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Al Systems and Human Level Performance
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Kiela et al. — Dynabench: Rethinking Benchmarking in NLP (2023)
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Diffusion of Al within Scientific Fields
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Al Engagement across All Fields is Exponential

Oil & Water: https://arxiv.org/pdf/2405.15828



Al Engagement
Across 20
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Al for Science &

Benchmarking




Bird’s Eye Point of View: Key Areas

Inverse Designs

Energy, Proteins & Polymers

Software Engineering
and Programming

Code generation, Code

Translation, Qptimisation,

Quantum Computing

Autonomous Discovery | Surrogate Modelling for
HPC

Materials, Chemistry, Biology Climate Ensembles
Light & Neutron Sources Exascale apps with surrogates

Prediction and Control | Foundation Models for
of Complex Engineering | Science
Systems

Accelerators, Telescopes, Hypothesis Formation, Math

Buildings, Cities Reactors, Theory and Modeling Synthesis
Power Grid, Networks

https://www.anl.gov/ai-tor-science-report



Benchmarking & Why



Conventional Notion of Benchmarking?

« benchmark

/"ben(t)ima:k/

verb 120 Performance Comparison of Clustering Implementations
gerund or present participle: benchmarking Sklearn K-Means
e  Sklearn DBSCAN
evaluate (something) by comparison with a standard. 100 Scipy K-Means
"we are benchmarking our performance against external criteria” CouaERtad ]
Fastcluster Single Linkage
« give particular results during a benchmark test. e Scipy Single Linkage

DeBaCl Geom Tree
o  Sklearn Spectral
Sklearn Agglomerative
e Sklearn Affinity Propagation

&

“the device should benchmark at between 100 and 150 MHZ"

Time taken to cluster (s)
3

5

Al Benchmarking

« Benchmarks for assessing :
« Al systems 0
0 5000 10000 15000 20900 25000 30000
° AI modeIS Number of data points

Al frameworks



Challenging Space

* Developing an overall understanding
of Al/ML methods is a significant challenge!
 Too many ML methods!
« Too many problems!, and

* Too many systems!
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Why

Time-focused metrics

= Historically performance (comparison) i _ _
(training time, inference time)

» Evaluation different ML techniques Domain-Specific Metrics
» Evaluation of alternative techniques (PSNR,IOUs)



Agenda I: Scanning Benchmarks

« Systematically study / consult multiple domains of sciences

o P

Material Sciences Environmental Sciences  Particle Physics Astronomy Life Sciences

 ldentify a set of benchmarks based on:

@ Problem relies | (ideally)
Worthy of on a large A reference

solving using and |
machine leqrnmgk open datasef(s)

« Qutcome was a suite of benchmarks — The SciML Benchmark Suite

implemen’ra’rion 1‘
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Why it is / was not practical

» Staying relevant and up-to-date is a
serious challenge! (~300 papers/w)

» Surveying the landscape is a difficult
job let alone evaluating them
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Agenda ll: Blueprints

» Instead of individual benchmarks, identifying key family of science
cases (across domains), and relevant core ML techniques is more
useful

» These, we refer to as blueprints

» A single benchmark blueprint will help
= Developing solutions
» Understand how ML techniques work
» Representative of a suite of techniques (and variants therein)



Agenda lI: Blueprints

« Systematically study / consult multiple domains of sciences

e

A N

i X

Material Sciences Environmental Sciences  Particle Physics Astronomy L ifo Seionces
» ldentify a set of common use-cases or blueprints from each domain:
AI/ML
@ Flagship Methods that
science would solve

problems A family of

* Qutcome: Benchmark Blueprints




Some Blueprints



Understanding Features

« Methods for disentangling or separating features of the data
* i.e., finding the underlying factors that explains the data

A small size of green cube with

blue wall and yellow floor
memmmmmsms A large size of green cube with
- pink wall and green floor

A medium size of green cube
with pink wall and yellow floor




Understanding Features

« Methods for disentangling or separating features of the data
* i.e., finding the underlying factors that explains the data

Cha & Thiyagalingam, ICLR 23



Understanding Features

* Methods for disentangling or separating features of the data

* i.e., finding the underlying factors that explains the data

* If these factors can be separately controlled, i.e., if we can get hold of
disentangled representation of the data:

Better understanding of the data

Better generative models

Better inference

Provides minimal information for a given task

Etc.

« Solves the data-label problem

« That means, we can generate realistically good synthetic data for
material science research



Disentanglement: Example Benchmarks

Table 2. Disentanglement scores for the 2D Arrow, 3D Airplane, 3D Teapots, 3D Shape, 3D Face Model and Sprites datasets

Datasets | 2D Arrow 3D Airplane 3D Teapots | 3D Shape | 3D Face Model | Sprites
Metrics/Models | DAE DIPVAE | DAE DIPVAE | IB-GAN DAE | FVAE DAE | InfoGAN DAE | DAE B-VAE
z-diff 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
z-var T 0.85 0.96 1.00 0.96 1.00 1.00 1.00 0.93 0.95 1.00 0.90 0.77
dci-rf 1 0.88 0.85 0.80 0.54 0.92 0.89 0.99 0.99 0.62 0.65 0.70 0.54
jemmig T 0.80 0.75 0.79 0.51 0.60 0.54 0.86 0.87 0.53 0.48 0.59 0.51
dcimig 1 0.79 0.72 0.75 0.43 0.60 0.53 0.88 0.90 0.54 0.47 0.55 0.43
GF (x ﬁ)J, 0.30 2.55 0.19 7.66 0.10 0.002 0.20 0.0009 0.16 0.02 0.005 0.08




Example II:

Inference on Rotated Images
« Classify proteins / galaxies
ML Models cannot infer rotations




Invariance and Equivariance

* Model learns from supervised examples
« Example: learning to label images of dogs, cars and monkeys

- F v Training
@ 4 o

Dog Dog Dog

Car  The location does not matter



Rotational Invariance

Inference on Rotated Images
e Uh-uh
* ML Models cannot infer rotations

iy e ¢
b, 7 %
Ll 5
“
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Rotational Invariance and Training

Training

Rotational Invariance

e Can train on rotated images
 But angles are discretised
 Not an elegant solution
* Volume of data
* Training times
 Robustness of inferencing
* Etc

Machine
o A learning Model

Machine

Learning Model




Other Examples

Training a DeepONet with DeepXPE for bending of Kirchhoff-Love plates (4th-order PDE)

DeepONet-ZCS
~14 sec (~3 %)

~

DeepONet-original
~408 sec

Training time / 100 epochs

, JCP 24

K Leng et. al.,

DeepONet-ZCS
- LLMs for Science P Rt
* Super-resolution imaging
« Surrogates e
 PINNs
. etc GPU memory
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(c) A patch for training, 192x 192 pixels



Conclusions

Al has lot to offer for Science

Benchmarking of various Al methods are crucial

This not only shapes our understanding, but also the potential
solutions

But this is not an easy task

Demands intense international collaborations

Volunteers

Best practices

Science cases, datasets, reference implementations, and
Standards

OAK . ° .
RIDGE Argonneb diamond (&) Brackhaven & tifr = BERKELEY LAB

National Laborator y 7 NATIONAL LABORATORY




Acknowledgements

* ltis not easy to pull a significant effort like this without
guidance, steer, and funding ©

Lot of people helped, but all these efforts would have been
Impossible without Tony, Rick, Arjun, lan, Jamie, Rajeeyv, et. al.,

* People on the ground who actually executed the visions: More
importantly, Juri, Jaehoon, Jason, Samuel, Kuangdai, Susmita, et.al.,

* Collaborators who trust us: APS, ANL, BNL, LBNL, DLS, ISIS, CLF,
EPAC, PNNL, TIFR, & NERSC

Funding The
5 Alan Turing
£ @* Institute
ﬁ % Department for UK Atomic s,
Science, Innovation, | Energy #  z1rIS

& Technology

T

Authority i . .L I
° z ™ 4

ada lovelace centre

.



Science and
Technology
Facilities Council

Scientific Computing

scd.stfc.ac.uk YW @SciComp_STFC



