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The Overparametrization “Problem”

• The problem comes from the following dogma:  

To fit a model with W parameters one ought to have a number 
of data points D satisfying D ≥ W.

• Many papers have been written stating that one ought to 
have, for instance,  D ≥ 10W.

• However, it is common in deep learning applications to see 
good results in the regime where D < W, even D <<W.



Dogma’s Origin: Shallow Learning

• Shallow learning already contains most of the ideas behind machine learning/DL. 

• However, it is misleading in 3 fundamental aspects: (1) existence of closed form solution; 
(2) easy to interpret and explain; (3) model with n parameters needs n data points.

Carl Friedrich Gauss 
(1777 – 1855)
Adrien-Marie Legendre
 (1752-1833)



The Overparametrization “Conjecture”

Dogma. To fit a model with W parameters one ought to have a 
number of data points D satisfying D ≥ W.

Dogma is wrong. It is common in deep learning applications to 
see good results in the regime where D < W, even D <<W.

Can we save the dogma? Does a possibly very small constant c 
exist such that:
To fit a model with W parameters one ought to have a number 
of data points D satisfying D ≥ cW?



Counter-Example

No such constant c exists. 

Counter-example: Neural network of depth n, with one unit per 
layer. All units are linear and without bias. As a result, W=n. 

Output = w1 w2 ….wn (Input)= P(Input)

Such a network can be trained with D= 1, while W can be 
arbitrarily large. 

Many possible generalizations: Output = W1….W_n (Input). 



Rescue Concepts

Free Parameters?

No. Counter-example has W-1=n-1 free parameters and D=1

Effective Parameters? 

May be. But what is an effective parameter? How does one 
count the number of effective parameters?



The Overparametrization “Problem”

• The problem comes from the following dogma:  

• To fit a model with W parameters one ought to have a number of data points D 
satisfying D ≥ W.

• Many papers have been written stating that one ought to have, for instance,  D 
≥ 10W.

• However, it is common in deep learning applications to see good results in the 
regime where D < W, even D <<W.



Plausible Conjecture?



Cardinal  Capacity
h = target function (typically known from examples)
A =  class of hypothesis or approximating functions (typically associated with a 
NN architecture)

h

A

C(A) = log2 |A|
• Average number of bits 

required to specify a function in 
A. 

• In a neural architecture, 
number of bits that must be 
transferred from the data to the 
synapses during learning

P. Baldi and R. Vershynin. 
The capacity of feedforward 
neural networks. Neural 
Networks, 116, August 2019, 
Pages 288-311, (2019). Also: 
Arxiv 1901.00434.
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Neural Network Capacity

• h = target function (typically known from examples)
• A =  class of hypothesis or approximating functions (typically associated with a NN 

architecture)
h

A

C(A) = log2 |A|

Number of bits 
required to specify a 
function in A



Neural Network Capacity
• Can we compute C(A) for specific, interesting, neural 

networks?

h

A

C(A) = log2 |A|

For neural networks: 
the number of bits that 
must be communicated 
from the training data 
to the synapses



Layered Fully Connected Feedforward Neural 
Networks

• Layered, feedforward, fully-connected network with layers of size 
n1,n2,….,nL:

C(n1,n2,….,nL)≈

�
𝑘𝑘=1

𝐿𝐿−1

min 𝑛𝑛1,𝑛𝑛2, … . ,𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 1

• Extensions to polynomial threshold gates, partial connectivity, weight 
sharing (CNNs)

P. Baldi and R. Vershynin. The capacity of feedforward neural networks. Neural 
Networks, 116, August 2019, Pages 288-311, (2019). Available online 22 April 2019. 
https://doi org/10 1016/j neunet 2019 04 009  Also: Arxiv 1901 00434
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Q is a polynomial of 
degree 2L – 1 with 
negative leading
coefficient 

Theorem: From any starting condition, the system 
converges to a fixed point on the manifold  α-βP=0



General Linear Case

SRBP       
RBP

BP

ASRBP



The Standard Model

O=f(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)
Basic elementary operations: 
1) Activation S= Dot product  x.w 
2) Output O=f(S)  (f linear or non-linear activation function)

• SM universal 
approximation properties

•   SM extensions (softmax, 
polynomial activations, 
product of outputs, ….)
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SoftMax is an 
extension of the SM. 



Attention in DL and NLP applications

Sequence to sequence models



Attention Mechanisms in DL and NLP

Various formulations: 
• Content-base attention Graves et al., 2014
• Dot-Product attention Luong et al., 2015
• Additive attention Bahdanau et al., 2015 
• Vaswani et al. 2017
• ………..
• Transformer Architectures
• Standard modules in DL packages (TensorFlow, PyTorch)
• Google’s BERT, OpenAI’s GPT , XLNet ….

https://blog.floydhub.com/gpt2/


The Transformer Model is entirely 
built on the self-attention 
mechanisms, without using sequence-
aligned recurrent architectures.
Every input element has three 
learnable vectors: Query (Q), Key (K), 
and Value (V)

Rather than only computing the 
attention once, the multi-head 
mechanism runs through the scaled 
dot-product attention multiple times in 
parallel.

‘Ensemble’ multiple 
attention in parallel

Transformer Model & (self)-attention
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The Standard Model

O=f(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖)
Basic elementary operations: 
1) Activation S= Dot product  x.w 
2) Output O=f(S)  (f linear or non-linear activation function)

3 variable types:
S, O, w



Classification of Attention Mechanisms 
(or Extensions of the SM)

• In the SM, there are 3 types of variables: S (activation), O (output), 
and w (synaptic weights).

• Attention signals can be classified according to their attending Origin, 
their attended Target, and the underlying Mechanism.

•  With two mechanisms, addition and multiplication, this corresponds 
to 18 possibilities:

• Multiplicity issues.
• Origin: only of type O  6 possibilities. 

S O W

S +, x +, x +, x

O +, x +, x +, x

W +, x +, x +, x



Classification of Attention Mechanisms

Activation (S) Output (O) Weight (w) 

Addition Activation Attention 
(SM)

Multiplication Output Gating Synaptic Gating

• Origin is of type O
• Six possibilities:

Target

Mechanism



Output Gating Synaptic Gating
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Q K V Q K V Q K V

Input …

…

X X X

Vectors

Scalars

Output

Attention weights …
Query
Key
Value

Weight 
sharing

All Q-K 
combinations



Database Vocabulary

Student ID Driver License # Address First Name Last Name

123456

123789

123770

123775

Key

Query: 
123770?

Values=
Rows
Contents



Q K V Q K V Q K V

Input …

…

X X X

Vectors

Scalars

Output

Attention weights …
Query
Key
Value

Weight 
sharing

All Q-K 
combinations

Fundamental Property: Invariant to 
permutation of the inputs (!). 



Attention Enables Computing the Dot Product of 
the Activities of Two Layers of the Same Size
(output or synaptic gating) 

v1 v2     vn pairwise gating layer

gated output
O= ∑𝑥𝑥𝑖𝑖𝑣𝑣i 

x1 x2       xn

1 1

[Can be used to derive alternative proof of universal 
approximation properties for SM + attention]



Softmax Attention=Dot Product with Softmax 
(output or synaptic gating)

Y1  y2     yn

v1 v2     vn gating layer:
softmax unit
vi=exp yi / sumj exp vj

gated output
O=sumi vi xi

x1 x2       xn

1 1
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log u1+log v1

1
u1v1

log u1

u1v1+u2v2+u3v3SM Network for Computing Dot 
Products

Transformer dot 
product +softmax + 
convex gating =  ~10 
layers in the SM
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• Primary (all-hadronic) decay channel produces six particles - two 𝑞𝑞𝑞𝑞𝑞𝑞 triplets with opposite charge – originating 
from the top – antitop particle pair which we wish to reconstruct.

• After these particles are produced, they are propagated and measured by the detector as jets.
• Along with the jets from each of the particles, there may be additional jets from other decay products.

This is a difficult matching problem: Observing the jets from the 
detector, can you determine which jets belong to which particles?
Effective matching requires exploiting the symmetries in this problem! 

{𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, 𝑗𝑗4, 𝑗𝑗5, 𝑗𝑗6, 𝑗𝑗7, 𝑗𝑗8}

{𝑞𝑞, 𝑞𝑞′,∅, 𝑞𝑞′, 𝑞𝑞′,∅, 𝑞𝑞, 𝑞𝑞}

Match Jets to Particle Labels

Garbage Jets

SPANet Jet-Parton Matching in LHC Top Quark Decays

Theoretical 
Parent Particles
To Reconstruct

Final Particles
Observed As 

Jets



Heavily employ attention in 
several sections within our 
network for context-aware 
permutation-invariant learning. 

Event-level 
context-aware 

encoding

Particle-level 
encoding

Symmetric jet 
matching

Tensor attention to predict the 
most likely assignment of jets 
associated with each particle.

Input is unsorted set of jet 
4-momentum vectors.

Split the information stream into 
a finite collection of “particles”. 

SPANet Complete Architecture

Attention Use

Construct an architecture following the structure of the original 
Feynman Diagram with attention as its core operation.



• We compare SPANet to a classical permutation-based method  based on 𝜒𝜒2 probability of assignments. 
• SPANet uses attention to match all top-quarks while the 𝜒𝜒2 method needs to compute many jet-permutations.
• SPANet reduces the runtime from 𝑂𝑂(𝑁𝑁6) to 𝑂𝑂(𝑁𝑁3) while increasing efficiency by ~30% across the board.

Runtime on 8 jet events
𝜒𝜒2         : 369 ms per event
Spatter : 4.4 ms per event

SPANet Results

Michael James Fenton, Alexander Shmakov, Ta-Wei 
Ho, Shih-Chieh Hsu, Daniel Whiteson, and Pierre 
Baldi. Permutationless many-jet event 
reconstruction with symmetry preserving attention 
networks. Physical Review D, in press.Alexander Shmakov



• General formulation allows us to extend this technique to virtually any possible event at the LHC.
• Split particle paths and symmetric attention may be extended to match jets in incomplete events – where one 

or more particles are missing due to detector loss, allowing us to use more training data.
• Extended this technique to two other, more complicated, events at the LHC: 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.
• 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Event is so complex and large that the 𝜒𝜒2 method cannot be tractably computed! 

SPANet Upcoming Results

𝒕𝒕𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Alexander Shmakov, Michael James Fenton, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi. SPANet: Generalized 
Permutationless Set Assignment for Particle Physics using Symmetry Preserving Attention. SciPost Physics, in press.



x5000



The problem

energy density

pr
es

su
re

Equation  
of State

(2 params)

radius

m
as

s

Nuclear theory

radius

m
as

s

Mass-Radius
relation

(2 params: M,R)

Neutron Star 
X-ray data

(1024 chan,80% empty)

Training data 
Fixed EOS, sample of (M,R) pairs
For each M,R pair, add 3 nuisance param

generate sample spectra

add Nuis P

Star parameters
2 params: (mass, radius)

3 nuis params (dist, temp, dust)

XSPEC Sim

Inference 
End-to-end: spectra -> EOS 
Also might try: spectra-> star

star -> EOS

MLLR method: ttps://arxiv.org/abs/2002.04699

Jordan Ott



Prediction of EOS coefficients from 3 Stars (M,R)

Delaney Farrell, Pierre Baldi, Jordan Ott, Aishik Ghosh, Andrew W.  Steiner, Atharva Kavitkar, Lee Lindblom, Daniel Whiteson, and Fridolin Weber. Deducing 
Neutron Star Equation of State Parameters Directly From  Telescope Spectra with Uncertainty-Aware Machine Learning. Journal of Cosmology and Astroparticle 
Physics, 02, 016, (2023).



Outline

1. The Overparameterization “Problem”
2. Applications of Transformers in Physics
3. AI Concerns and Safety



Two Key Ideas

1. AI Safety and NI Safety 
2. CERN-AI  
•  
•  



Two Key Ideas

1. AI Safety and NI Safety 
2. CERN-AI  
 



Parallels between NI and AI Safety

Evolution Modular architectures, safety 
modules

Examples (parents, teachers, role 
models)

RL from Human Feedback  (RLFH)

Principles (e.g. 10 
commandments)

Constitutional AI

Law AI laws

Societal Agentic

Enforcement (e.g., police, lie 
detectors) 

Enforcement (e.g., police2, fake 
detectors)

Enforcement (e.g., military, WMD) Enforcement (e.g. military2, killer 
switches)

Natural Intelligence Safety          Artificial Intelligence Safety



Two Key Ideas

1. AI Safety and NI Safety 
2. CERN-AI  
 
 



AI Concerns

1. AI Today and its Neuroscience Origins 
2. The AI-Driven Hospital 
3. AI Safety and Concerns 
•  



Two Key Ideas

1. AI Safety and NI Safety 
2. CERN-AI  
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