cut

=0.1,r cut z

=0.5
cut

=0.05,r cut z

=0.75
cut

=0.05,r cut z

=0.75
cut

=0.1,r cut z

ungroomed

CMSSimulation Preliminary13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T
p

|< 2.5 η |
> = 40 PU <nPF+CHS with pruning

 (GeV) jet m
020406080100120140

N
or
m
al
iz
ed
 to
 u
ni
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 = 2  β

 = 0  β

 = 1 β

ungroomed

CMSSimulation Preliminary13 TeV

QCD, Anti-kT (R=0.8)

 >300 GeV
T
p

|< 2.5 η |
> = 40 PU <nPF+CHS with softdrop

Figure5.11:Thee↵ectofsoftdroponasignaljet(left)andabackgroundjet(right)fordi↵erent
valuesofthetunedparameters�.�=0correspondstotheModifiedMassDropTagger,whichis
thedefaultSoftdropsettinginCMS[42].

5.5.2N-subjettiness

Afterusingthealgorithmsabove,thereisstillinformationinthejetstructureitselfthatcan

distinguishW/Zjetsfromquark/gluonjets.AWorZjetconsistsoftwowell-definedhigh-pT

subjets.Aquark/gluonjetinsteadismadefromasingleparton,andconsistsofseverallarge

angle,asymmetricsplittings,asillustratedinFigure5.12.TheN-subjettinessalgorithm[46]
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takesadvantageofthisfactbyattemptingtocountthenumberofhardsub-elementswithinajet.

Thisisquantifiedthroughthen-subjettinessvariable,⌧N,definedas

⌧N=
1
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X

k

pT,kmin(�R1,k,�R2,k...,�RN,k),(5.10)

wherekrunsoverallthejetconstituents,pT,kistheconstituenttransversemomentum,and

�Ri,kisthedistancebetweentheconstituentandcandidatesubjetaxes.Thesesubjetaxesare
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Figure 5.11: The e↵ect of softdrop on a signal jet (left) and a background jet (right) for di↵erent
values of the tuned parameters �. � = 0 corresponds to the Modified Mass Drop Tagger, which is
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5.5.2 N-subjettiness

After using the algorithms above, there is still information in the jet structure itself that can

distinguish W/Z jets from quark/gluon jets. A W or Z jet consists of two well-defined high-pT

subjets. A quark/gluon jet instead is made from a single parton, and consists of several large

angle, asymmetric splittings, as illustrated in Figure 5.12. The N-subjettiness algorithm [46]
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Figure 5.12: A jet stemming from the decay of a W will usually have two well-separated high-pT

subjets, while a jet with a single-prong origin consists of several large angel splittings.

takes advantage of this fact by attempting to count the number of hard sub-elements within a jet.

This is quantified through the n-subjettiness variable, ⌧N , defined as

⌧N =
1

d0

X

k

pT,kmin(�R1,k, �R2,k..., �RN,k), (5.10)

where k runs over all the jet constituents, pT,k is the constituent transverse momentum, and

�Ri,k is the distance between the constituent and candidate subjet axes. These subjet axes are
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Figure 1. Final mjj distributions for the dijet analysis in six signal regions. The high-purity (on
the left) and the low-purity (on the right) categories are shown for the WW (top row), WZ (central
row), and ZZ (bottom row) mjet regions. The solid curve represents a background-only fit to the
data distribution, where the filled red area corresponds to the ±1 standard deviation statistical un-
certainties of the fit. The data are represented by the black points. For the ZZ high-purity category
(bottom left), we also show the background-only fit using the two-parameter functional form (blue
solid line), for comparison. Signal benchmarks for a mass of 2TeV are also shown with black dashed
lines. In the lower panel of each plot, the bin-by-bin fit residuals, (Ndata −Nfit)/σdata, are shown.
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Signal might still be present in our data, but might look different
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Figure 5.11: The e↵ect of softdrop on a signal jet (left) and a background jet (right) for di↵erent
values of the tuned parameters �. � = 0 corresponds to the Modified Mass Drop Tagger, which is
the default Softdrop setting in CMS [42].

5.5.2 N-subjettiness

After using the algorithms above, there is still information in the jet structure itself that can

distinguish W/Z jets from quark/gluon jets. A W or Z jet consists of two well-defined high-pT

subjets. A quark/gluon jet instead is made from a single parton, and consists of several large

angle, asymmetric splittings, as illustrated in Figure 5.12. The N-subjettiness algorithm [46]
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Figure 5.12: A jet stemming from the decay of a W will usually have two well-separated high-pT

subjets, while a jet with a single-prong origin consists of several large angel splittings.

takes advantage of this fact by attempting to count the number of hard sub-elements within a jet.

This is quantified through the n-subjettiness variable, ⌧N , defined as

⌧N =
1

d0

X

k

pT,kmin(�R1,k, �R2,k..., �RN,k), (5.10)

where k runs over all the jet constituents, pT,k is the constituent transverse momentum, and

�Ri,k is the distance between the constituent and candidate subjet axes. These subjet axes are
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Afterusingthealgorithmsabove,thereisstillinformationinthejetstructureitselfthatcan

distinguishW/Zjetsfromquark/gluonjets.AWorZjetconsistsoftwowell-definedhigh-pT

subjets.Aquark/gluonjetinsteadismadefromasingleparton,andconsistsofseverallarge

angle,asymmetricsplittings,asillustratedinFigure5.12.TheN-subjettinessalgorithm[46]
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FIG. 2. Upper limits on the coupling of a Z
0
! qq̄ as a function of its mass [1]. Data scouting at HLT allows to perform dijet

searches down to 500 GeV.

with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.

Scouting at 40 MHz: Recently, it has been proposed to acquire the L1 trigger data at the full bunch crossing rate

of 40 MHz and analyzing certain interesting topologies at the full rate [4, 5]. A proof-of-principle system connected

directly to the L1 trigger through 25 GB/s optical links and fed to a bu↵ering/analysis system consisting of FPGAs

and GPUs has been successfully tested. This was done using inputs from the CMS Global Muon Trigger, logging the
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with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.
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of 40 MHz and analyzing certain interesting topologies at the full rate [4, 5]. A proof-of-principle system connected
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with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.
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and GPUs has been successfully tested. This was done using inputs from the CMS Global Muon Trigger, logging the

3



Anomaly detection for New Physics searches
Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Can we reduce 
this 

and maximise 
this 

to probe hundreds of signal 
hypotheses all at once?

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

*(Maybe also some we didn’t think of yet?)

7 10 20 30 100 200 1000 2000
 [GeV]Z'M

1−10

1

qg'

5% = Z'M / Z'Γ

10% = Z'M / Z'Γ

30% = Z'M / Z'Γ

50% = Z'M / Z'Γ

100% = Z'M / Z'Γ

qq→Z'

95% CL exclusions

Observed

Expected

~5% < Z'M / Z'Γ

, 13 TeV-135.9 fb
[arXiv:1810.05905] resonance, tt

~10% < Z'M / Z'Γ

, 13 TeV-135.9 fb
[arXiv:1905.10331] γBoosted Dijet+

, 13 TeV-177.0 fb
[arXiv:1909.04114]Boosted Dijet 

, 13 TeV-118.3 fb
[arXiv:1911.03761]Dijet+ISR jet 

, 8 TeV-119.7 fb
[arXiv:1802.06149]Dijet b-tagged 

, 8 TeV-119.7 fb
[arXiv:1604.08907]Dijet scouting 

, 13 TeV-135.9 fb
[arXiv:1806.00843]Dijet scouting 

, 13 TeV-1137 fb
[arXiv:1911.03947]Dijet 

~30% < Z'M / Z'Γ

, 13 TeV-135.9 fb
[arXiv:1806.00843]Broad Dijet 

~100% < Z'M / Z'Γ

, 13 TeV-135.9 fb
[arXiv:1803.08030] χDijet 

CMS Preliminary LHCP 2020

FIG. 2. Upper limits on the coupling of a Z
0
! qq̄ as a function of its mass [1]. Data scouting at HLT allows to perform dijet

searches down to 500 GeV.

with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.

Scouting at 40 MHz: Recently, it has been proposed to acquire the L1 trigger data at the full bunch crossing rate

of 40 MHz and analyzing certain interesting topologies at the full rate [4, 5]. A proof-of-principle system connected

directly to the L1 trigger through 25 GB/s optical links and fed to a bu↵ering/analysis system consisting of FPGAs

and GPUs has been successfully tested. This was done using inputs from the CMS Global Muon Trigger, logging the
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Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than
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the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than

https://cds.cern.ch/record/2892677?ln=en
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5 ways of identifying anomalous dijet events

Signal-hypothesis dependence

Unsupervised

CWoLa, TnT and CATHODEVariational autoencoder

Weakly supervised
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Signal like
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Why so many methods?
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Why so many methods?
QCD backgroundW’ → B’t → qqq qqq X → YY’ → qq qq

Checking the correlations

● Complementary architectures and input features reflected in low Pearson 
correlation among anomaly scores

● TNT and CWoLa most similar (in approach and thus in score) 31
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Getting a VAE for AD to work in practise

๏ Idea applied to tagging jets, 
in order to define a QCD-jet 
veto 

๏ Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal 

๏ Based on image and physics-
inspired representations of 
jets  

 

Example: Jet autoencoders

12

Farina et al., arXiv:1808.08992
Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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tagger [13]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =

0
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k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
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CCA . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase
to N = 120 does not make a measurable di↵erence. For jets with fewer constituents we
naturally fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the
rest frame of the fat jet. This also improves the performance of our network. Inspired
by recombination jet algorithms we can add linear combinations of these 4-vectors with a
trainable matrix Cij , defining a combination layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij with C =

0

BB@
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... C2,N+1 · · · C2,M...

...
...

. . . 0
...

...
1 0 0 · · · 1 CN,N+1 · · · CN,M
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We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-
tion on the hadronically decaying massive particles. In the original LoLa approach we map
the momenta k̃j onto observable Lorentz scalars and related observables [13]. Because this
mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the
4-vectors by another component containing the invariant mass,

k̃j =

0

BB@

k̃0,j
k̃1,j
k̃2,j
k̃3,j

1

CCA
LoLa�!

0

BBBBBB@
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k̃2j
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CCCCCCA
. (5)

This defines a set of 51 extended 4-vectors, which form the input to our neural network.
Again, we use Keras [35] combined with Tensorflow [36]. Its architecture is shown in
Fig. 3. The layer immediately after the LoLa contains 51 ⇥ (4 + 1) = 255 units. Between
the second layer after LoLa and the last layer, the autoencoder network is symmetric. The
final output consist of 40 4-vector-like objects, which can be compared with the corresponding

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input units
correspond to 55 LoLa-vectors with 4+1 entries each. The output only consists of 160 units,
because the extended 4-vectors only carry four independent observables.
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Where do you train?

Δηjj between jets 
(Signal s-channel,  
QCD ~t-channel)

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted



Invariant mass sculpting

Δηjj between jets 
(Signal s-channel,  
QCD ~t-channel)
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result in background sculpting
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Quantile regression

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Cut corresponding to  
fixed X% mistag rate!

Train 
autoencoder

Train 
quantile 

regression!
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quantile 

regression!
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quantile 

regression!

Apply to SR 
data, then 

k-Fold



Quantile regression

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted
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VAE + Quantile regression

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted
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Getting weak supervision to work in practise

CWoLa, TnT and CATHODE

Mixed sample definition: 


CWoLa: From Mjj


Tag N Train: 
Autoencoder to further 
increase purity


CATHODE: Learn 
density from SB, 
interpolate into SR and 
sample




Getting weak supervision to work in practise

Weak Supervision: Training Quirks

mjj
mjj

● Weakly supervised methods assume signal window for training
○ Fine if signal well within window, not fine if at the edge 
○ Need to slide window and repeat trainings to cover full mass range

● Define two sets of bins, A and B

● Set B is shifted by half window w.r.t. Set A

● In total 12 signal regions, different trainings and event selection for each one 26

fine not fine

12 windows with different trainings and selection. Hardest 
part is to decorellate features from mjj!



Weak supervision: CWoLa, TnT, CATHODE

Variational Autoencoder: Decorrelation from dijet mass

trivial cuts on min(L1,L2)
result in background sculpting

train NN to regress quantiles 
corresponding to fixed efficiencies 

20

leaves background unsculpted

Data spectra - no excess

● Reminder: for VAE, only 1 anomaly cut, totally independent of probed mass

● Six different A regions for weakly supervised models (B regions in Backup)

● No significant excess 44
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Figure 2: P-values as a function of the injected signal cross sections for the different analysis
procedures on for two different signals: (top) the 2-pronged X ! YY0 ! 4q signal with MX =
3 TeV, MY = 170 GeV, and MY0 = 170 GeV and (bottom) 3-pronged W0 ! B0t ! bZt signal
with MW 0 = 3 TeV and MB0 = 400 GeV. Significances are restricted to a maximum of 7s, to
reflect limitations of the asymptotic formula used. Values larger than this are denoted with a
downwards facing triangle.
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Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than
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ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than
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Nsig(σ) = σ × ℒ × A × ϵ

Nsig(σ) = σ × ℒ × A × ϵ(σ)
M1 M1M2 M1 M1M2

Bad tagger! Great tagger!

To set limits: Inject signal, retrain each algorithm and estimate efficiency!
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Figure 8: Diagram of the limit setting procedure for the X ! YY0 ! 4q signal at 3 TeV with the
CATHODE method. The top panel shows the estimated signal acceptance and efficiency as a
function of the cross section injected in data. The shaded region shows the total statistical and
systematic uncertainty on the efficiency. The resulting Nsig(s) curve is shown in blue in the
lower panel. The expected and observed limits on the number of signal events are shown as
a horizontal solid black line and green dashed lines, respectively, and connected to the corre-
sponding limits on the cross section (vertical lines). The 68% band around the expected limit is
displayed similarly.

1. Inject signal, measure 


2. Gives number of selected signal events


3. Find intersection with obs/exp limit 

ϵ(σ)

1.

2.
3.



And how about look-elsewhere effect?

Each signal region fully independent search (trial factor = 12) 


Toys to compute effective trial factor based on mass points (usual way)


p-valueglobal = p-valuelocal × Trial FactorSR × 12
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Figure 6: The upper limit at 95% confidence level on the cross section for the process A!BC,
is shown for each search method applied to a variety of signal models. For a resonance mass
mA = 3 TeV (left) and mA = 5 TeV (right), we show for each signal model (columns), and search
method (all colors), the observed limits (Xs), expected limits (squares), and their one standard
deviation expected variation (error bars). For the BSM daughter particles, the masses of the Y
and Y0 were set to 170 GeV while the masses of the B0, R and H were set to 400 GeV. Limits from
the anomaly detection methods (six colors) are compared to those from an inclusive dijet search
in which no substructure selection is made (black markers and horizontal lines), traditional
substructure cuts targeting two-pronged (dark brown) or three-pronged decays (tan), and the
observed limit from a previous CMS search for the WKK model in the all-hadronic channel [45]
(gray).

Setting limits on ~50 New Physics hypothesis in one go, many which have never been 
searched for!
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FIG. 2. Upper limits on the coupling of a Z
0
! qq̄ as a function of its mass [1]. Data scouting at HLT allows to perform dijet

searches down to 500 GeV.

with a loose selection on the total jet transverse energy of the event, so-called HT , of around 150-175 GeV would

be used. The data coming from Level-1 is then processed in the HLT CPU farm. This reconstruction is either a)

fast and CPU-cheap, but result in lower resolution reconstructed objects, or, b) slow and CPU-expensive, but with

high resolution final physics object. The highest-quality reconstruction done at HLT, is ’Particle Flow (PF)’ [3]. The

Particle Flow event-reconstruction algorithm combines information from all CMS sub-detector systems to identify

and reconstruct each particle arising from the LHC proton-proton collision individually. This results in significantly

improved reconstruction performance of jets and missing transverse energy, as well as better identification of leptons.

However, running PF on all events is highly CPU-costly, and it cannot be done for all events. Therefore, a threshold

as to which events are to be reconstructed needs to be set, usually keeping high-mass, high transverse momentum

events. For the dijet scouting dataset using PF reconstruction, a HLT threshold of HT = 410 GeV (which only

becomes fully e�cient at dijet invariant masses of around 660 GeV) must be used, in order to stay within the CPU

budget. For dijet scouting using jets reconstructed using calorimeter information only, called calo-scouting, a lower

threshold of HT = 250 GeV (fully e�cient at 500 GeV) has been made possible through extreme event compression.

HLT scouting has allowed for dijet resonance searches to probe resonance masses down to 500 GeV, as seen in

Figure 2 (dark red line). Some sensitivity at lower resonance masses can be achieved using final states with a dijet

resonance recoiling against an ISR jet (pink line), but the low-coupling, low-mass regime is still uncovered by both

searches due to low acceptance and high Level-1 trigger thresholds. It is therefore desirable to bypass the Level-1

trigger thresholds completely and probe lower masses, by processing data at the full bunch crossing rate of 40 MHz,

so-called ’40 Mhz scouting’. In Figure 3, the di↵erent regions covered by di↵erent types of data scouting is illustrated

using dijet scouting as an example. Faster processing allows for accepting more events, hence lowering the selection

thresholds, but ultimately the searches are intrinsically limited by the Level-1 trigger. Scouting at 40 MHz o↵ers an

opportunity to probe this hitherto unknown territory.

Scouting at 40 MHz: Recently, it has been proposed to acquire the L1 trigger data at the full bunch crossing rate

of 40 MHz and analyzing certain interesting topologies at the full rate [4, 5]. A proof-of-principle system connected

directly to the L1 trigger through 25 GB/s optical links and fed to a bu↵ering/analysis system consisting of FPGAs

and GPUs has been successfully tested. This was done using inputs from the CMS Global Muon Trigger, logging the
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Decide which event to 
keep within ~4 µs latency 

Discard >99% of 
collisions!
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Anomaly Detection in the CMS Level 1 µGT taking 300 events/second now! 
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E.g Higgs → A(15 GeV) A(15 GeV) → 4b



E.g Higgs → A(15 GeV) A(15 GeV) → 4b

Background falling shape amplified 
● Trigger selection affects the analyses

○ The maximum rate is limited
○ The background is there (see previous slide)
○ The trigger has limited resolution
○ Simple trigger selections (pT cuts, HT cuts, etc…) 

rather than “signature tailored”

=> The signal efficiency is limited at low energy

Background shapes

● Backgrounds:
○ All our main backgrounds (QCD, ttbar, DY, 

W+jets) look the same, a falling distribution 
in any reasonable kinematic variable 

● This is the main reason for the low 
mass performance degradation

We can do both of these efficiently, model-agnostic and datadriven!
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Figure 6: The upper limit at 95% confidence level on the cross section for the process A!BC,
is shown for each search method applied to a variety of signal models. For a resonance mass
mA = 3 TeV (left) and mA = 5 TeV (right), we show for each signal model (columns), and search
method (all colors), the observed limits (Xs), expected limits (squares), and their one standard
deviation expected variation (error bars). For the BSM daughter particles, the masses of the Y
and Y0 were set to 170 GeV while the masses of the B0, R and H were set to 400 GeV. Limits from
the anomaly detection methods (six colors) are compared to those from an inclusive dijet search
in which no substructure selection is made (black markers and horizontal lines), traditional
substructure cuts targeting two-pronged (dark brown) or three-pronged decays (tan), and the
observed limit from a previous CMS search for the WKK model in the all-hadronic channel [45]
(gray).
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