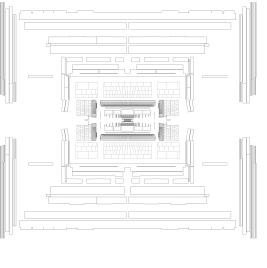


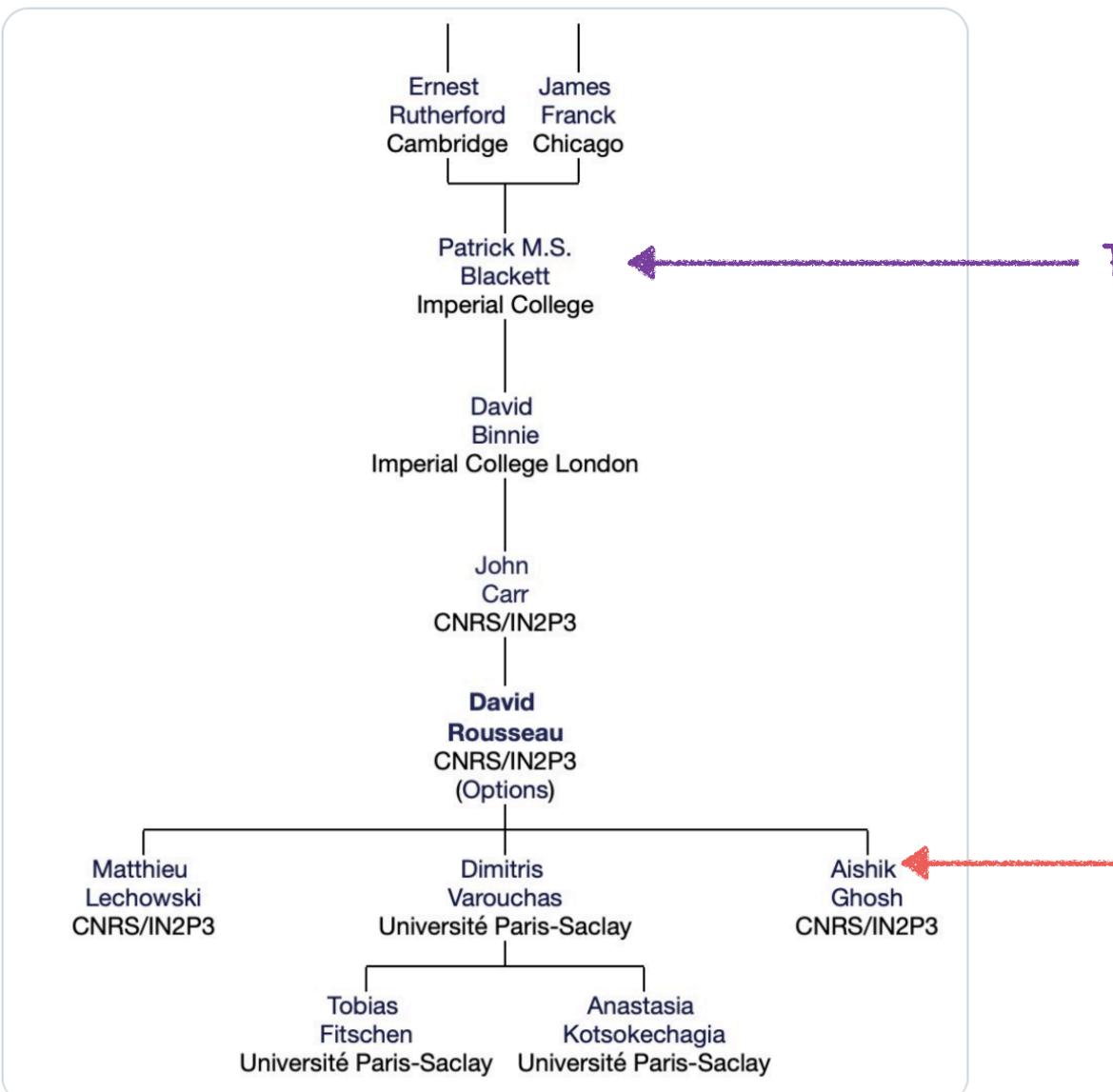
Simulation-Based Inference



Aishik Ghosh PHY-STAT, London 11 September 2024

I just learned that I am a great-great-grandson of Ernest Rutherford !!! Not quite sure what to do with this.

#academiclifeacademictree.org/physics/tree.p...

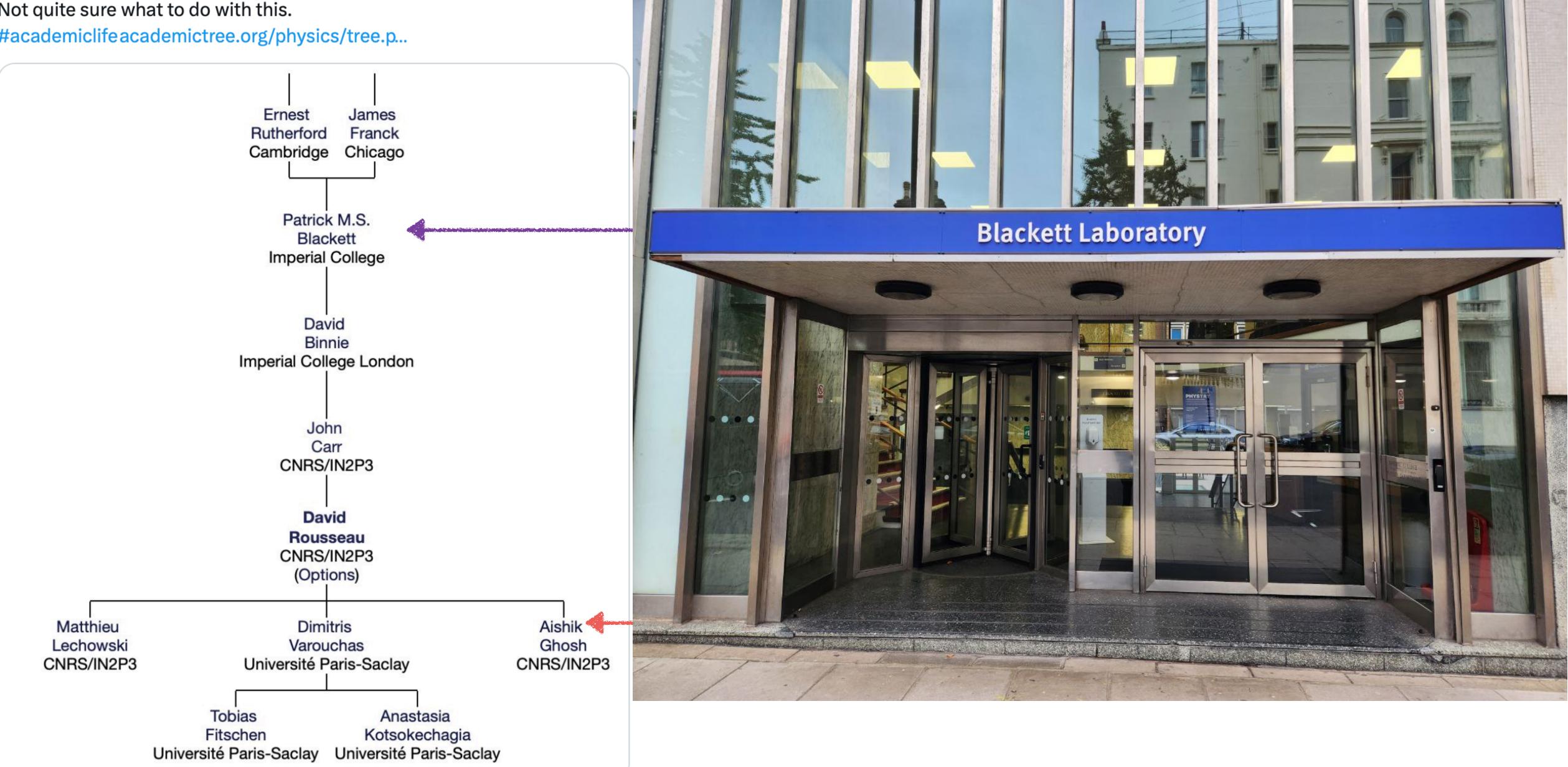


Blackett

...

I just learned that I am a great-great-grandson of Ernest Rutherford !!! Not quite sure what to do with this.

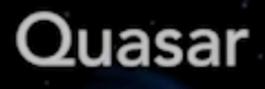
#academiclifeacademictree.org/physics/tree.p...



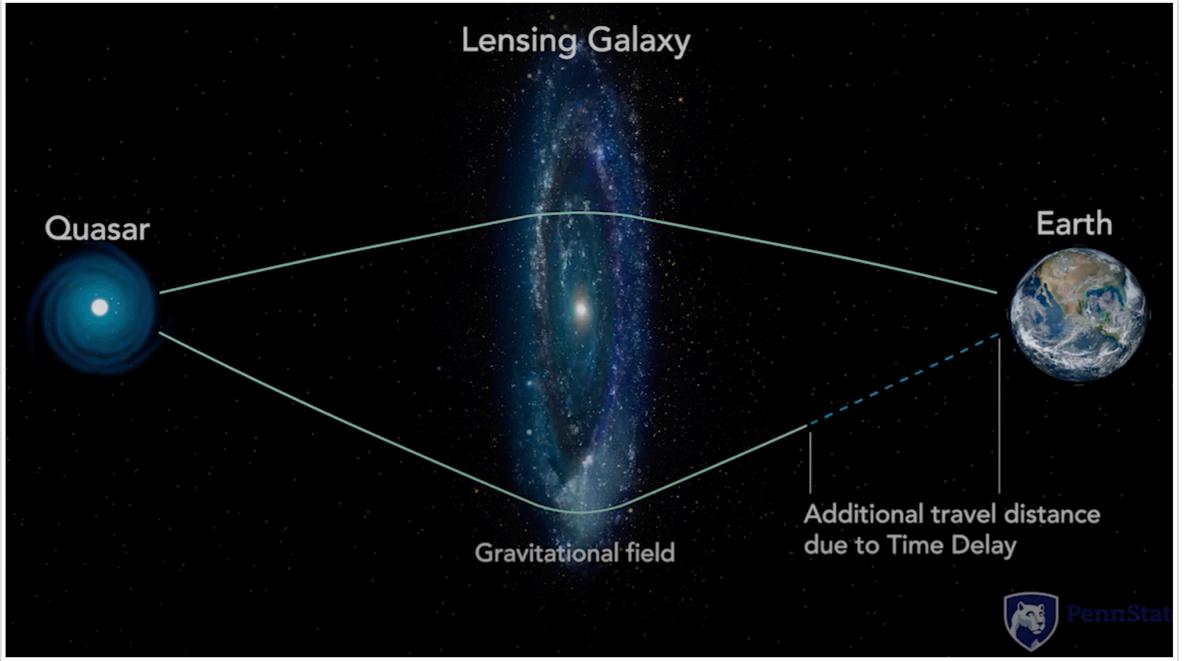
...

Lensing Galaxy

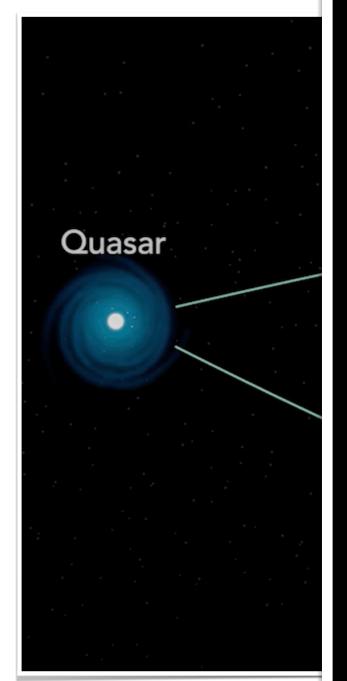
Gravitational field



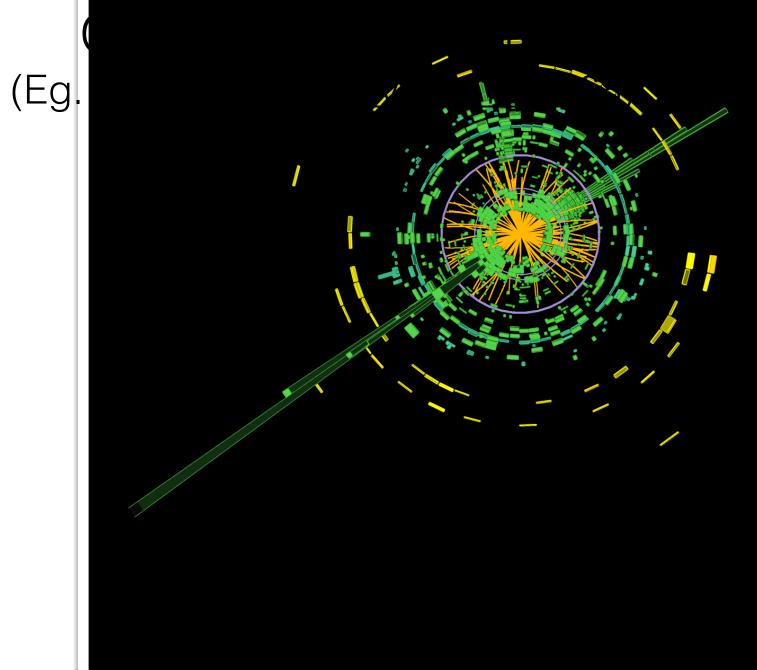
Additional travel distance due to Time Delay

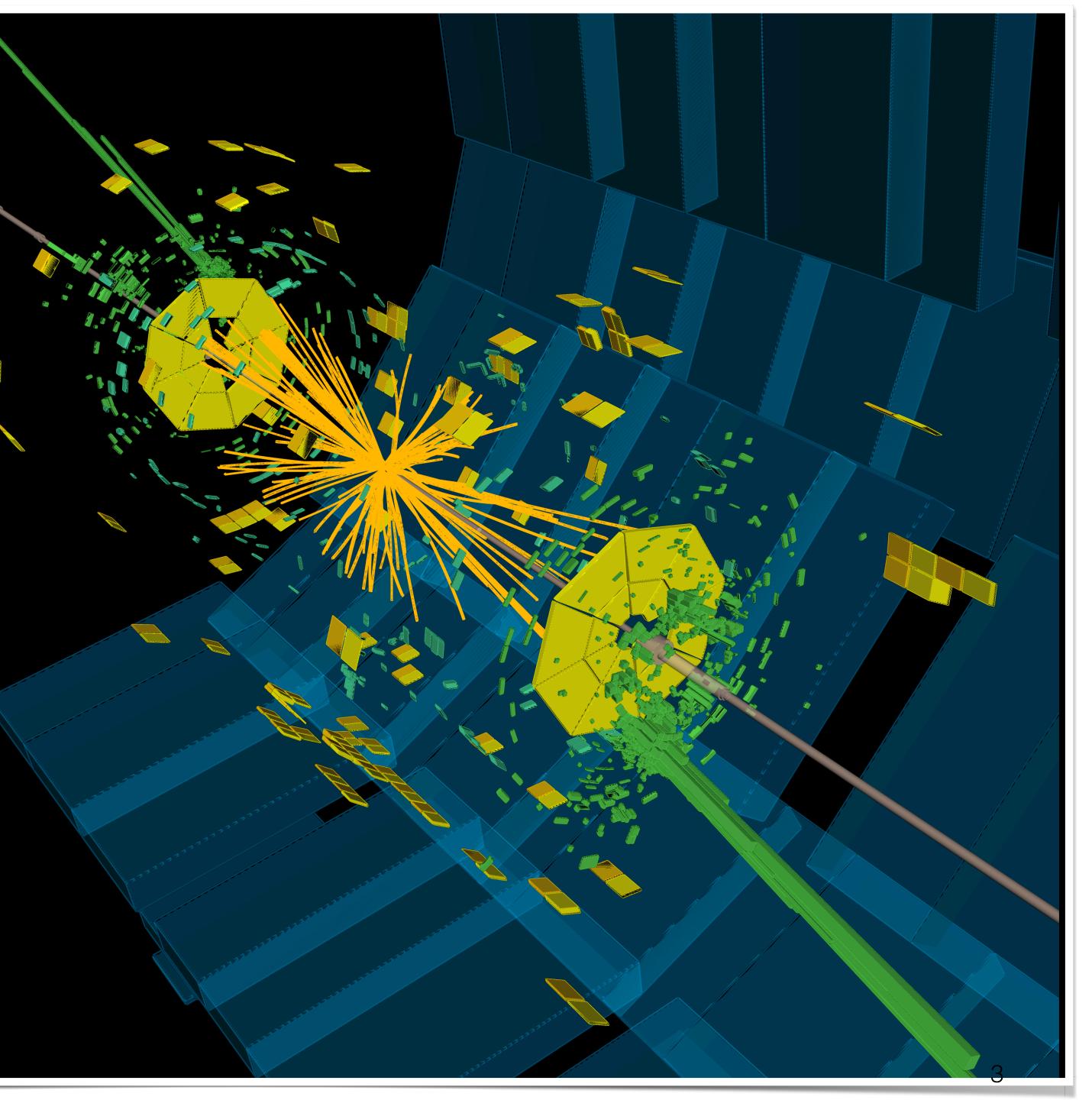


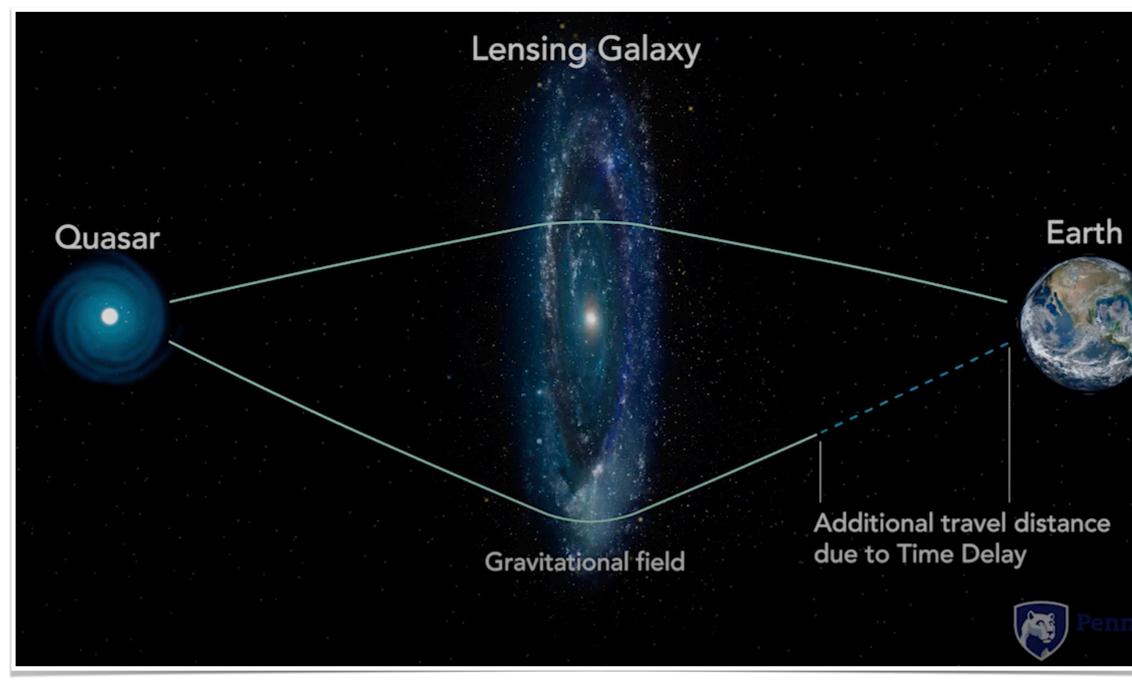
Gravitational lensing (Eg. Adam et al. <u>arXiv:2301.04168</u>)



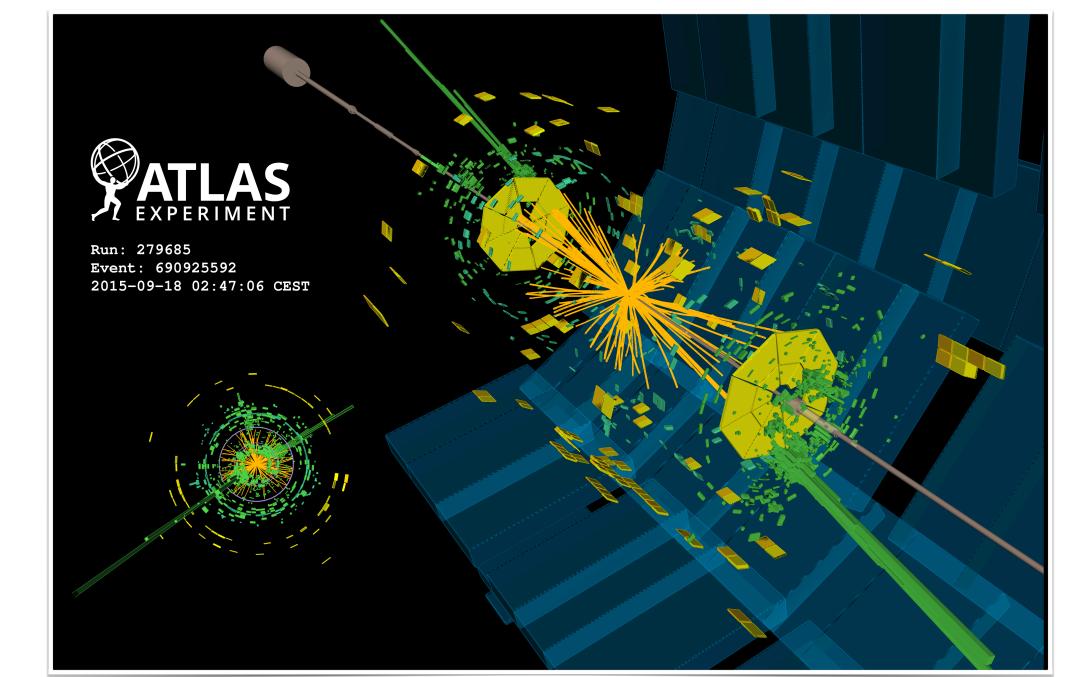
Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST



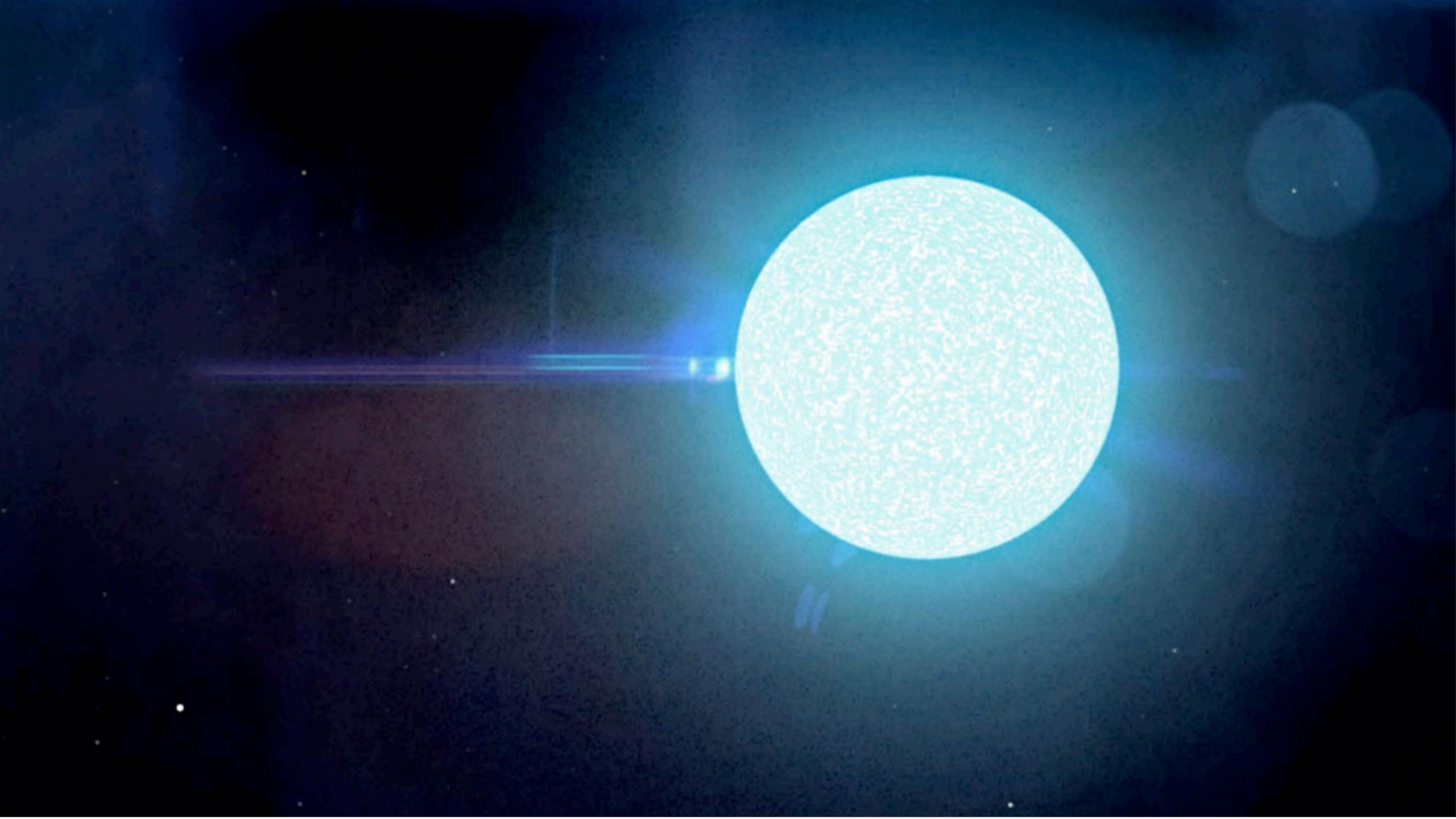


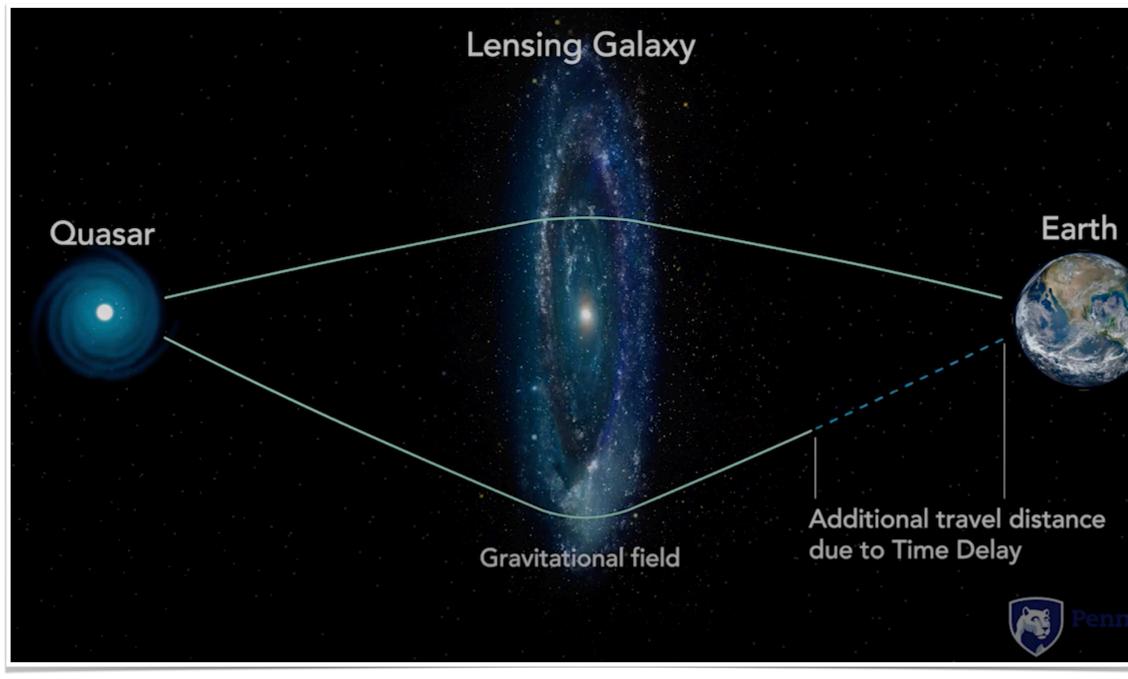


Gravitational lensing (Eg. Adam et al. <u>arXiv:2301.04168</u>)



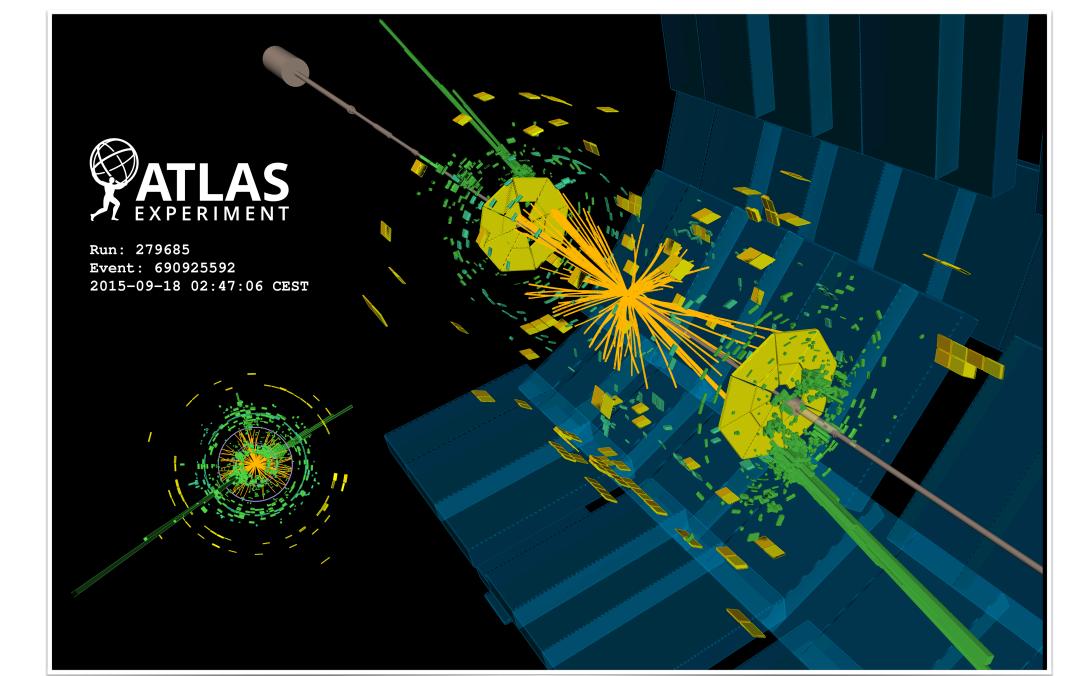
Higgs physics (Eg. Cranmer et al <u>arXiv:1506.02169</u>, Ghosh & Rousseau al <u>hal-02971995v3</u>)





Gravitational lensing (Eg. Adam et al. <u>arXiv:2301.04168</u>)

Neutron star astro/nuclear physics (Eg. Brandes et al, incl Ghosh, arXiv:2403.00287, Mishra-Sharma & Cranmer, arXiv: 2110.06931)

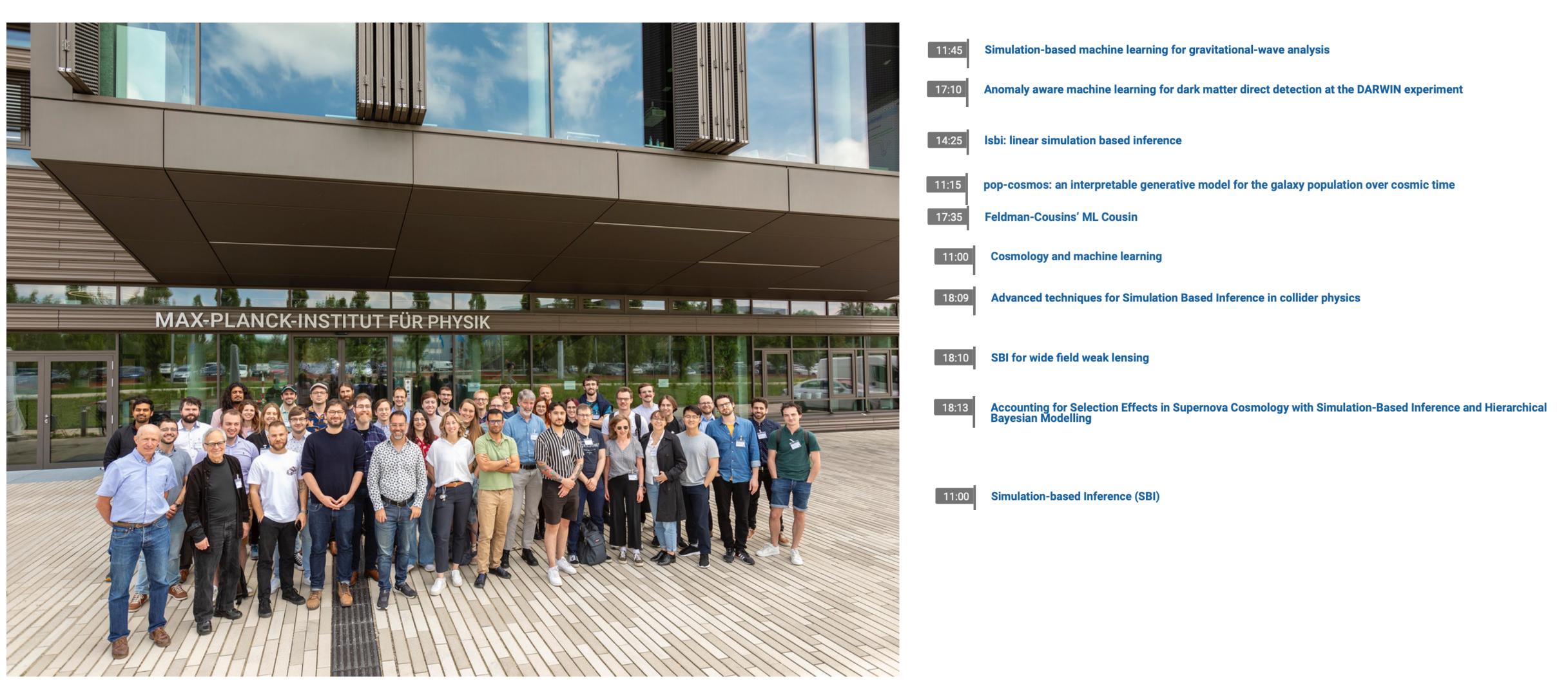


Higgs physics (Eg. Cranmer et al <u>arXiv:1506.02169</u>, Ghosh & Rousseau al <u>hal-02971995v3</u>)



Workshop in Munich this summer

Simulation-Based Inference in PHY-STAT



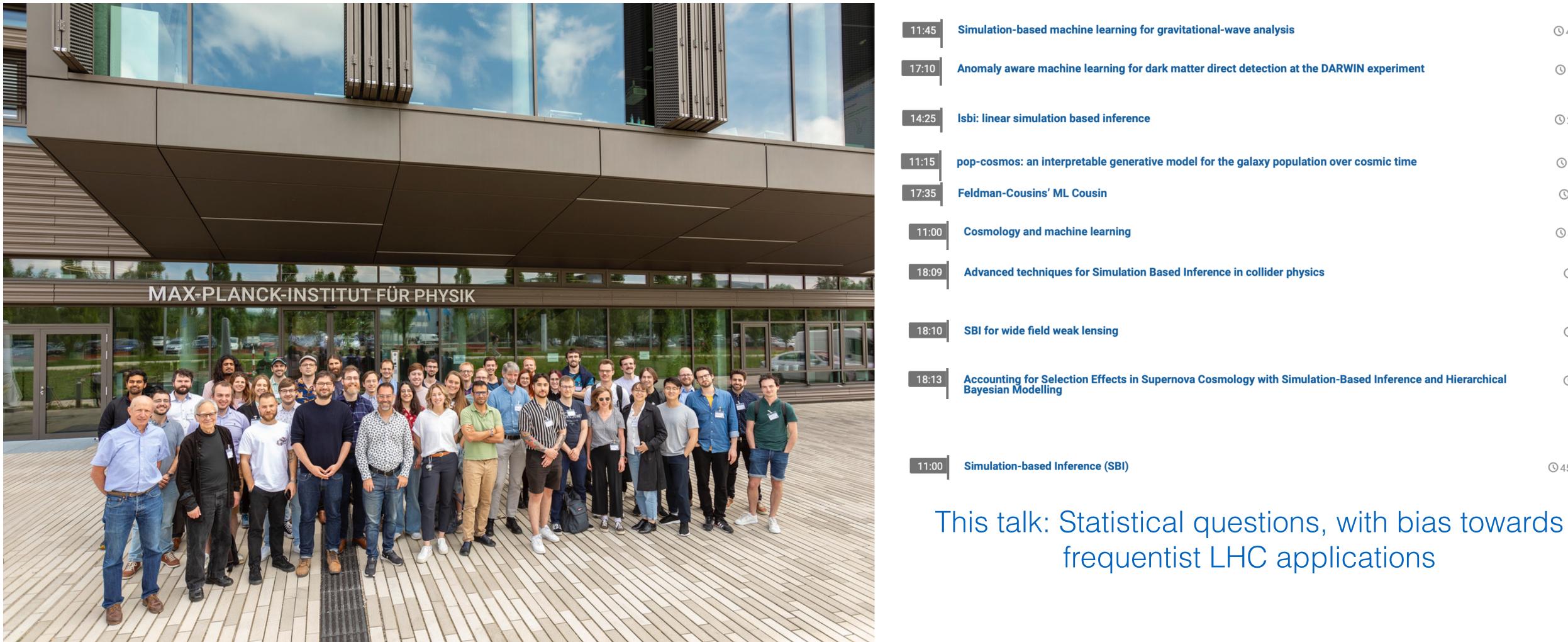
Workshop in Munich this summer

Simulation-Based Inference in PHY-STAT

This workshop alone !

🕓 45m 🕓 25m 🕓 25m 🕓 30m 🕓 25m 🕓 45m 🕓 1 m 🕓 1 m 🕑 1 m

🕓 45m



Workshop in Munich this summer

Simulation-Based Inference in PHY-STAT

This workshop alone !

🕓 45m 🕓 25m 🕓 25m 🕓 30m 🕓 25m 🕓 45m 🕓 1 m 🕓 1 m 🕑 1 m 🕓 45m

$p(\text{theory} | \text{data}) = \frac{p(\text{data} | \text{theory})p(\text{theory})}{p(\text{data})}$

What we all want (Posterior)

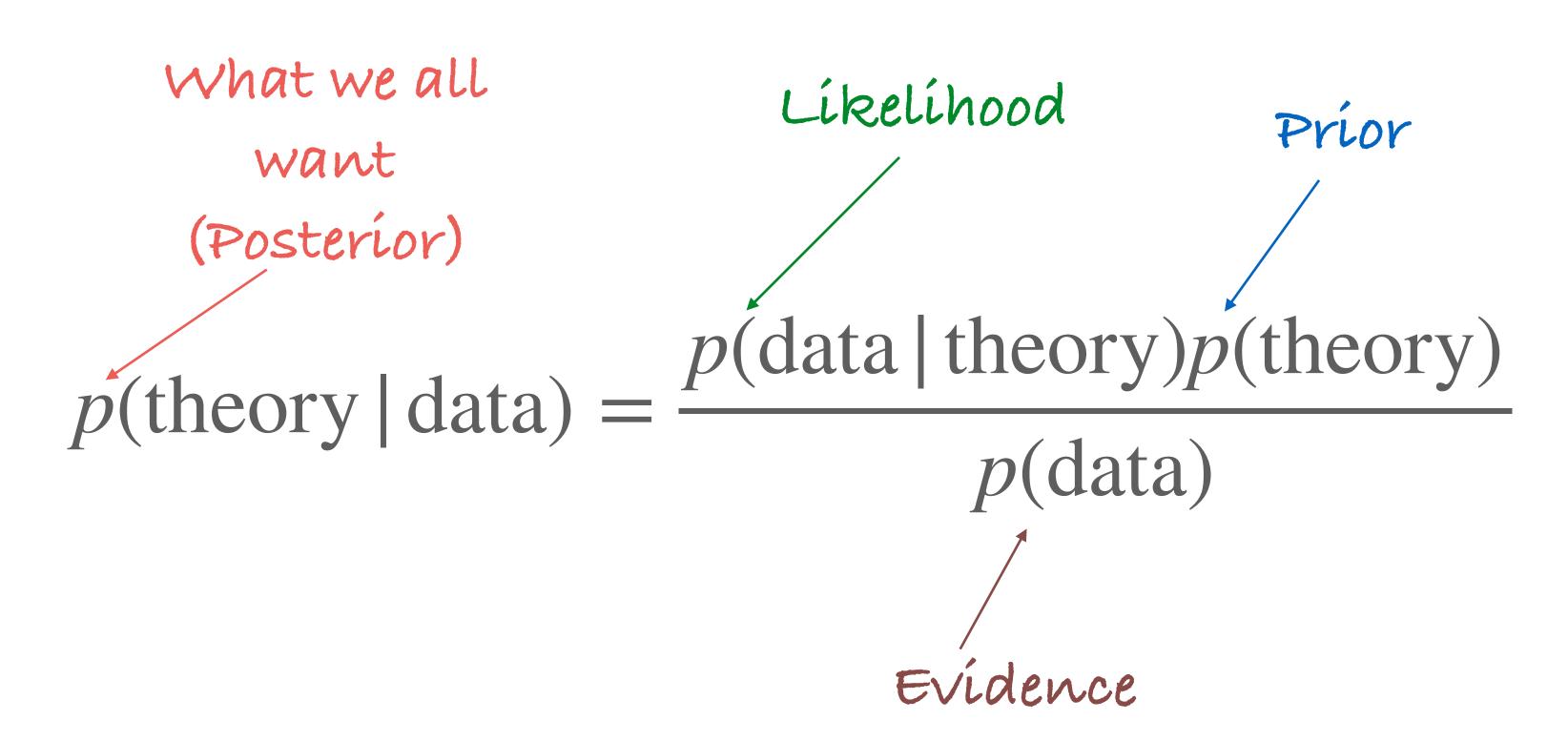
 $p(\text{theory} | \text{data}) = \frac{p(\text{data} | \text{theory})p(\text{theory})}{p(\text{data})}$

What we all want (Posterior)

Likelihood $p(\text{theory} | \text{data}) = \frac{p(\text{data} | \text{theory})p(\text{theory})}{p(\text{theory})}$ *p*(data)

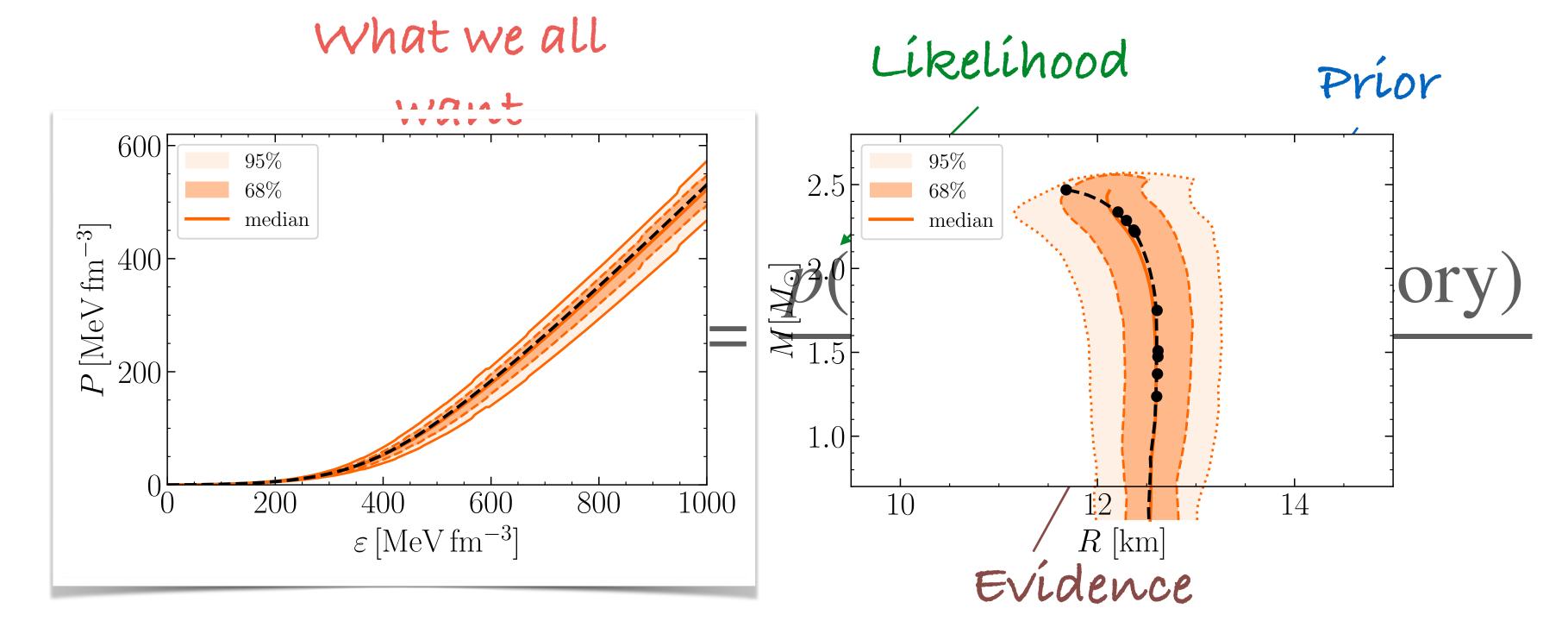
What we all want (Posterior)

Likelihood Prior $p(\text{theory} | \text{data}) = \frac{p(\text{data} | \text{theory})p(\text{theory})}{p(\text{theory})}$ *p*(data) Evidence



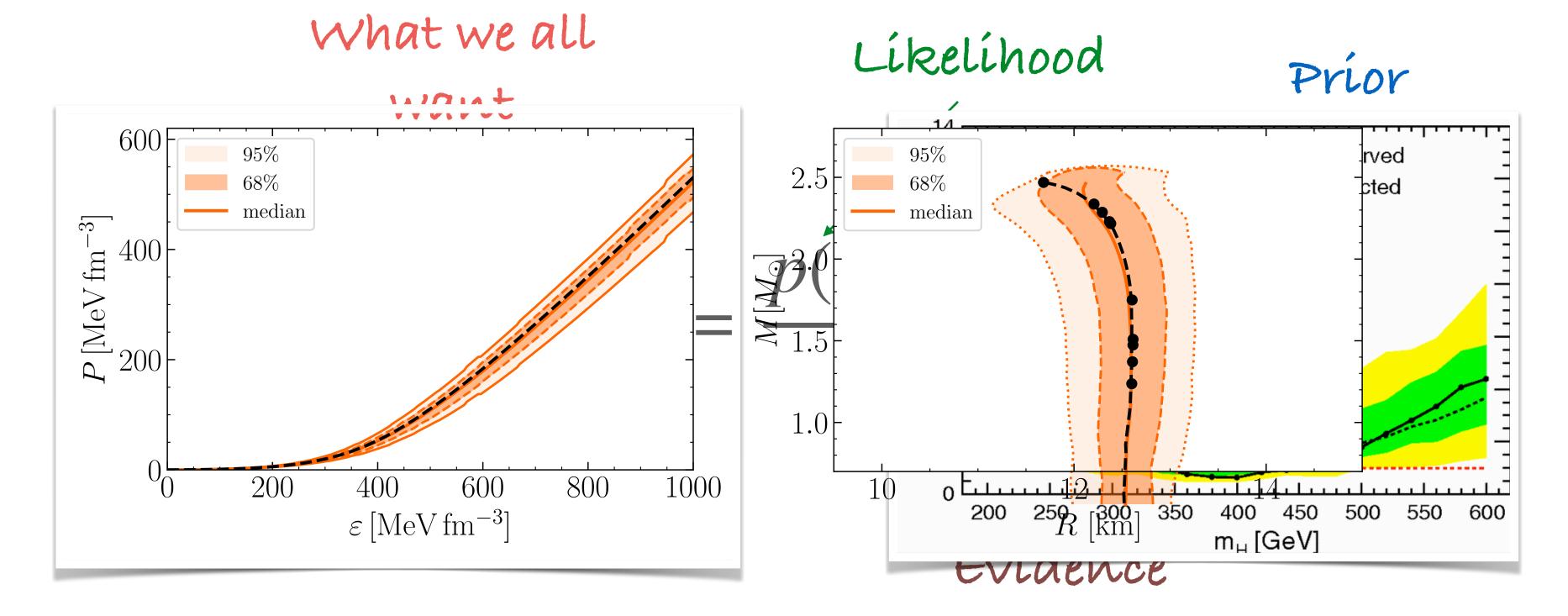
Bayesian statistics: Assign a prior, then calculate the posterior \rightarrow Credible intervals Frequentist statistics: No prior, so no posterior. Statements about confidence in our analysis method \rightarrow Confidence intervals

What we both like: Likelihoods



Bayesian statistics: Assign a prior, then calculate the posterior \rightarrow Credible intervals Frequentist statistics: No prior, so no posterior. Statements about confidence in our analysis method \rightarrow Confidence intervals

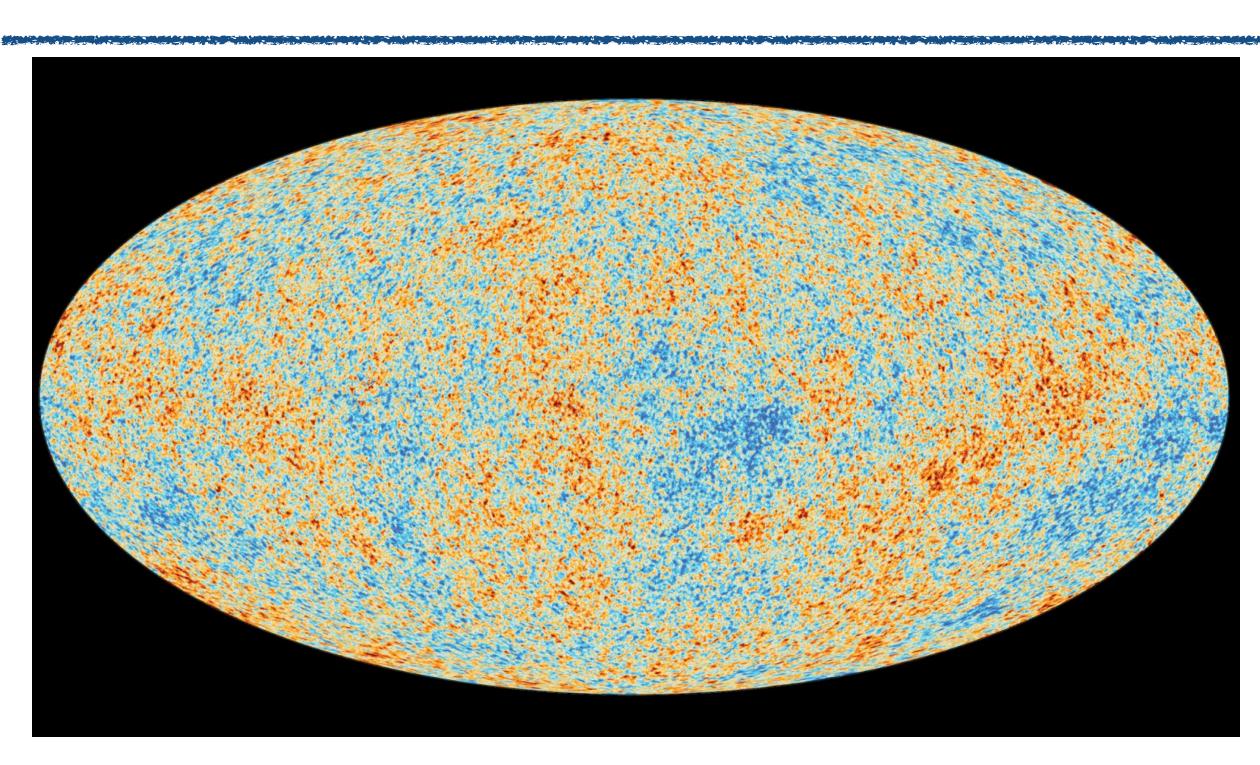
What we both like: Likelihod



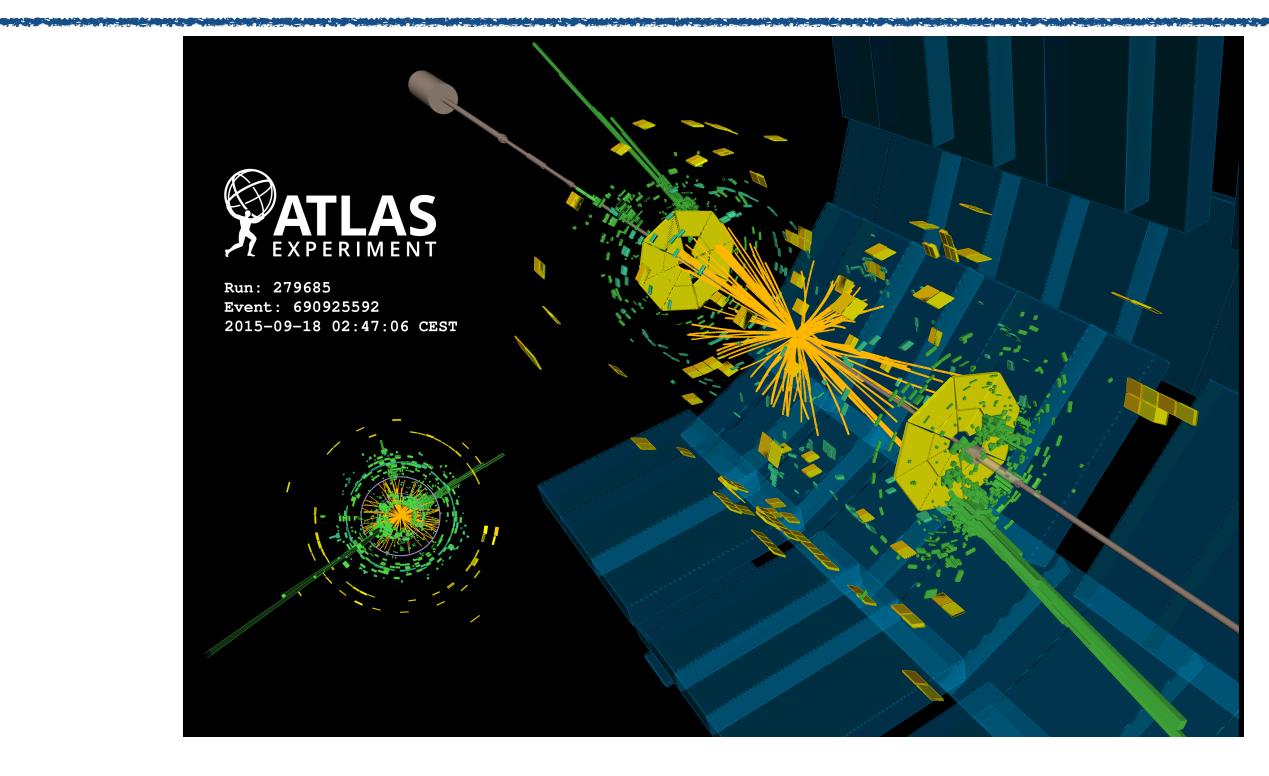
Bayesian statistics: Assign a prior, then calculate the posterior \rightarrow Credible intervals Frequentist statistics: No prior, so no posterior. Statements about confidence in our analysis method \rightarrow Confidence intervals

What we both like: Likelihod

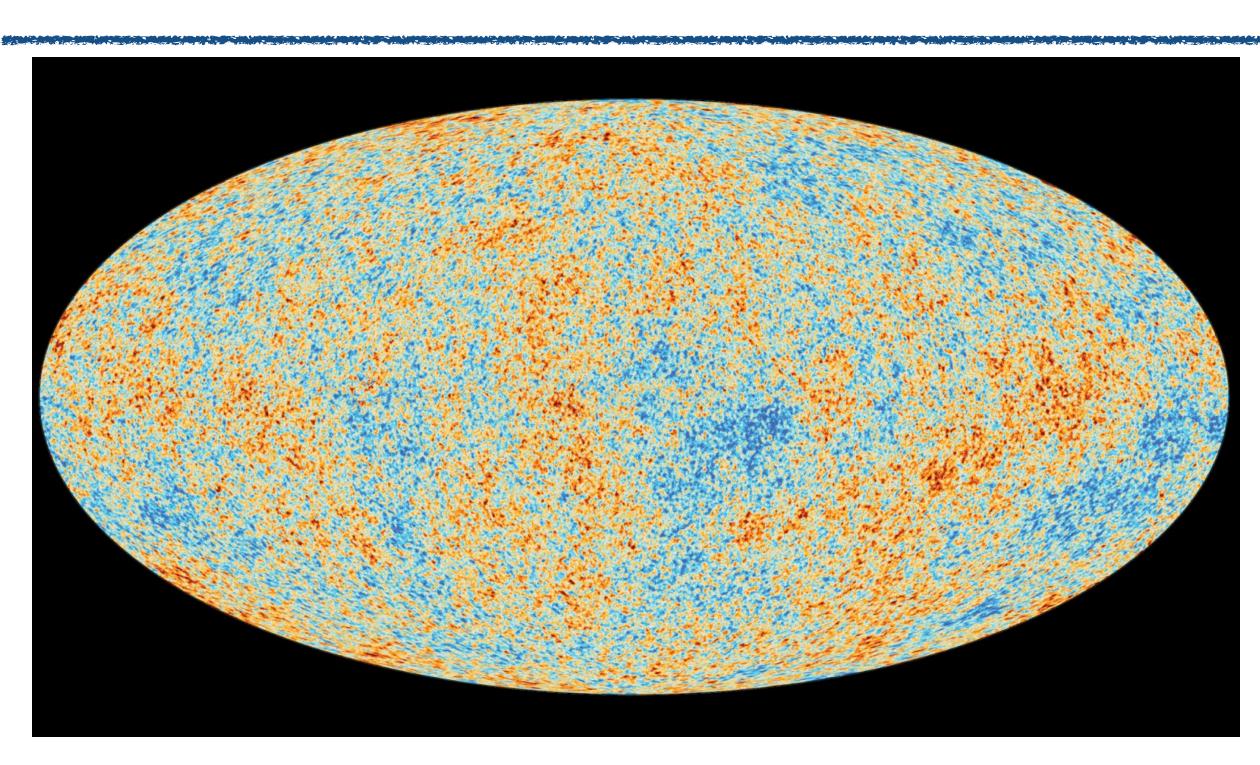
How to obtain the likelihood?



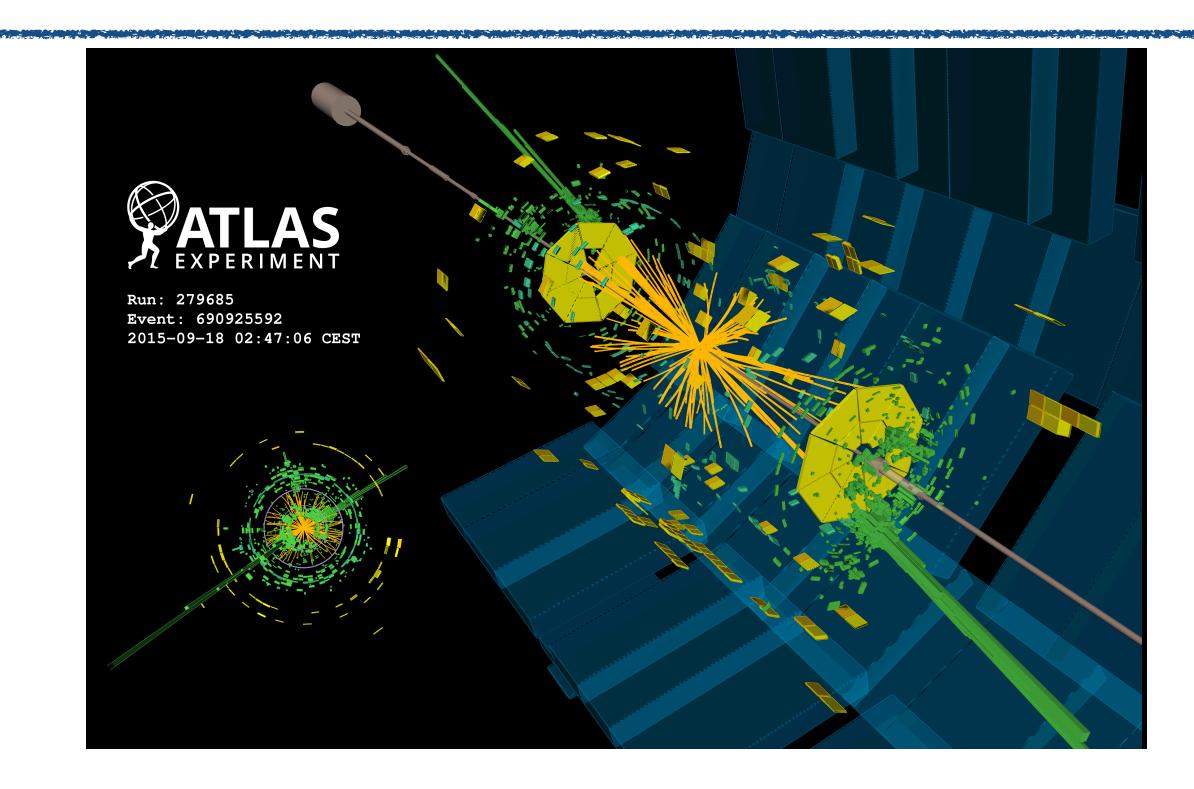
We got our data from observation / experiment Now how do we calculate p(data | theory)?



How to obtain the likelihood?



We got our data from observation / experiment Now how do we calculate p(data | theory)?

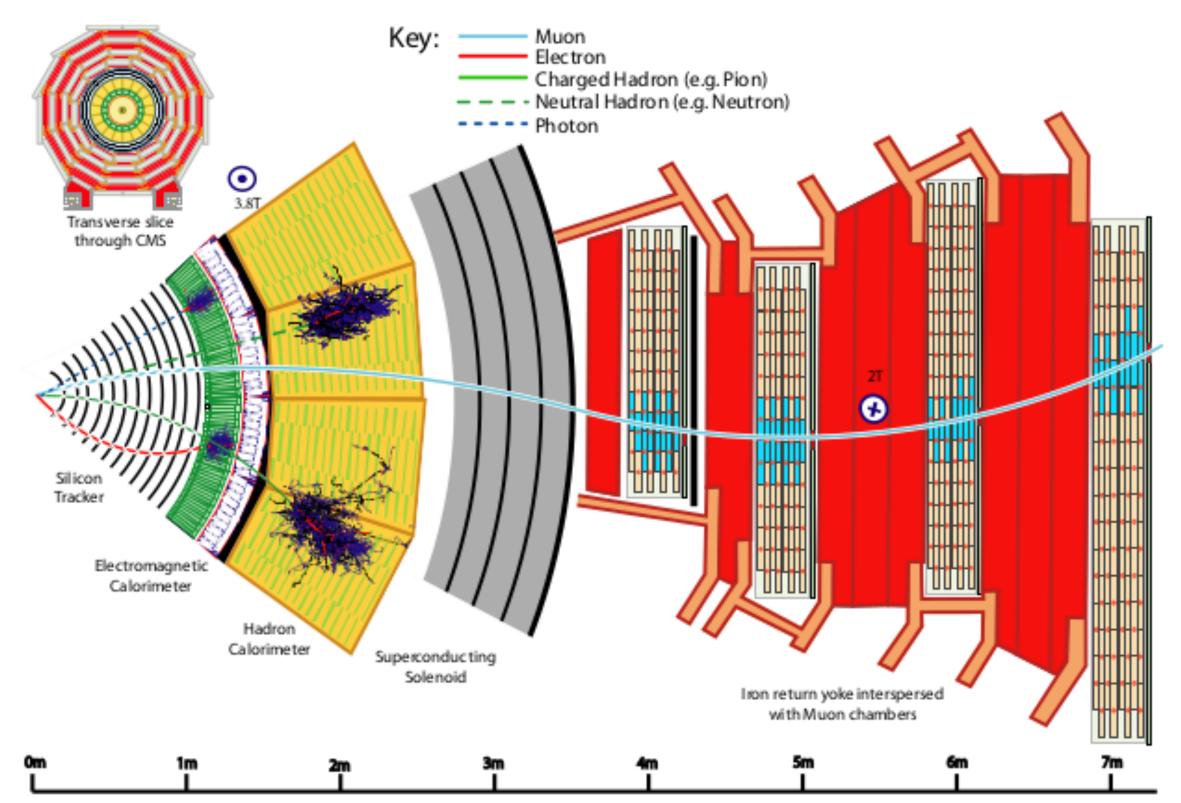


A known analytical formula

- Often uses approximations
- Restrict data space to where it works

Most domains in science have a **detailed** forward simulator

Forward simulator but inverse problem



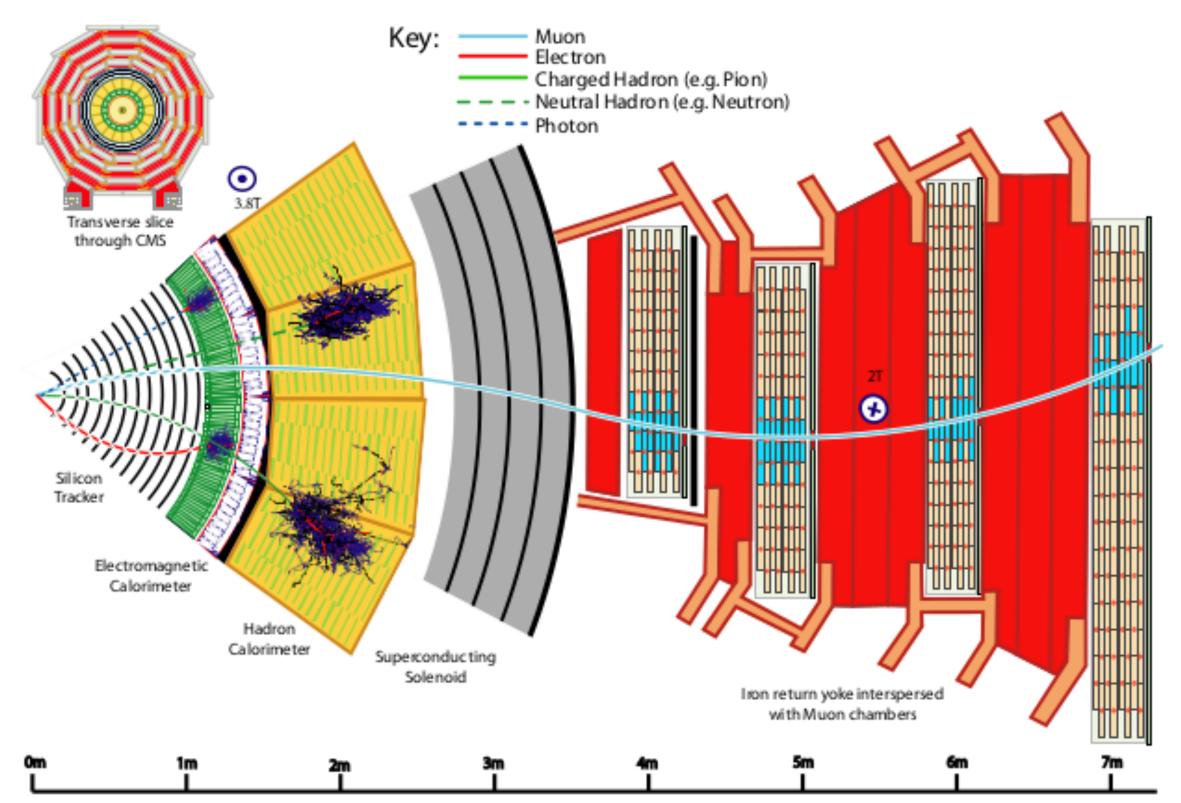
Intractable: $p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$

Forward simulator but inverse problem

Simulator let's you sample from the likelihood

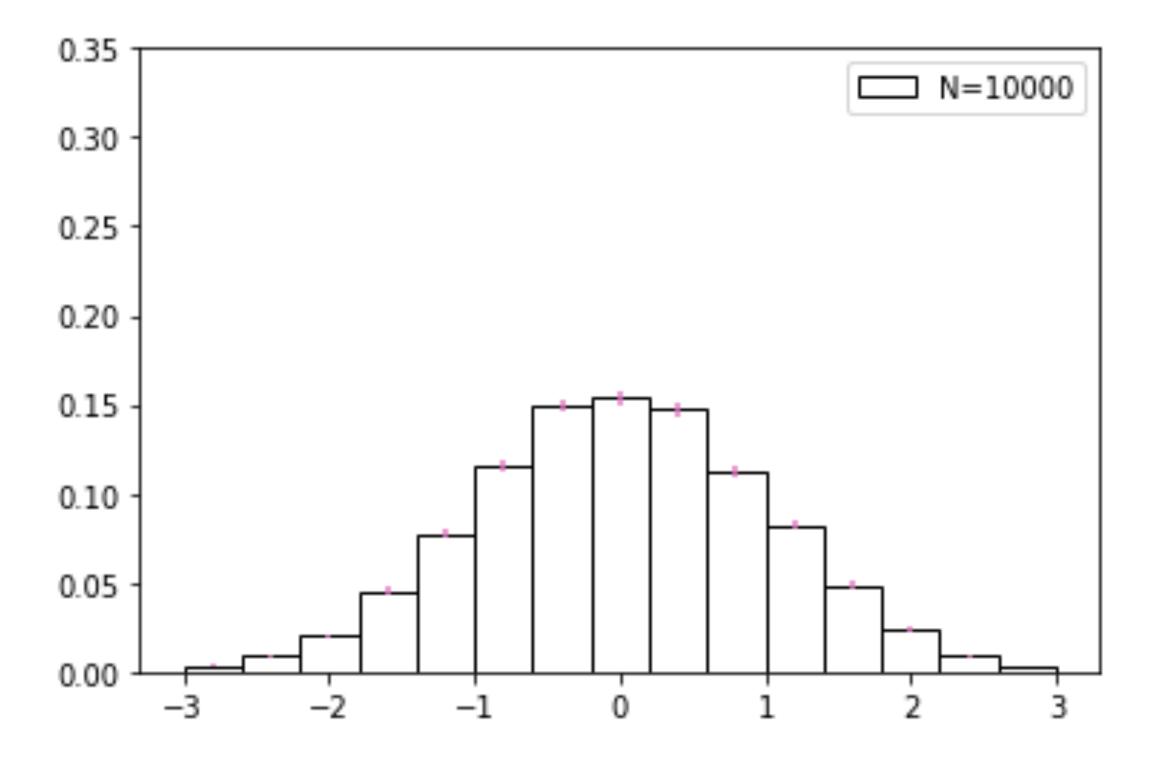
But no analytical formula, no tractable likelihood

Typically, simulator cannot be run in reverse



Intractable: $p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$

Traditional solution at LHC: Histograms Likelihood can be calculated in low-dimensional summary statistic



High-dimensional data compressed into 1 variable and binned into histogram

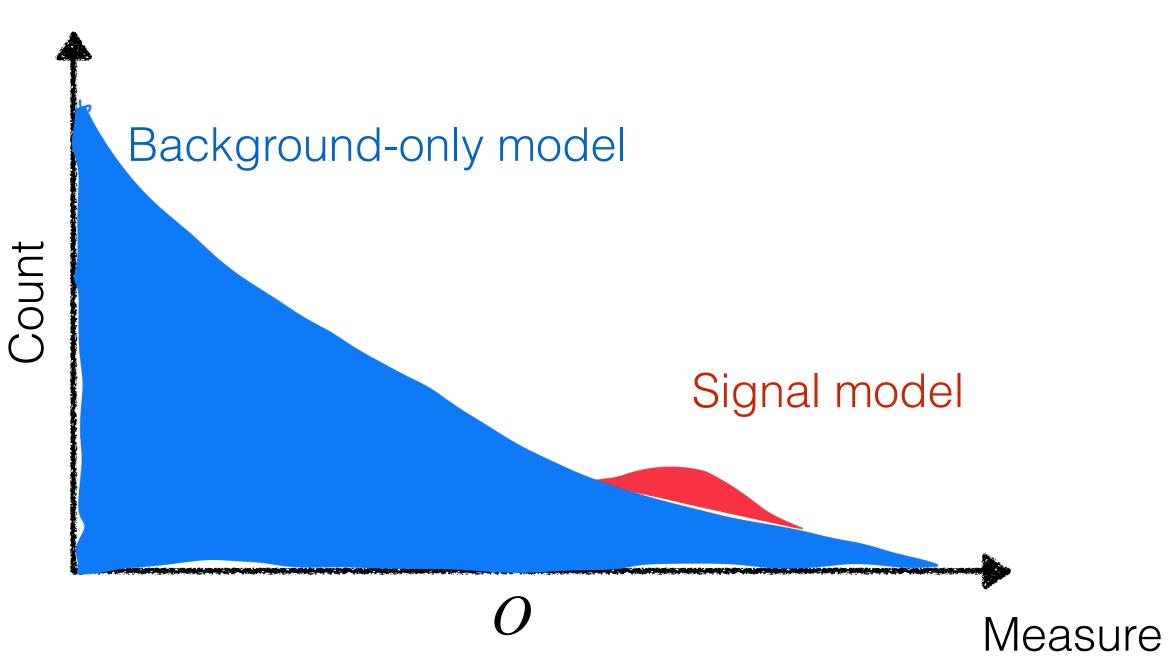
The count of events in *each bin* follows a Poisson distribution $P(N_{obs} = k | N_{exp} = \lambda) = \frac{\lambda^k e^{-k}}{k!}$ From experiment data

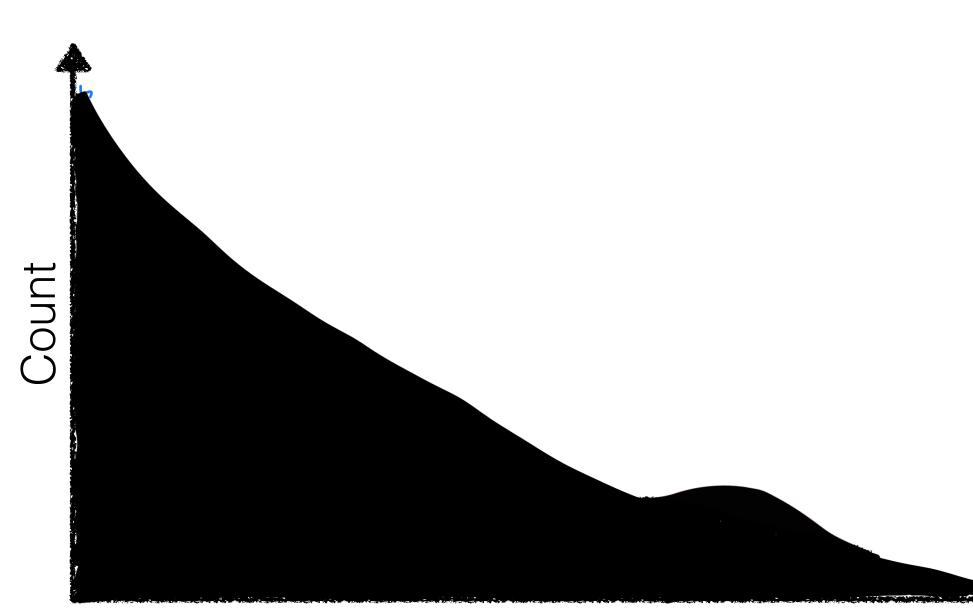
From theory simulation



Density estimation with summary statistic

Theory predictions from simulator





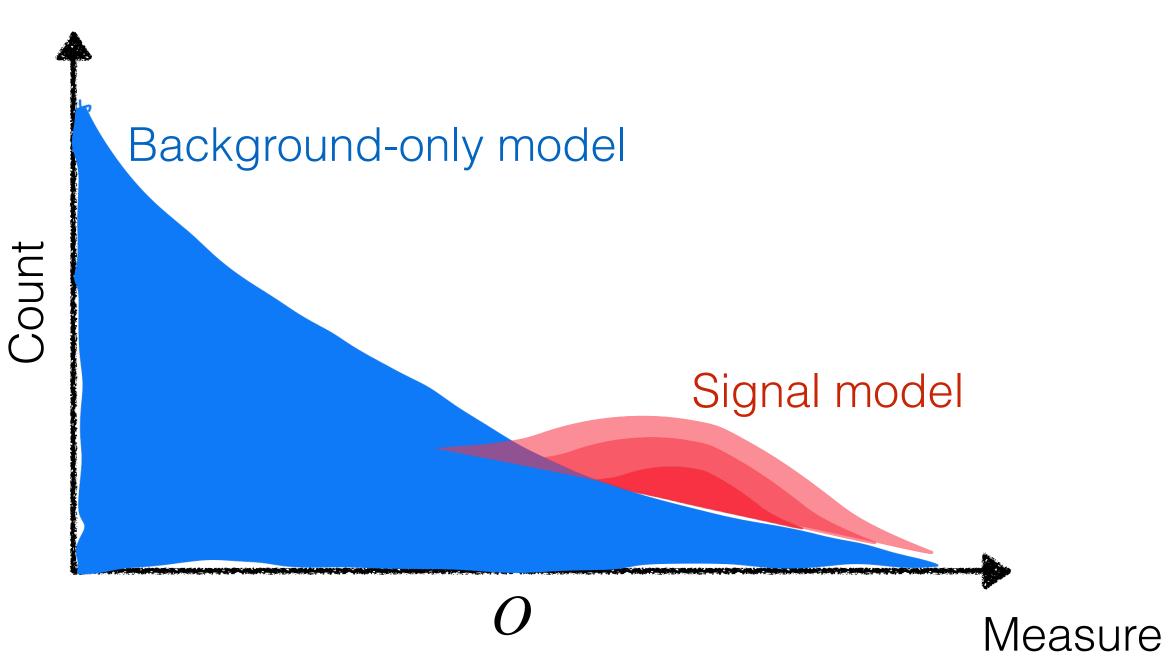
O

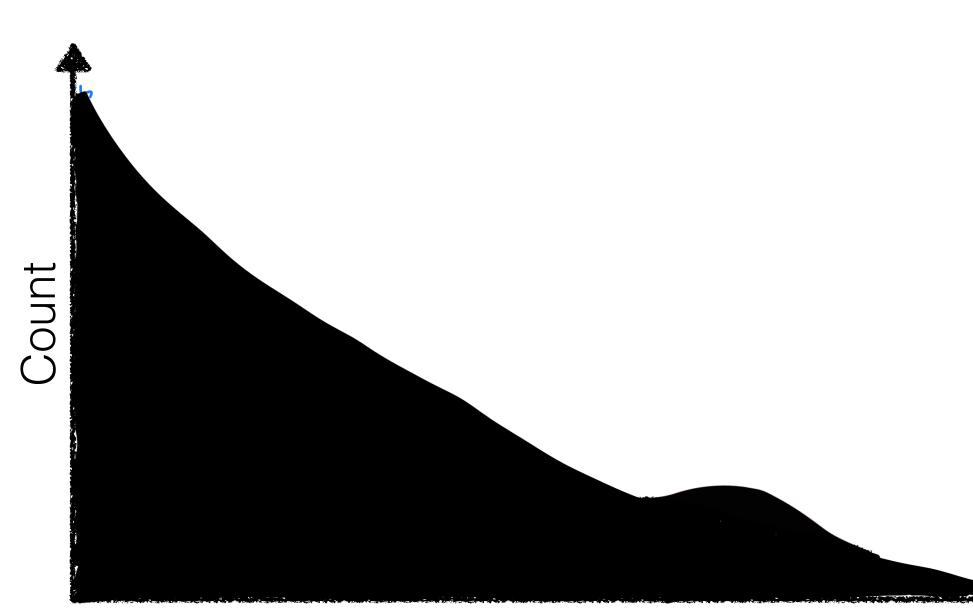
Measure single strength μ

With histograms we can ask "Given the data, what is the likelihood a $\mu = 1$ hypothesis vs $\mu = 2$ hypothesis?"

Density estimation with summary statistic

Theory predictions from simulator





O

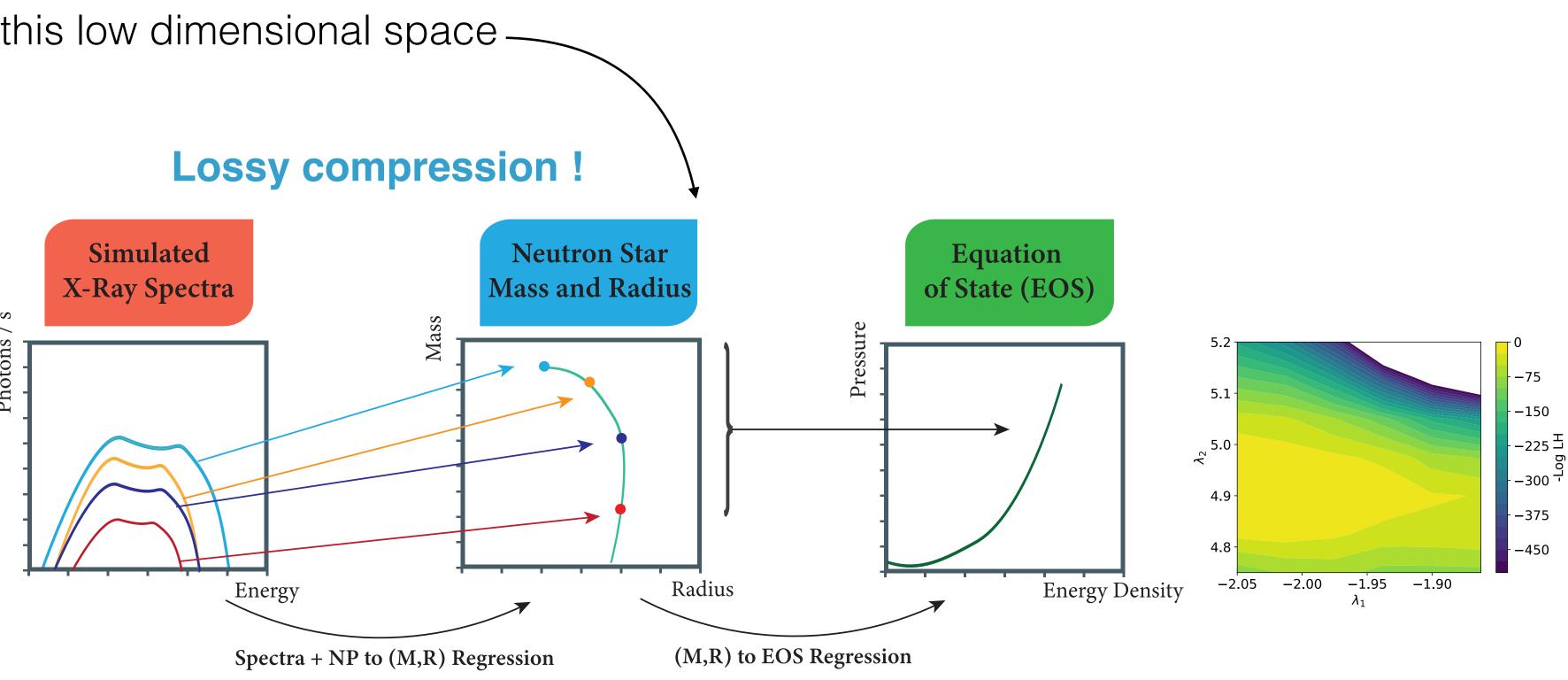
Measure single strength μ

With histograms we can ask "Given the data, what is the likelihood a $\mu = 1$ hypothesis vs $\mu = 2$ hypothesis?"

Summary statistics, a neutron stars example

Traditional method collapsed information about star into 2 numbers: mass and radius

Perform statistical inference in this low dimensional space -

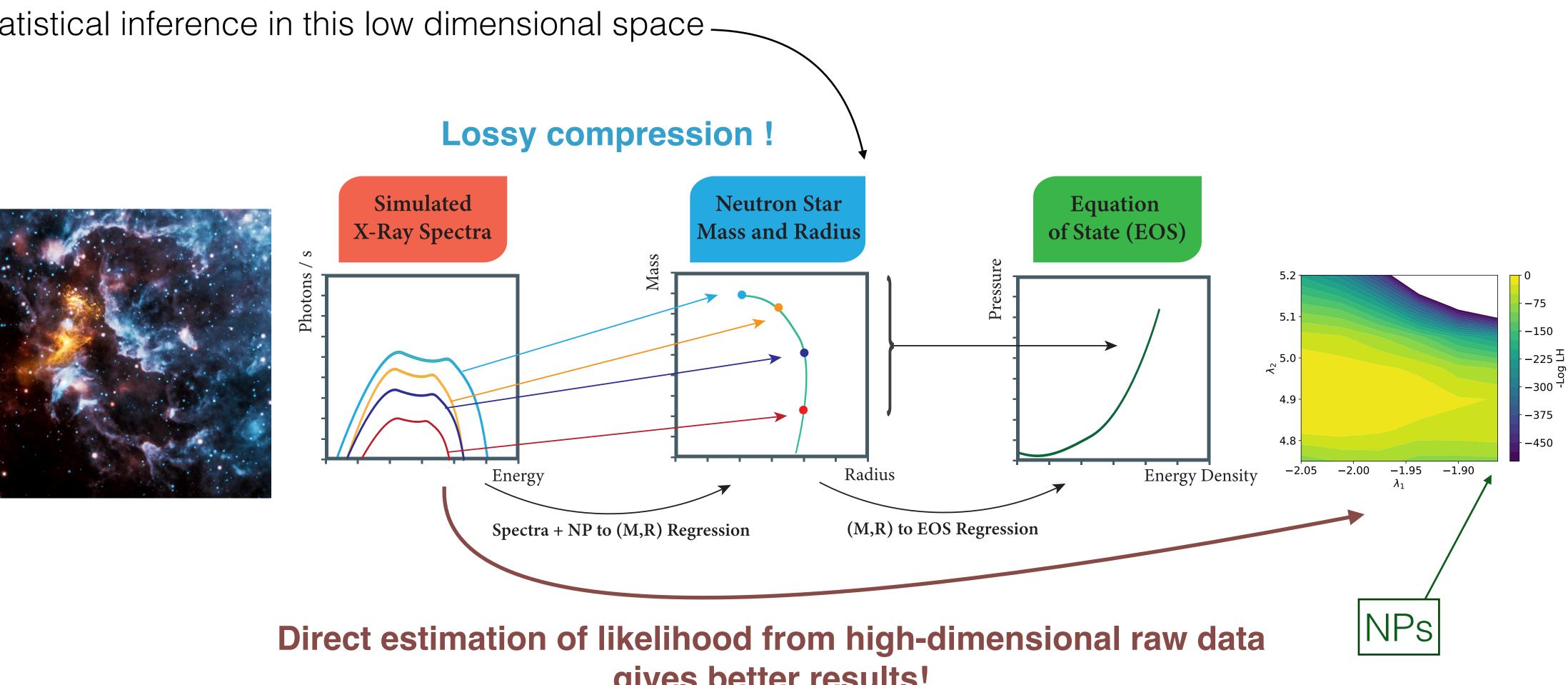


arxiv:2403.00287: Len Brandes, Chirag Modi, Aishik Ghosh, et al. 10

Summary statistics, a neutron stars example

Traditional method collapsed information about star into 2 numbers: mass and radius

Perform statistical inference in this low dimensional space -



gives better results!

arxiv:2403.00287: Len Brandes, Chirag Modi, Aishik Ghosh, et al. 10

This is a density estimation problem, not a supervised regression

We do not know the true $p(x_i | theory)$ of an event even in our simulations

This is a density estimation problem, not a supervised regression

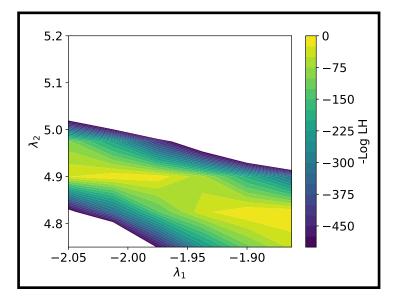
We do not know the true $p(x_i | theory)$ of an event even in our simulations

High-dimensional density estimation with neural networks, unsupervised methods like:

- Normalising flows for neural likelihood estimation
- Diffusion models for neural posterior estimation

Or 'supervised' method!

Classifiers for neural ratio estimation



See <u>PHY-STAT Munich workshop</u> for different examples

This is a density estimation problem, not a supervised regression

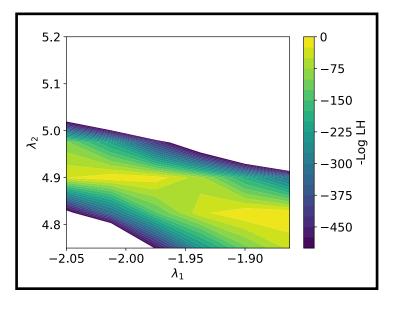
We do not know the true $p(x_i | theory)$ of an event even in our simulations

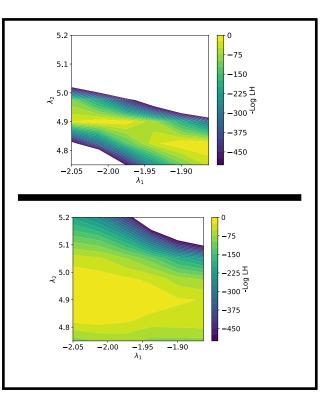
High-dimensional density estimation with neural networks, unsupervised methods like:

- Normalising flows for neural likelihood estimation
- Diffusion models for neural posterior estimation

Or 'supervised' method!

Classifiers for neural ratio estimation



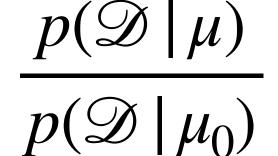


See <u>PHY-STAT Munich workshop</u> for different examples

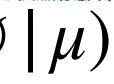
The motivation for Neural SBI in particle physics

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:



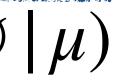
 $\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D} \,|\, \mu)$



Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $p(\mathcal{D} \mid \mu)$ $p(\mathcal{D} \mid \mu_0)$ $\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D} \,|\, \mu)$



Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

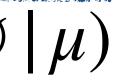
 $\frac{p(\mathcal{D} \mid \mu)}{p(\mathcal{D} \mid \mu_0)}$

A neural network classifier trained on S vs B, estimates the decision function*:

* Equal class weights

 $\mathscr{L}(\mu \mid \mathscr{D}) = p(\mathscr{D} \mid \mu)$

 $s(x_i) = \frac{p(x_i \mid S)}{p(x_i \mid S) + p(x_i \mid B)}$



Traditional {S vs B} classifier often good enough

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $p(\mathcal{D} \mid \mu)$ $p(\mathcal{D} \mid \mu_0)$

 $s(x_i) = \frac{p(x_i \mid S)}{p(x_i \mid S) + p(x_i \mid B)}$ A neural network classifier trained on S vs B, estimates the decision function*:

Which contains all the information required for the likelihood ratio:

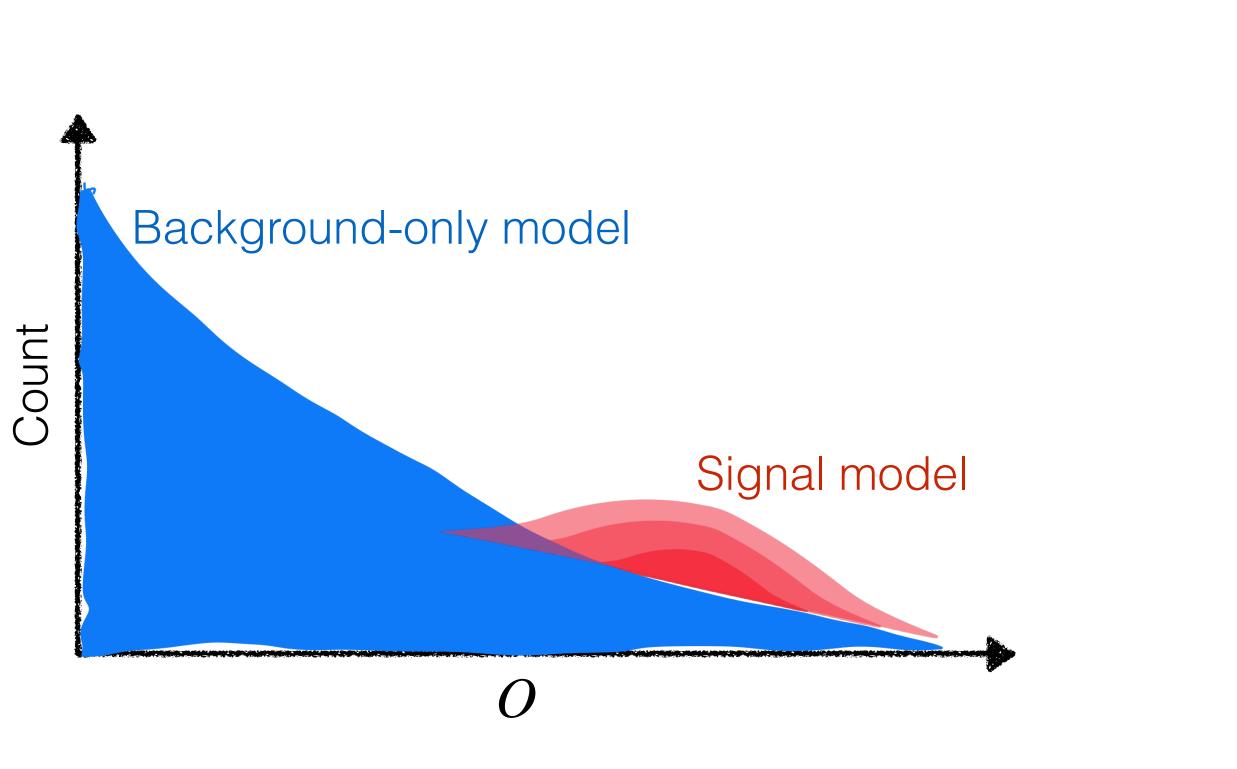
$$\frac{p(x_i \mid \mu)}{p(x_i \mid \mu = 0)} = \frac{\mu \cdot \sigma_S \cdot p(x_i \mid S) + \sigma_B \cdot p(x_i \mid B)}{\sigma_B \cdot p(x_i \mid B)} = \mu \cdot \frac{\sigma_S}{\sigma_B} \cdot \frac{s(x_i)}{1 - s(x_i)} + 1.$$

* Equal class weights

$$\mathcal{L}(\mu \,|\, \mathcal{D}) = p(\mathcal{D})$$

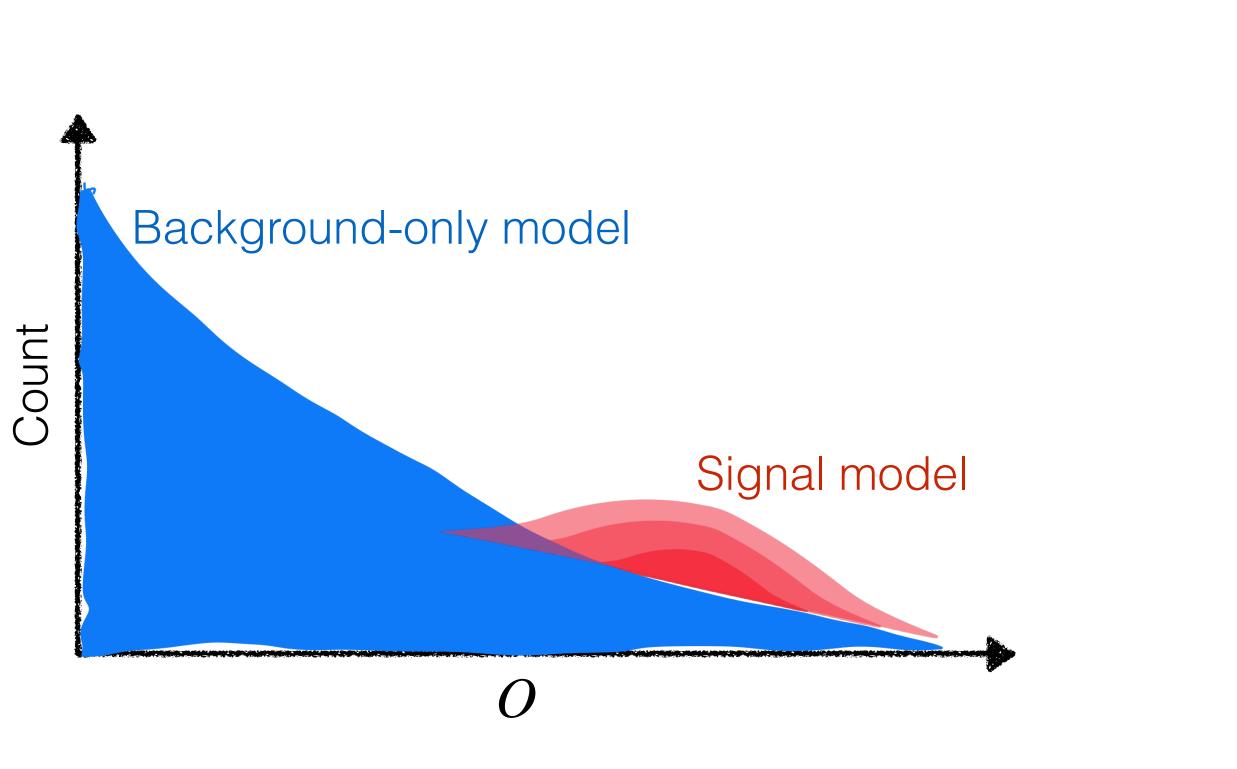
Same observable s is optimal to test all μ hypotheses! No need to develop separate analysis per hypothesis μ

New challenges, eg. quantum interference

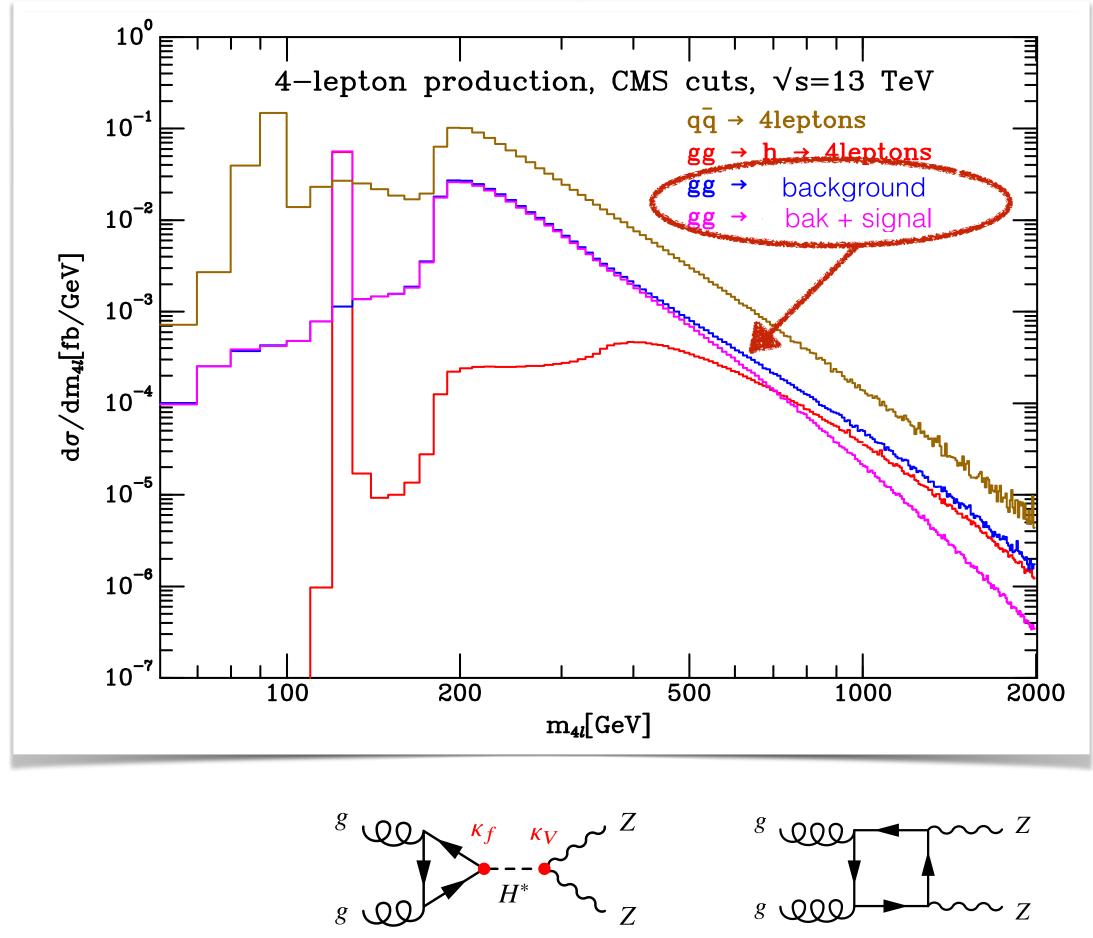


A histogram of any single observable is no longer optimal (see Ghosh et al.)

New challenges, eg. quantum interference



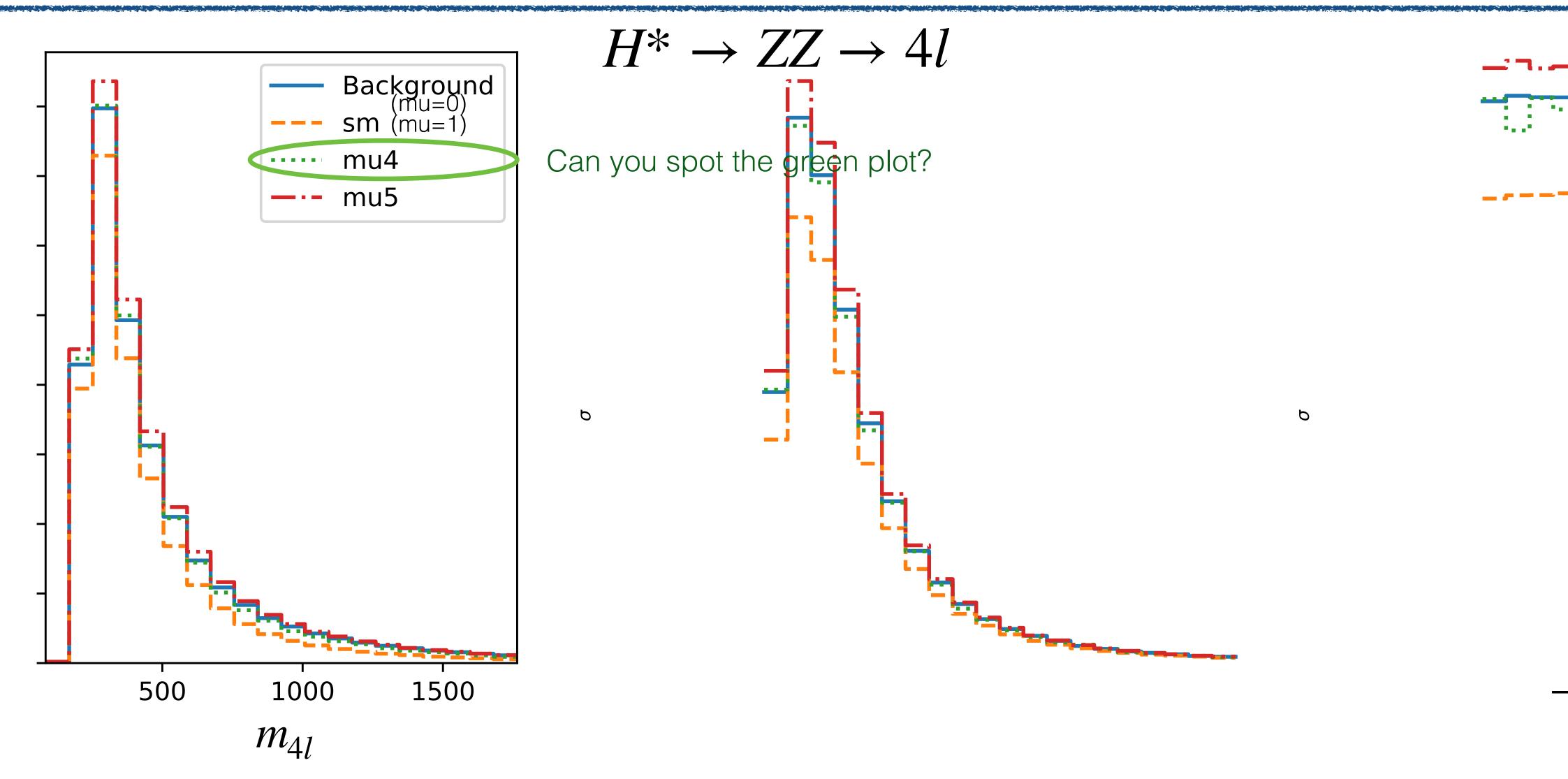
A histogram of any single observable is no longer optimal (see Ghosh et al.)



Example of where summary statistics break down in presence of quantum interference

 $H^* \rightarrow ZZ \rightarrow 4l$

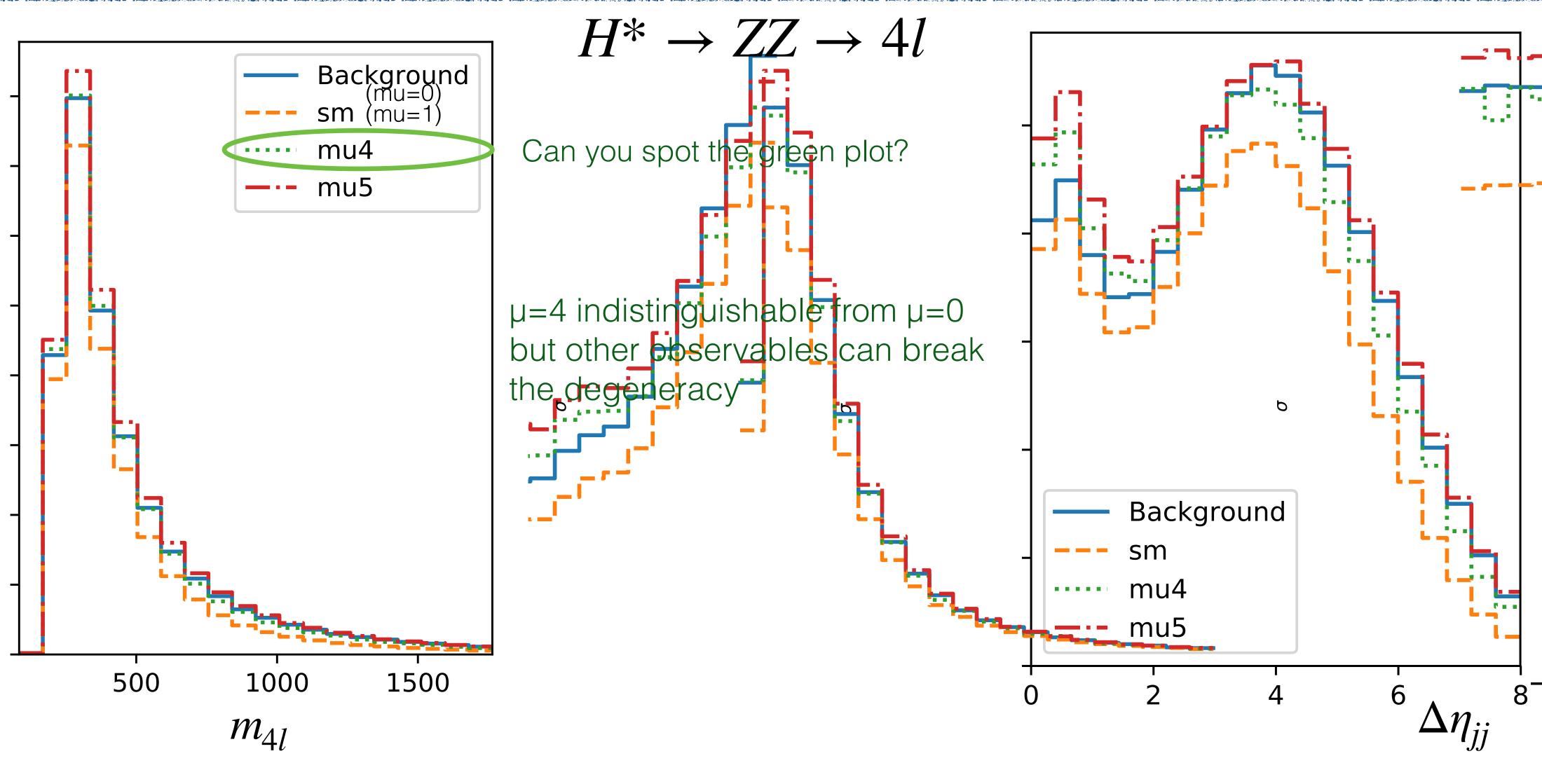
hal-02971995v3: Aishik Ghosh, David Rousseau



hal-02971995v3: Aishik Ghosh, David Rousseau

Example of where summary statistics break down in presence of quantum interference

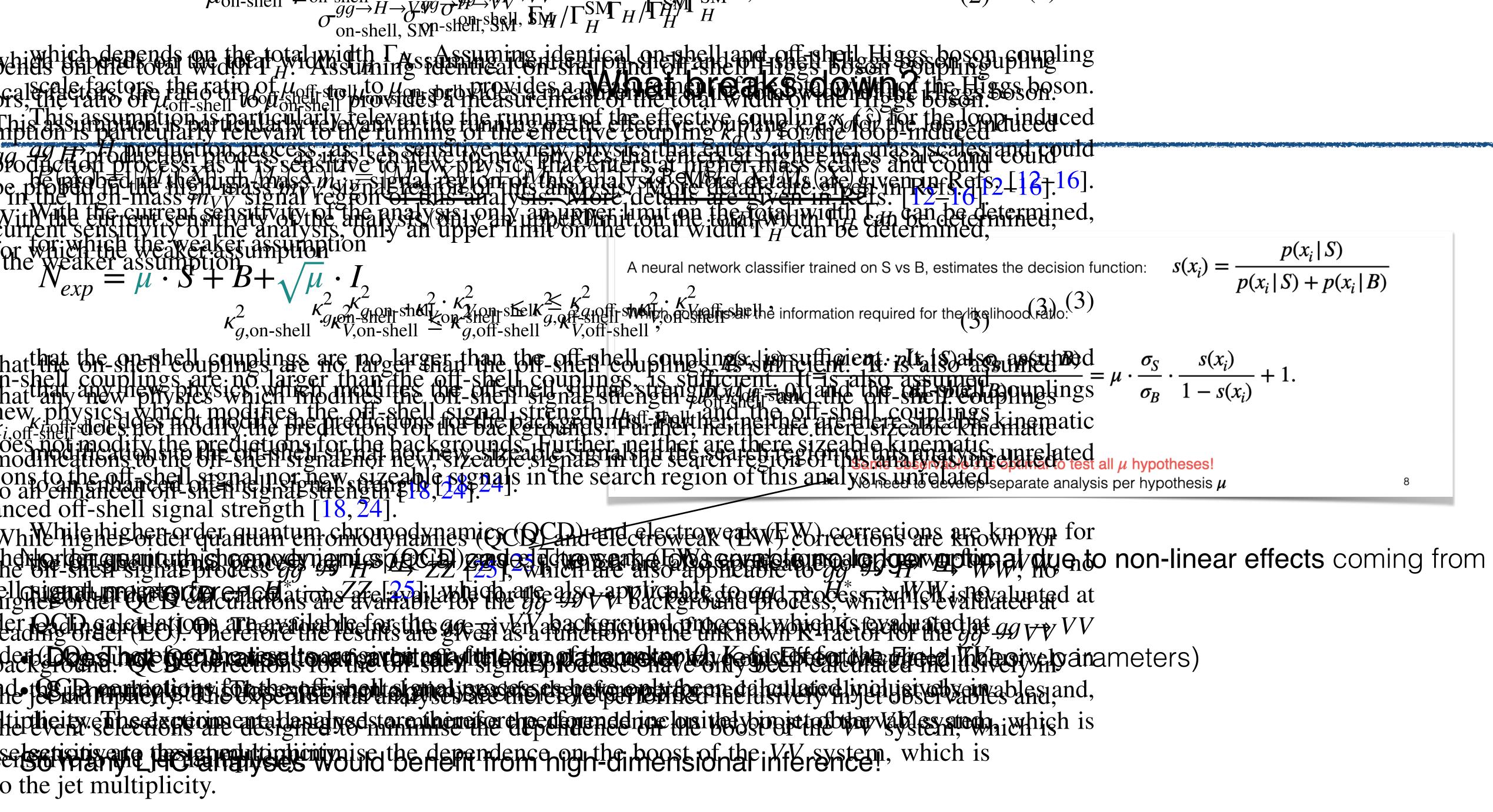
Ti



Optimal observable now changes as a function of **µ**: Cannot collapse problem to 1 dimension

hal-029-7-1995v3: Aishik Ghosh, David Rousseau

Example of where summary statistics break down in presence of quantum interference



Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $\frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D} \mid ref)}$

A neural network classifier trained on simulated samples from θ_1 vs simulated samples from *ref*, estimates the decision function:

Which contains all the information required for the likelihood ratio:

 $\mathcal{L}(\theta \,|\, \mathcal{D}) = p(\mathcal{D} \,|\, \theta)$

 $s(x_i) = \frac{p(x_i | \theta_1)}{p(x_i | \theta_1) + p(x_i | ref)}$

 $\frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i)}{1 - s(x_i)}$

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $\frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D} \mid ref)}$

A neural network classifier trained on simulated samples from θ_1 vs. simulated samples from *ref*, estimates the decision function:

Which contains all the information required for the likelihood ratio:

We can even obtain this as a function of θ !

 $\frac{p(x_i)}{p(x_i)}$

$$\mathcal{L}(\theta \,|\, \mathcal{D}) = p(\mathcal{D})$$

 $s(x_i, \theta = \theta_1) = \frac{p(x_i | \theta_1)}{p(x_i | \theta_1) + p(x_i | ref)}$

$$\frac{s_i|\theta_1}{|ref|} = \frac{s(x_i, \theta = \theta_1)}{1 - s(x_i, \theta = \theta_1)}$$

Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

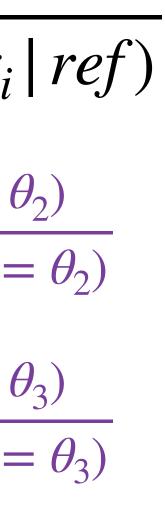
 $\frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D} \mid ref)}$

 $s(x_i, \theta = \theta_1) = \frac{p(x_i | \theta_1)}{p(x_i | \theta_1) + p(x_i | ref)}$ $\frac{p(x_i \mid \theta_2)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_2)}{1 - s(x_i, \theta = \theta_2)}$ $\frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_1)}{1 - s(x_i, \theta = \theta_1)} \quad \frac{p(x_i \mid ref)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_3)}{1 - s(x_i, \theta = \theta_3)}$

A neural network classifier trained on simulated samples from θ_1 vs simulated samples from *ref*, estimates the decision function: Which contains all the information required for the likelihood ratio: We can even obtain this as a function of θ !

$$\mathcal{L}(\theta \,|\, \mathcal{D}) = p(\mathcal{D})$$

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$



Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

We want to compare likelihoods:

 $\frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D} \mid ref)}$

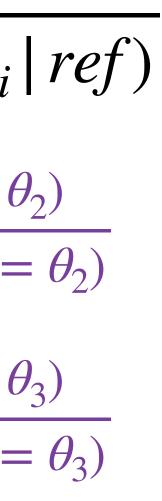
 $s(x_i, \theta = \theta_1) = \frac{p(x_i | \theta_1)}{p(x_i | \theta_1) + p(x_i | ref)}$ $\frac{p(x_i \mid \theta_2)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_2)}{1 - s(x_i, \theta = \theta_2)}$ $\frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_1)}{1 - s(x_i, \theta = \theta_1)} \quad \frac{p(x_i \mid ref)}{p(x_i \mid ref)} = \frac{s(x_i, \theta = \theta_3)}{1 - s(x_i, \theta = \theta_3)}$

A neural network classifier trained on simulated samples from θ_1 vs simulated samples from *ref*, estimates the decision function: Which contains all the information required for the likelihood ratio: We can even obtain this as a function of θ !

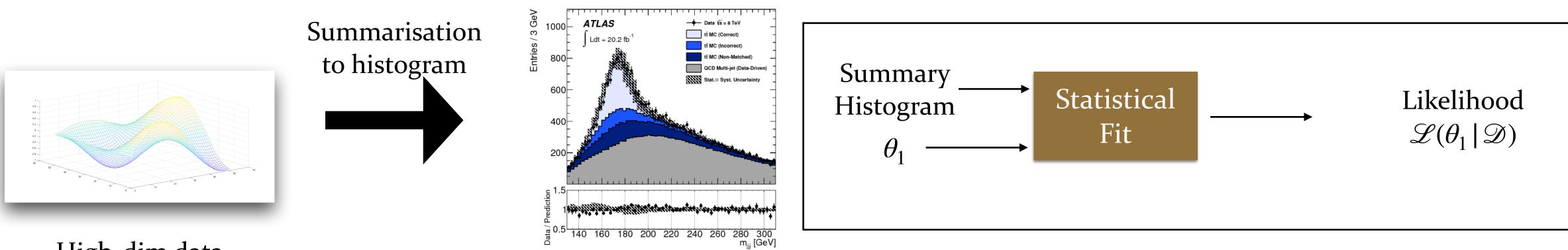
* Optimal statistic to test each value of θ * We get the LR *per event (*unbinned)

$$\mathcal{L}(\theta \,|\, \mathcal{D}) = p(\mathcal{D})$$

. . .

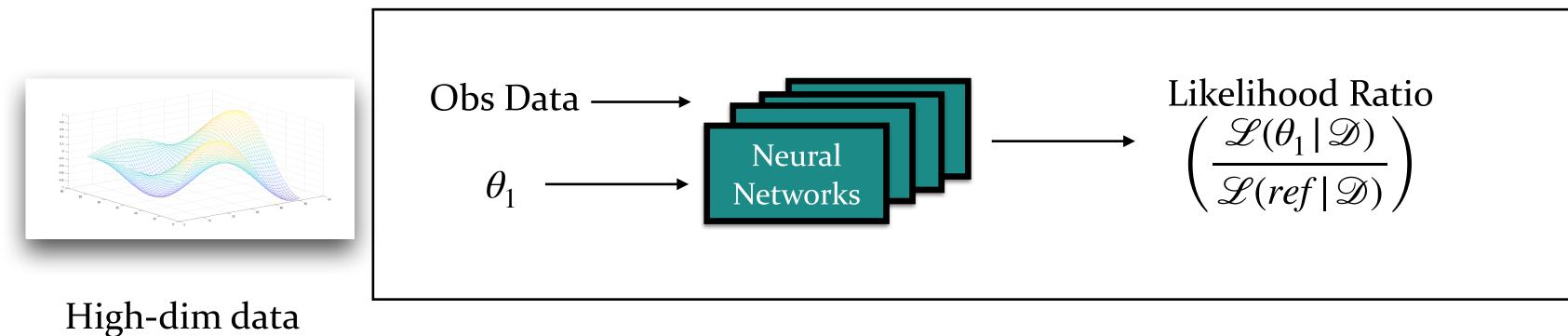


Traditional framework:



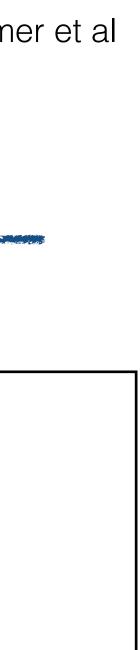
High-dim data

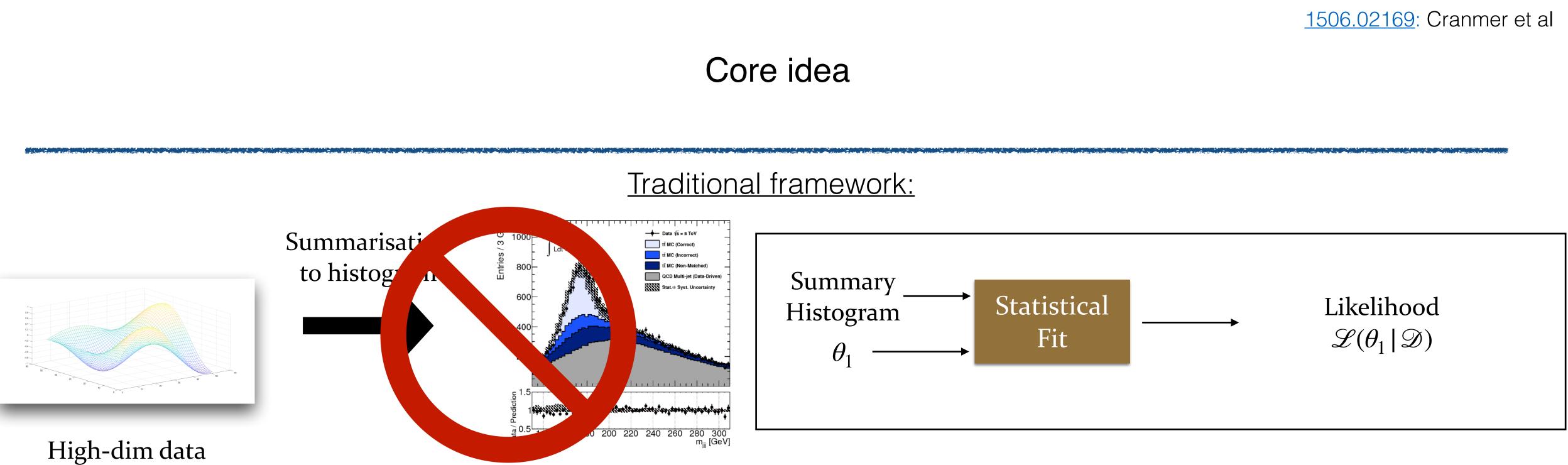
The neural inference framework:



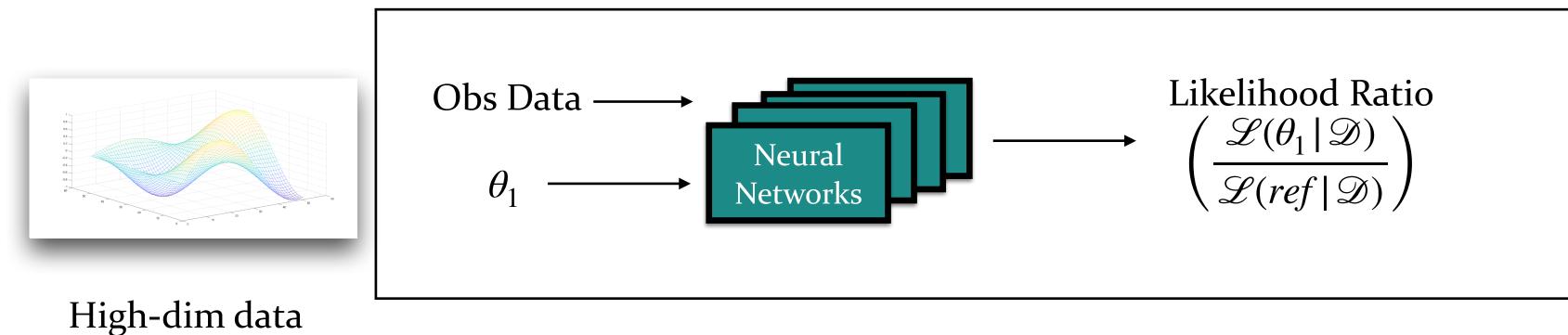
<u>1506.02169</u>: Cranmer et al

Core idea

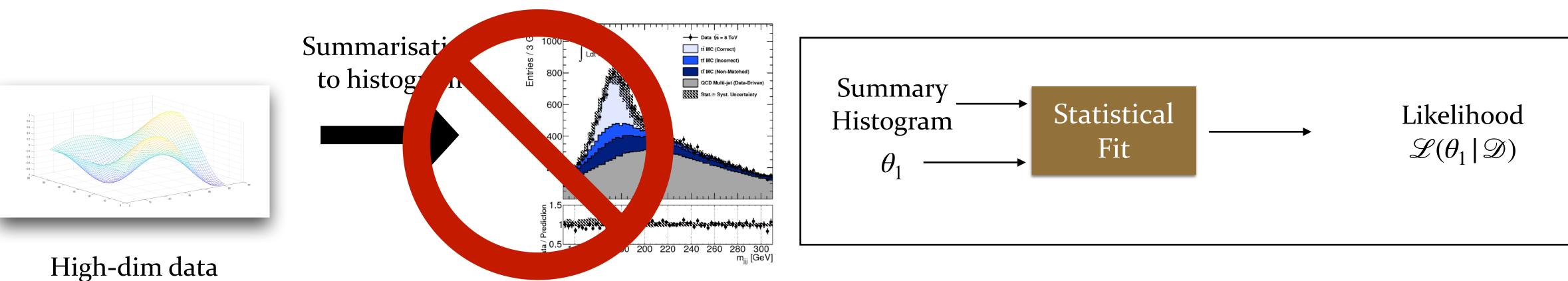




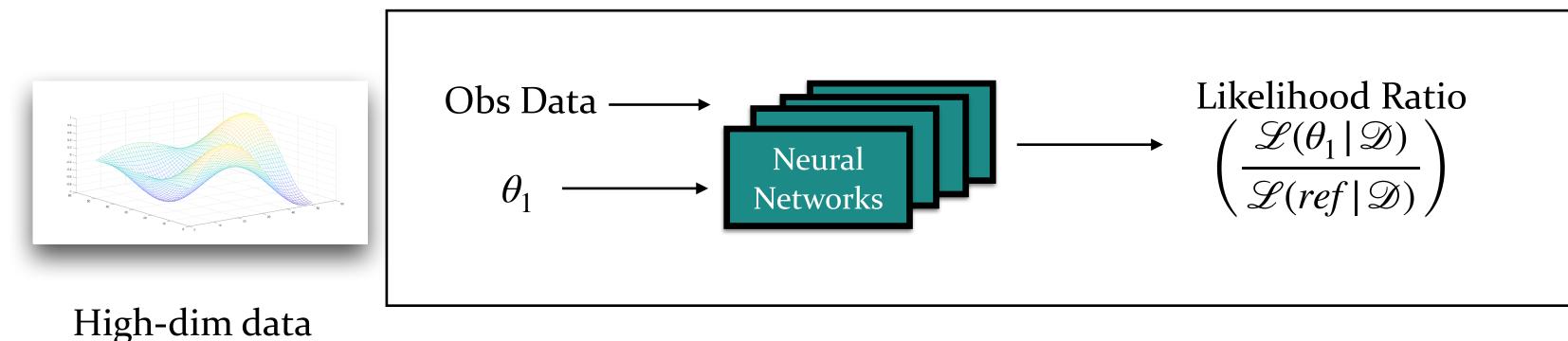
The neural inference framework:



Core idea

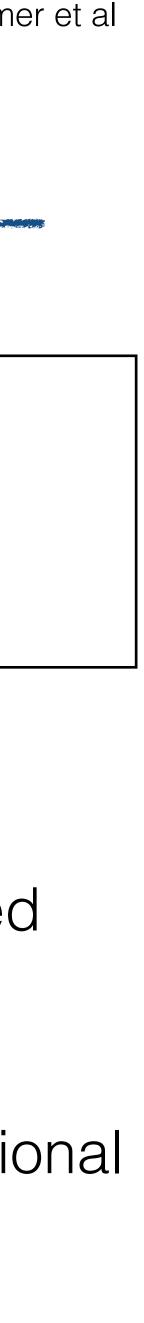


The neural inference framework:



Traditional framework:

- Fully leverage detailed physics knowledge stored in simulators
- Perform high-dimensional inference

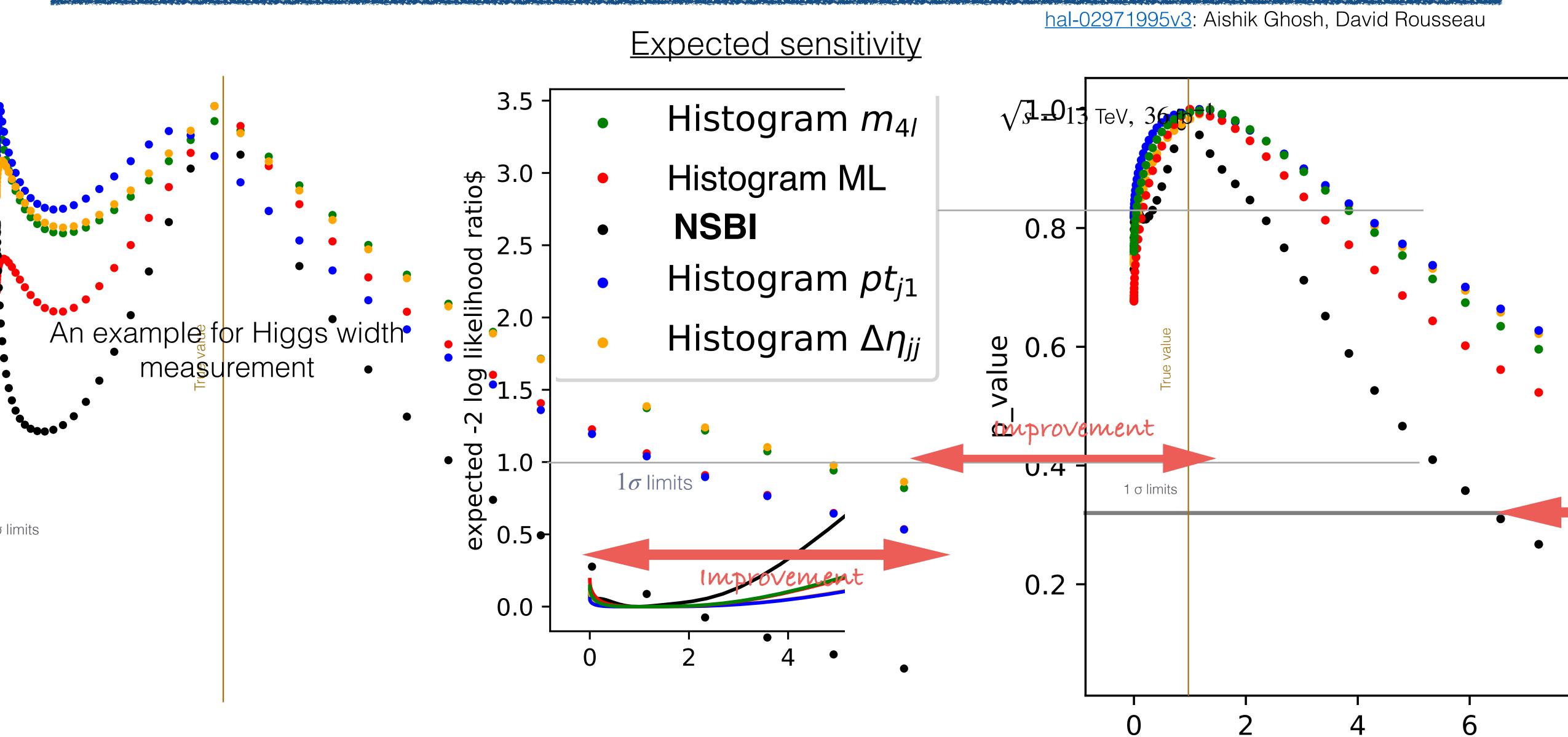


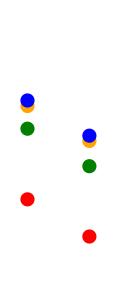
An example for Higgs width measurement

Phenomenology studies promise a dramatic improvement with high-dimensional inference

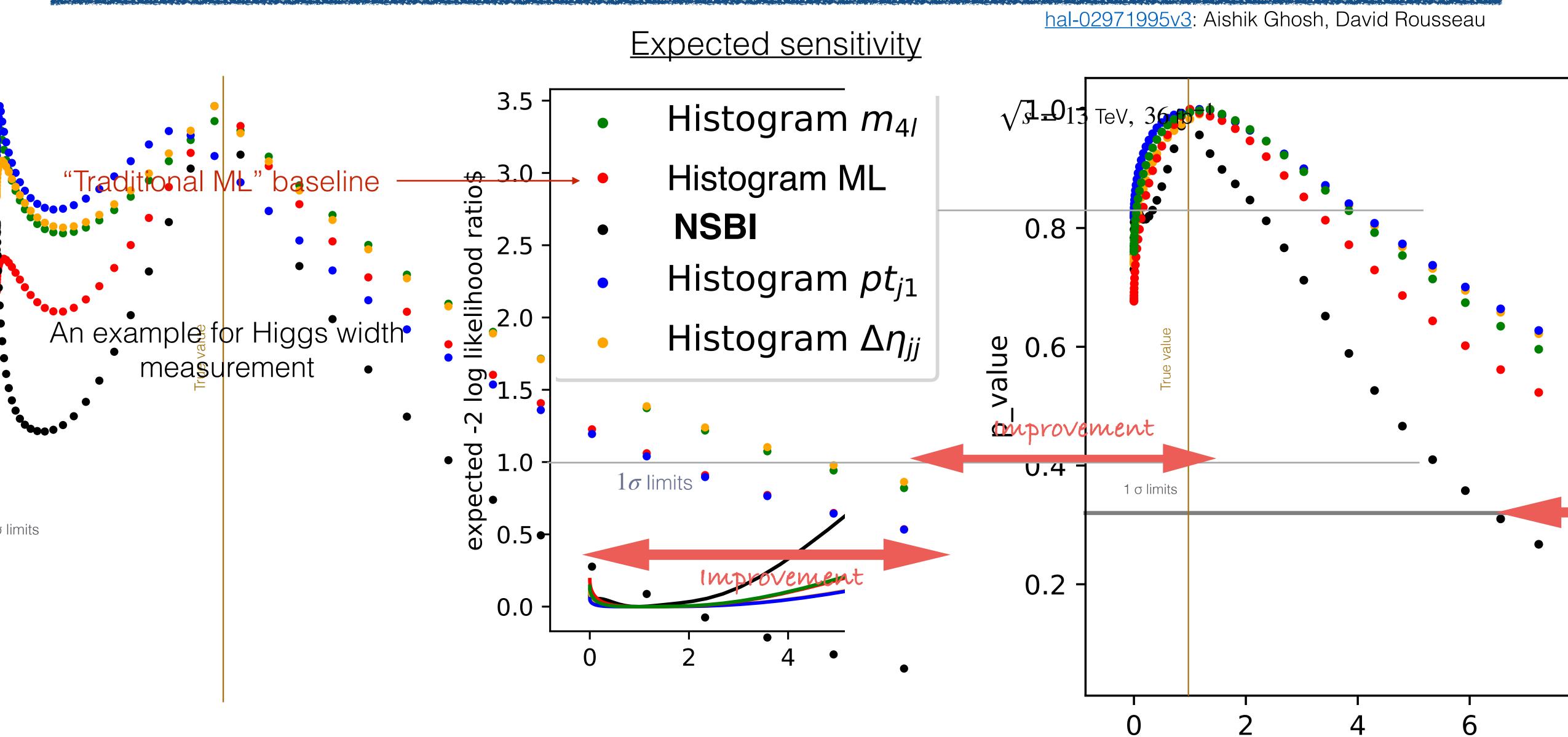
hal-02971995v3: Aishik Ghosh, David Rousseau

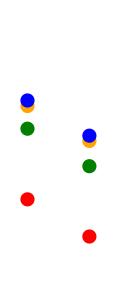
Phenomenology studies promise a dramatic improvement with high-dimensional inference





Phenomenology studies promise a dramatic improvement with high-dimensional inference

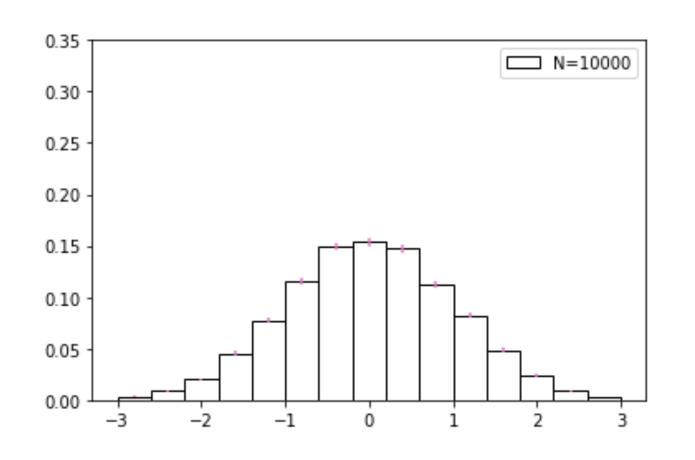




Challenges for NSBI:

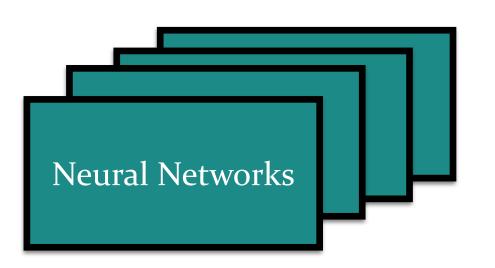
- Robustness: Design and validation
- Uncertainties: Quantifying and propagating systematics • Neyman Construction: Throwing toys in high-dimensions

Giving up analytically known form



High-dim, unbinned NSBI: Merely an estimation of the likelihood

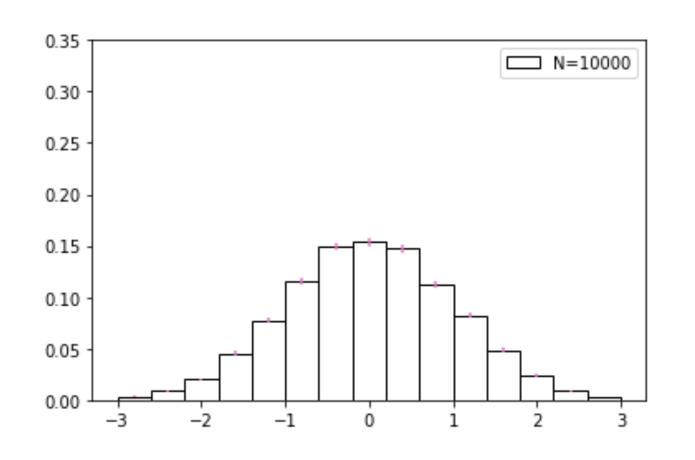
> What if the network is overconfident?

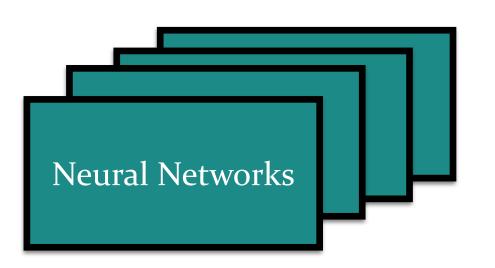


Low-dim histogram: Poisson likelihood computed exactly

$$P(N_{obs} = k | N_{exp} = \lambda) = \frac{\lambda^k e^{-k}}{k!}$$

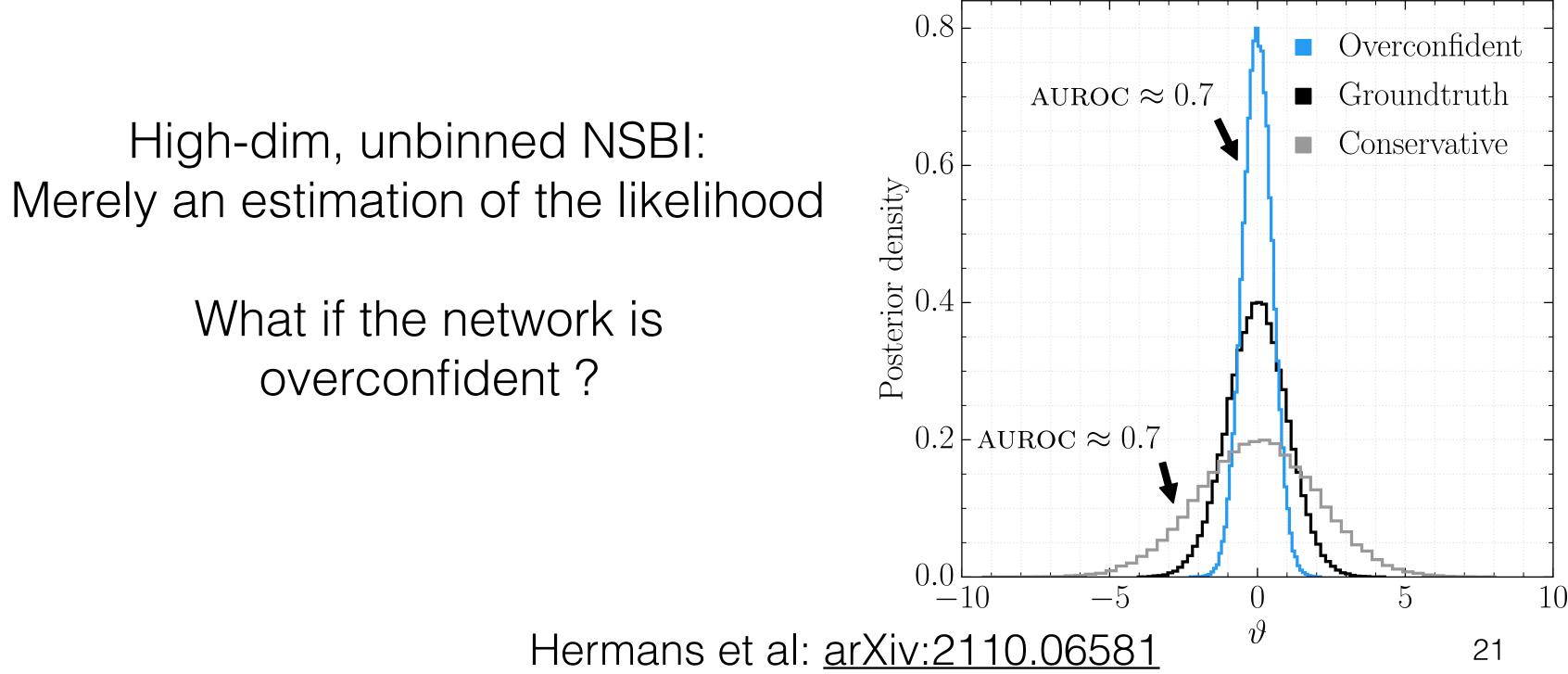
Giving up analytically known form





Low-dim histogram: Poisson likelihood computed exactly

$$P(N_{obs} = k | N_{exp} = \lambda) = \frac{\lambda^k e^{-k}}{k!}$$



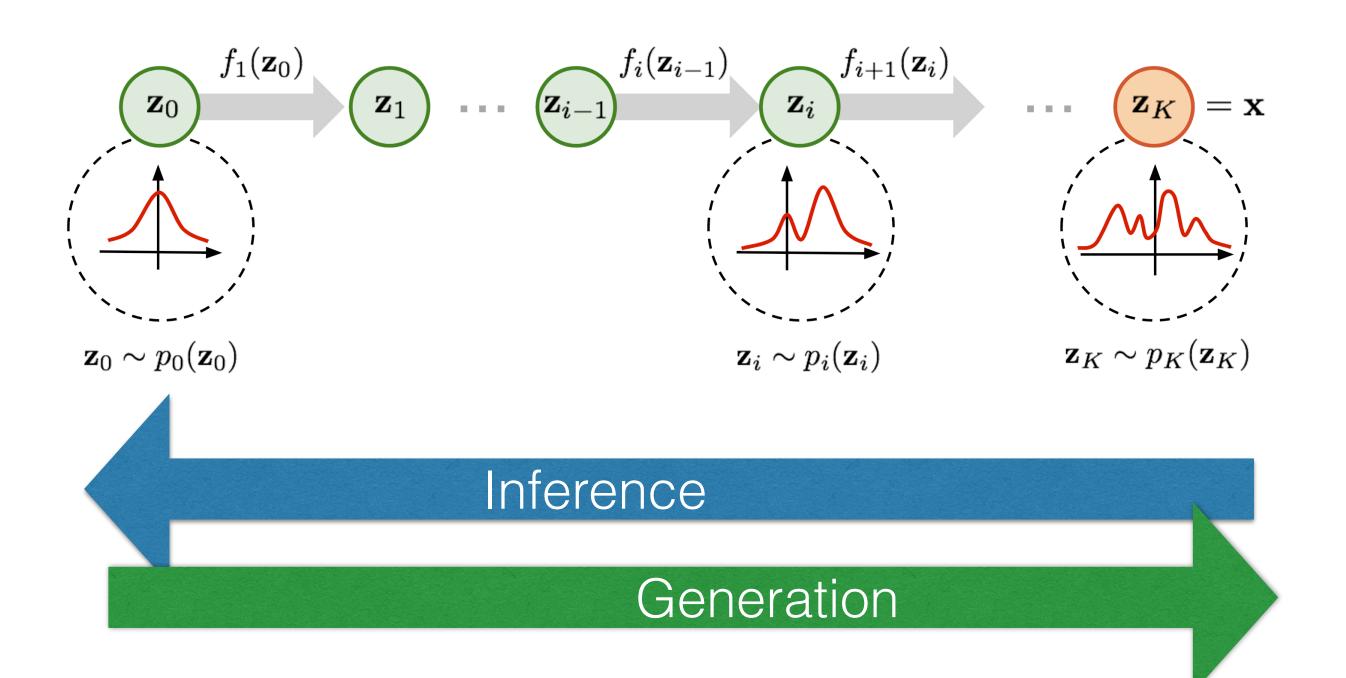
Diagnostic Checks

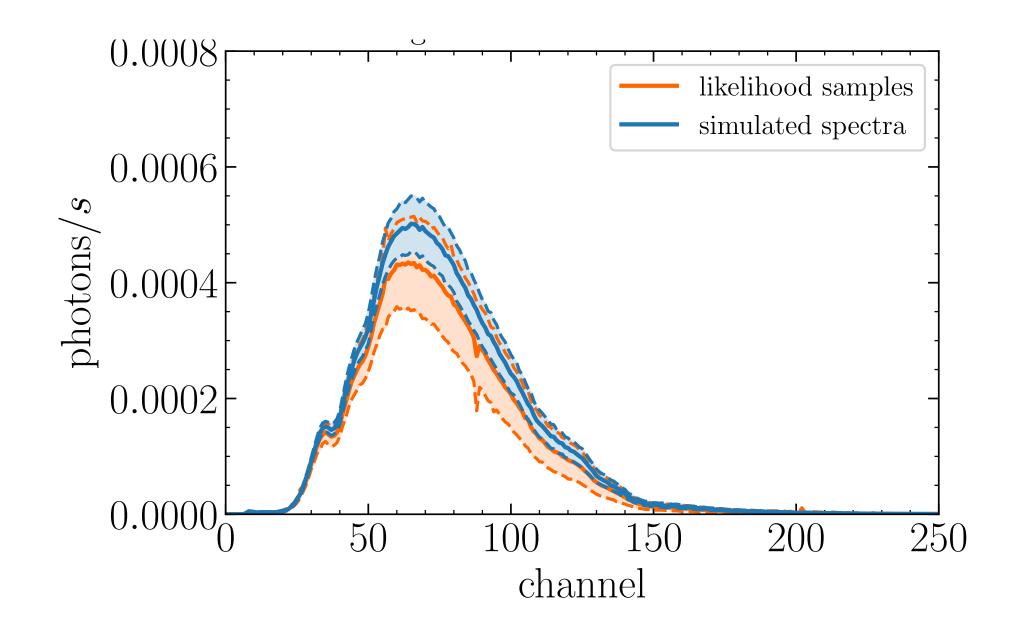
Diagnostic Checks

For neural likelihood estimation, run the normalising flow backwards, as a generative model and visualise!

Find areas of mismodelling the likelihood

What about neural ratio estimation ?



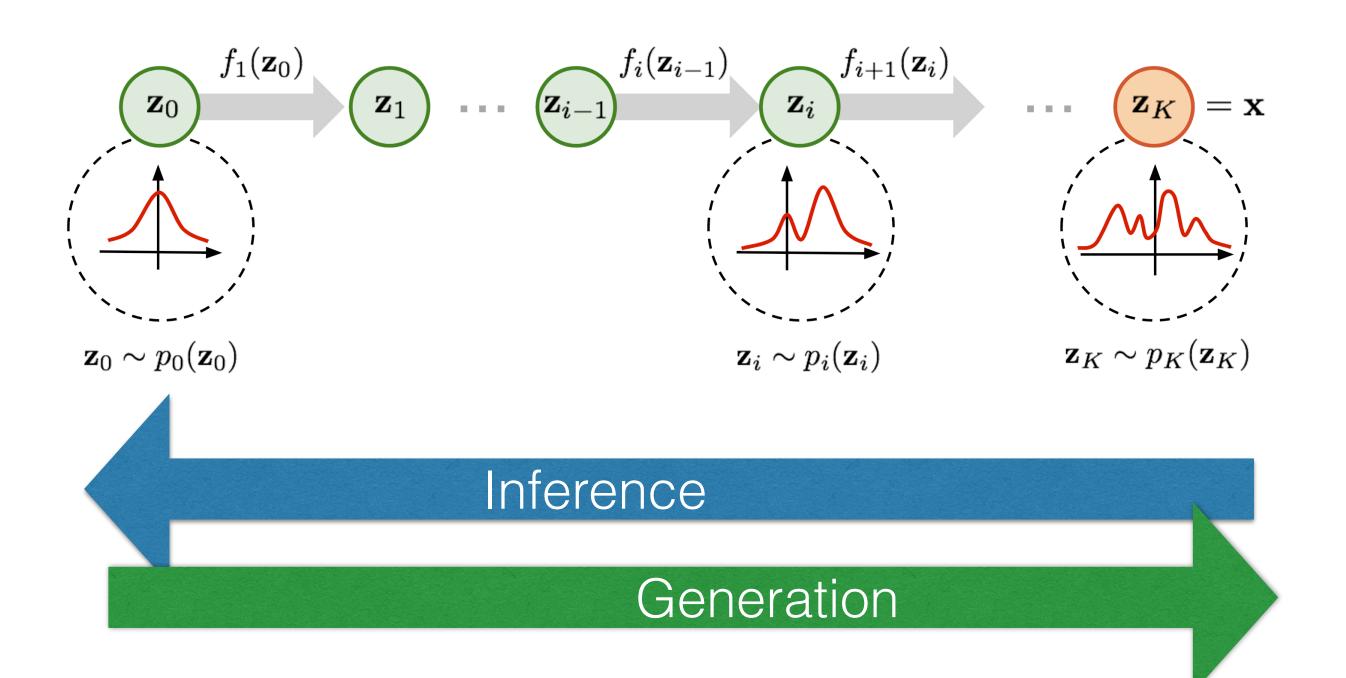


Diagnostic Checks

For neural likelihood estimation, run the normalising flow backwards, as a generative model and visualise!

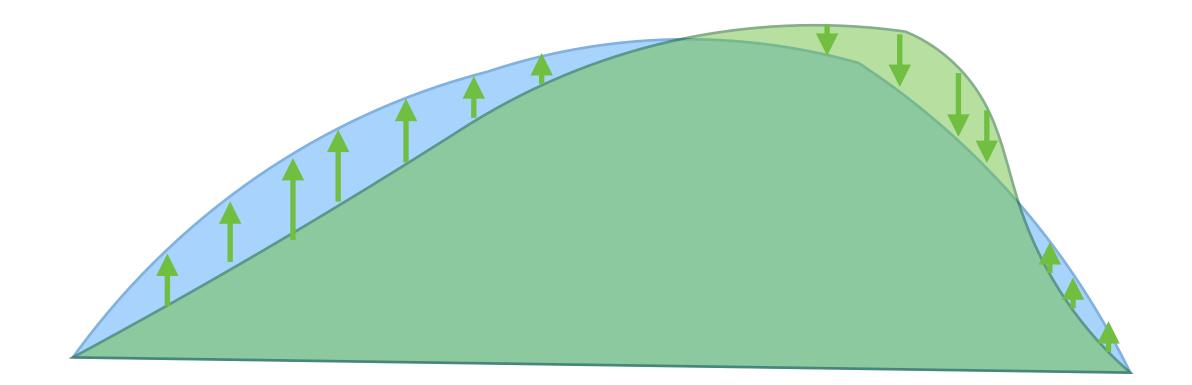
Find areas of mismodelling the likelihood

What about neural ratio estimation ?



Validate quality of LR estimation with re-weighting task

Reweighting: Calculate weights w_i for events x_i in green sample to match blue sample

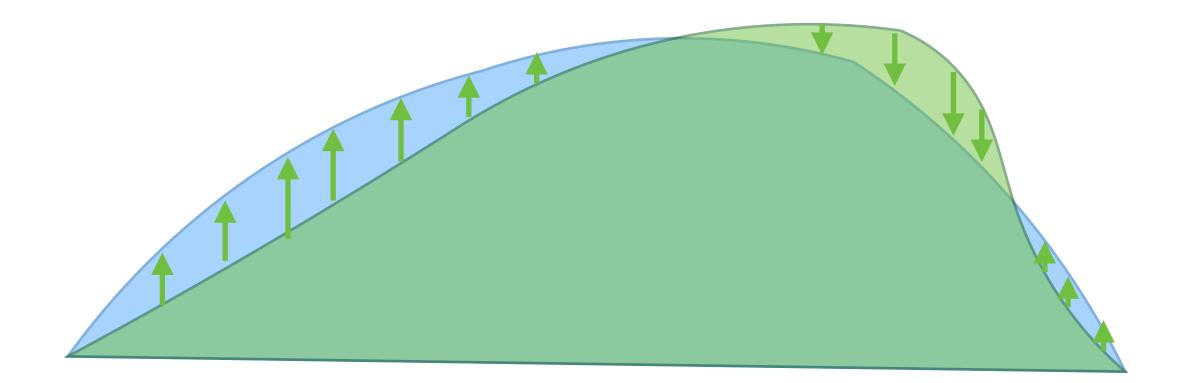


Reweighting: Calculate weights w_i for events x_i in green sample to match blue sample

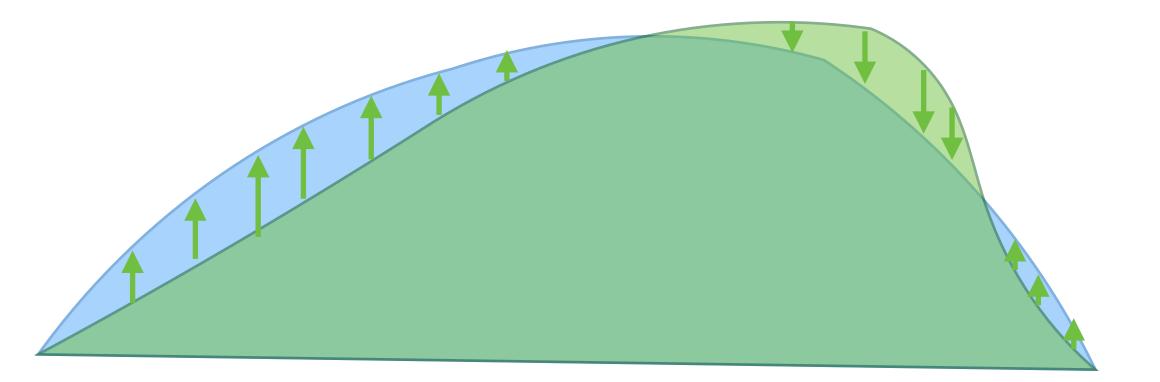
$$w_i = \frac{P(x_i \mid \theta_0)}{P(x_i \mid \theta_1)}$$

Already estimated using classifiers

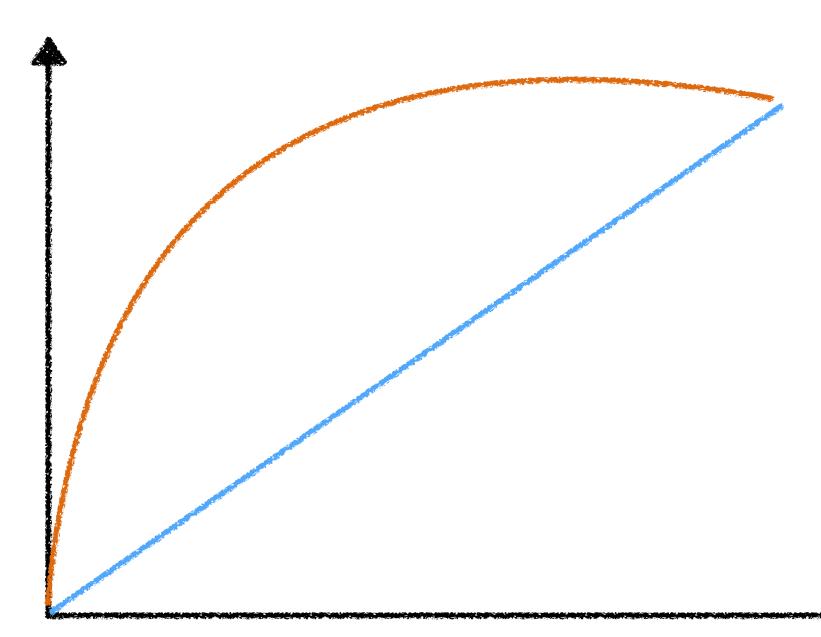
Validate quality of LR estimation with re-weighting task



One-dimensional visualisations

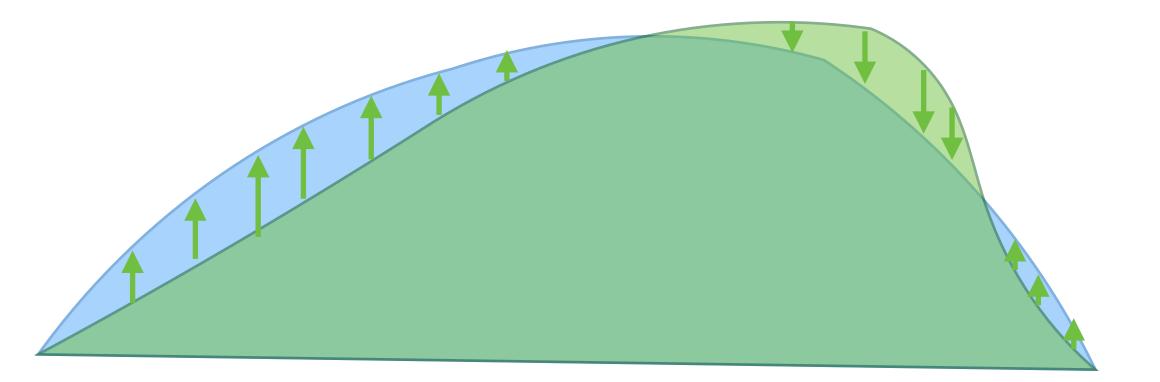


High-dimensional classifier test

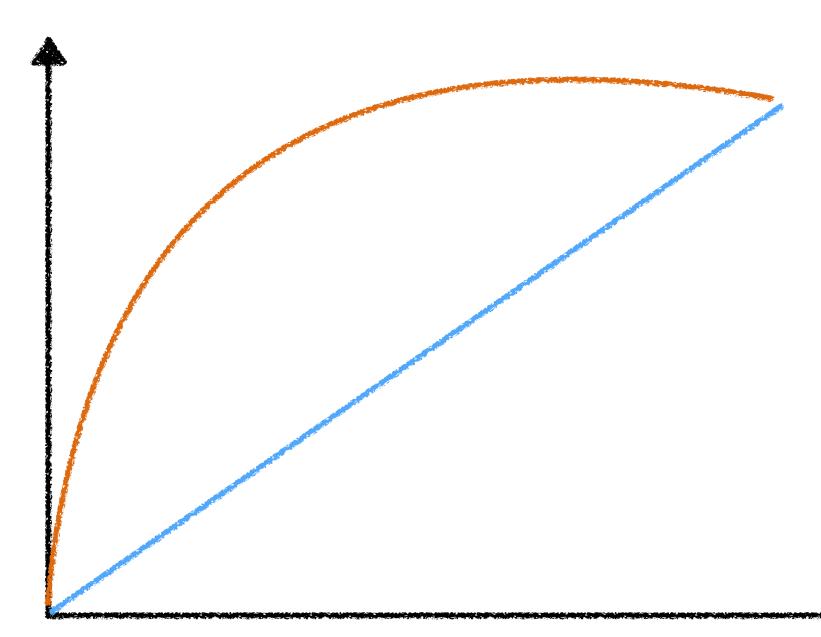


ROC Curve

One-dimensional visualisations

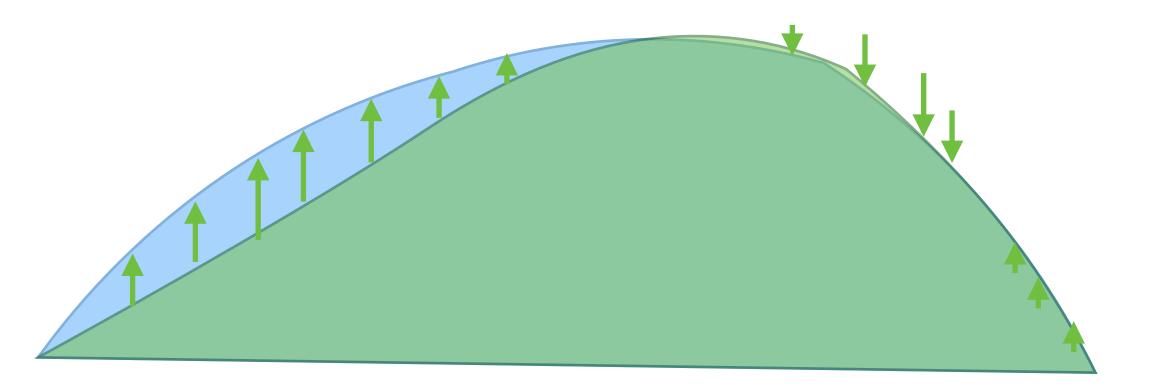


High-dimensional classifier test

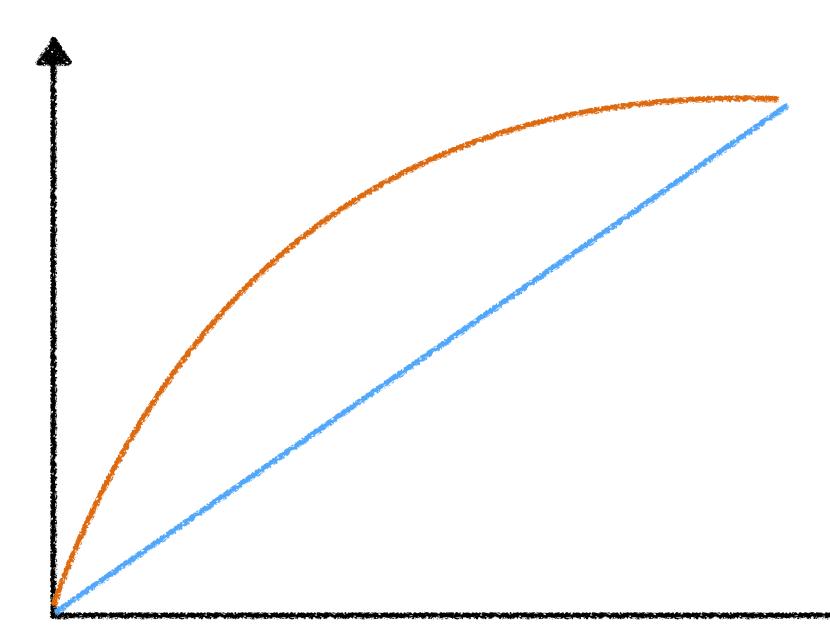


ROC Curve

One-dimensional visualisations

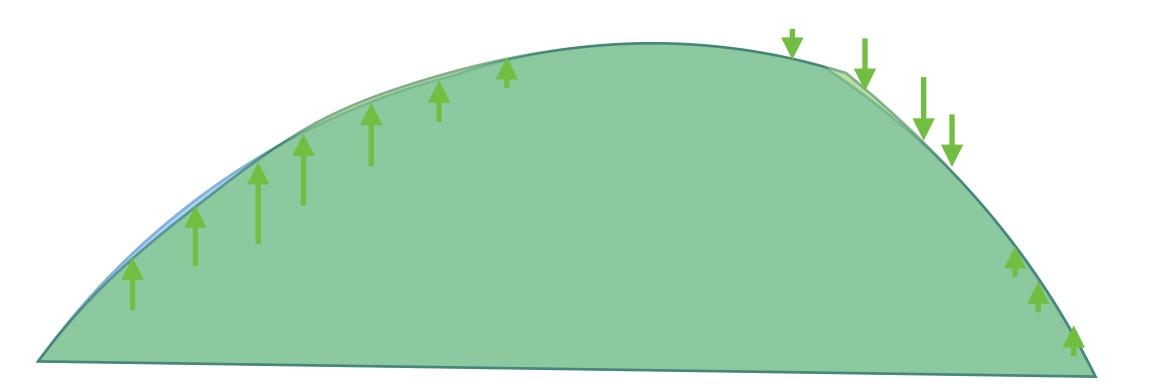


High-dimensional classifier test



ROC Curve

One-dimensional visualisations

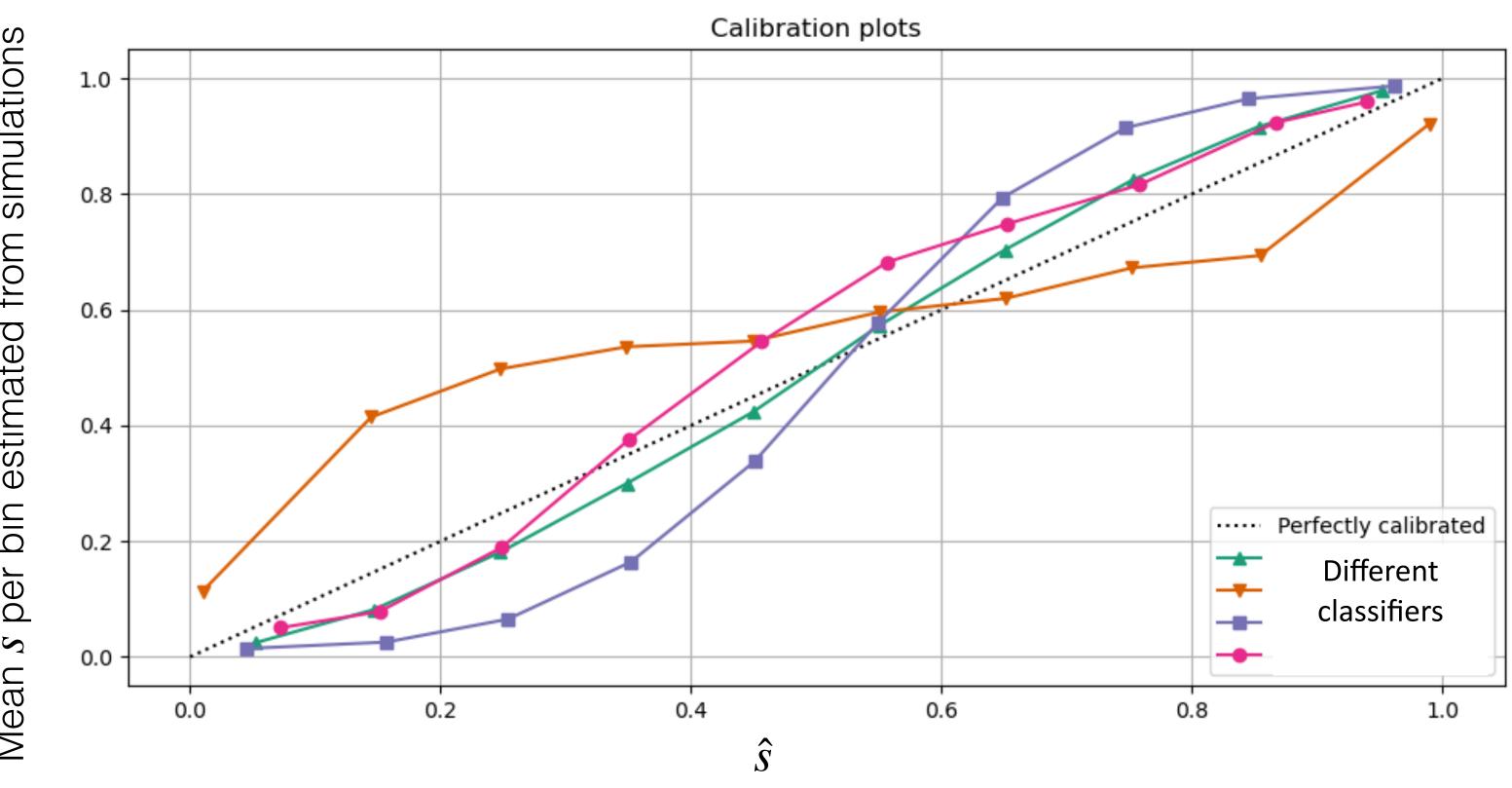


$$w_i = \frac{P(x_i | \theta_0)}{P(x_i | \theta_1)}$$

High-dimensional classifier test



Calibration Curves

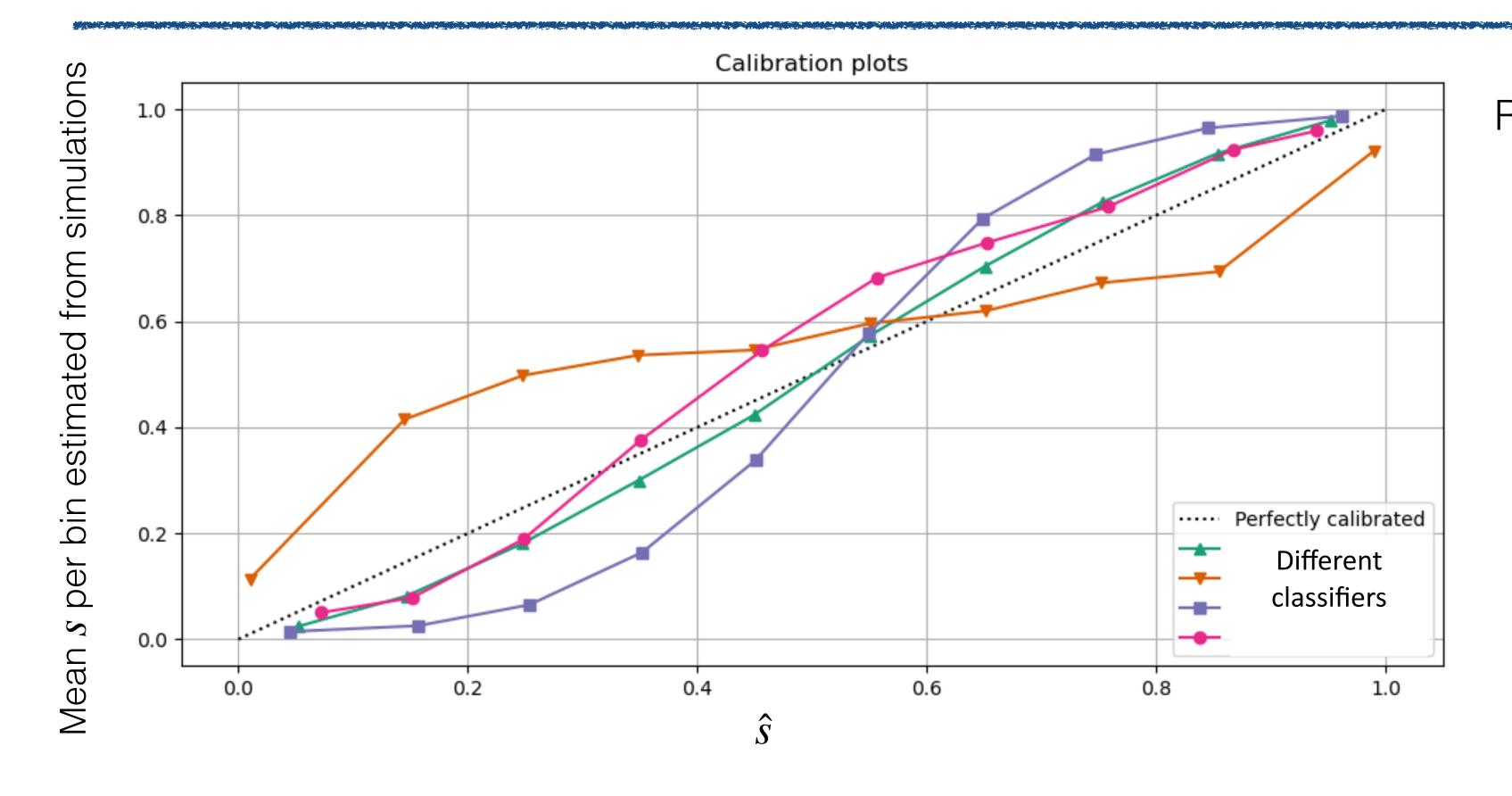


Mean s per bin estimated from simulations

Recall, classifier was trained to est

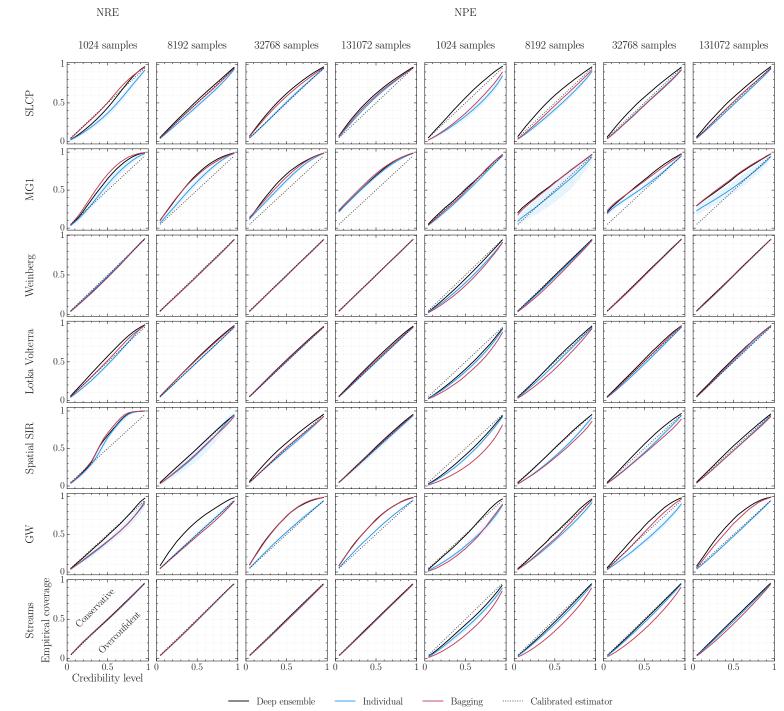
$$s(x_i) = \frac{p(x_i | \theta_0)}{p(x_i | \theta_0) + p(x_i | \theta_1)}$$

Calibration Curves



Similar tests possibly for many NSBI methods, see <u>Hermans et al</u>

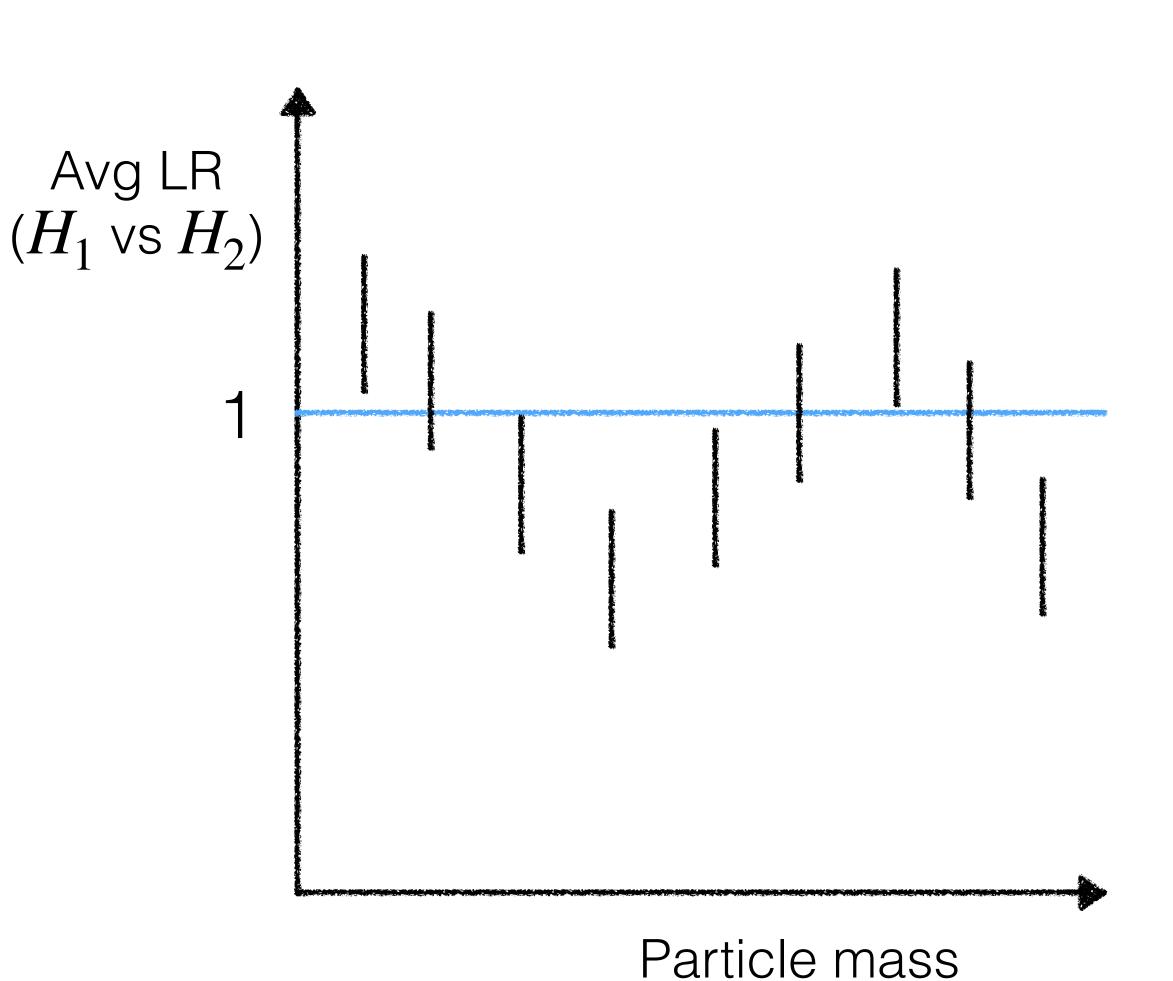
Recall, classifier was trained to estimate: $s(x_i) = \frac{p(x_i | \theta_0)}{p(x_i | \theta_0) + p(x_i | \theta_1)}$



NSBI also provides new tools to inspect my data & analysis

Which events favour my hypothesis, which don't?

Can go down to inspecting the contribution of each individual event!



Parameterisation challenge

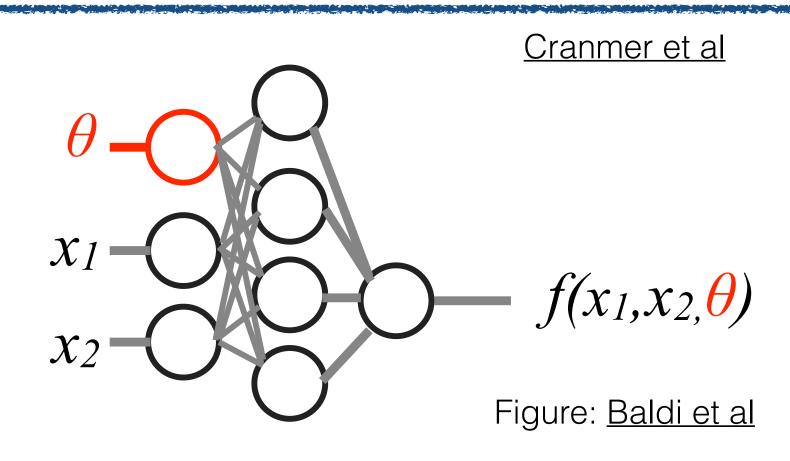
Network can learn a function parameterised in:

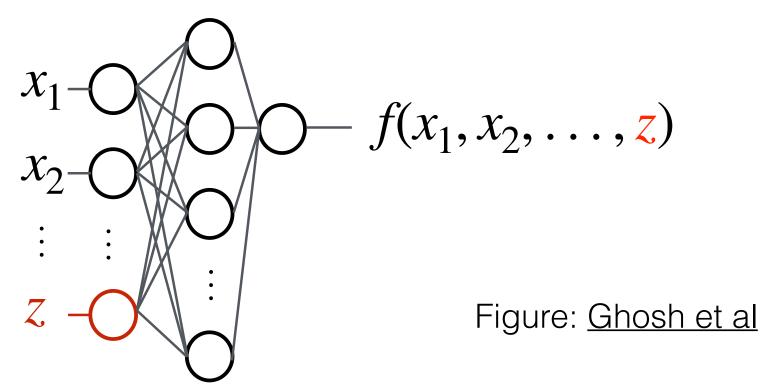
- parameter of interest θ (eg. W Mass)
- nuisance parameters *z* (eg. Jet energy scale)

Questions:

• How do we validate it for the full space of $\{\theta, z\}$?

Parameterising networks and validating them



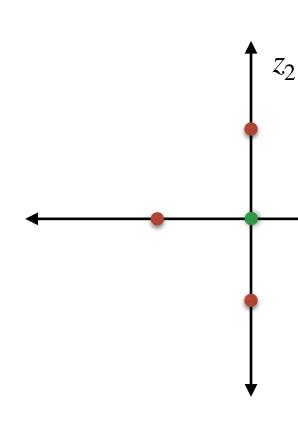


Network can learn a function parameterised in:

- parameter of interest θ (eg. W Mass)
- nuisance parameters z (eg. Jet energy scale)

Questions:

- How do we validate it for the full space of $\{\theta, z\}$?
- How to parameterise on nuisance parameters for which we only have 3 examples?

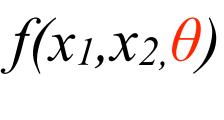


Parameterising networks and validating them

~1

Cranmer et al x_1 - χ_2 Figure: Baldi et al

 $f(x_1, x_2, \ldots, z)$ Figure: <u>Ghosh et al</u>

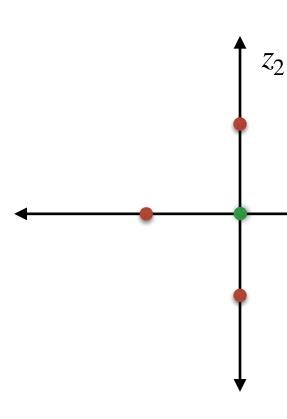


Network can learn a function parameterised in:

- parameter of interest θ (eg. W Mass)
- nuisance parameters *z* (eg. Jet energy scale)

Questions:

- How do we validate it for the full space of $\{\theta, z\}$?
- How to parameterise on nuisance parameters for which we only have 3 examples?



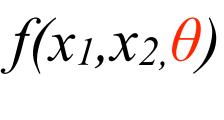
If these questions interest you, come chat with me!

Parameterising networks and validating them

~1

Cranmer et al x_1 - χ_2 Figure: Baldi et al

 $f(x_1, x_2, \ldots, z)$ Figure: <u>Ghosh et al</u>



Uncertainties in the likelihood estimation: Training statistics & random initialisation

Estimating the variance on mean: Bootstrapping

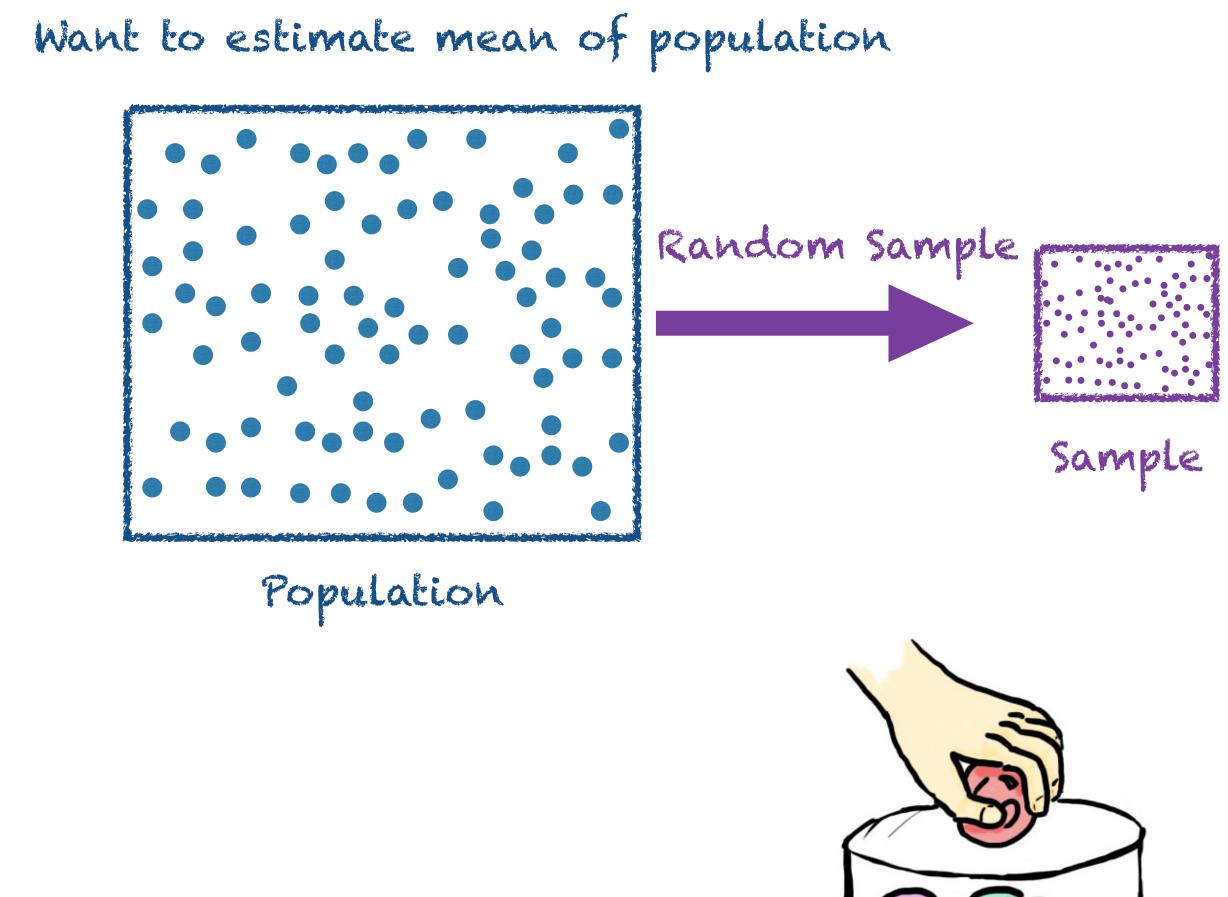


Image: <u>Source</u>

Re-Sample with replacement

Estimating the variance on mean: Bootstrapping

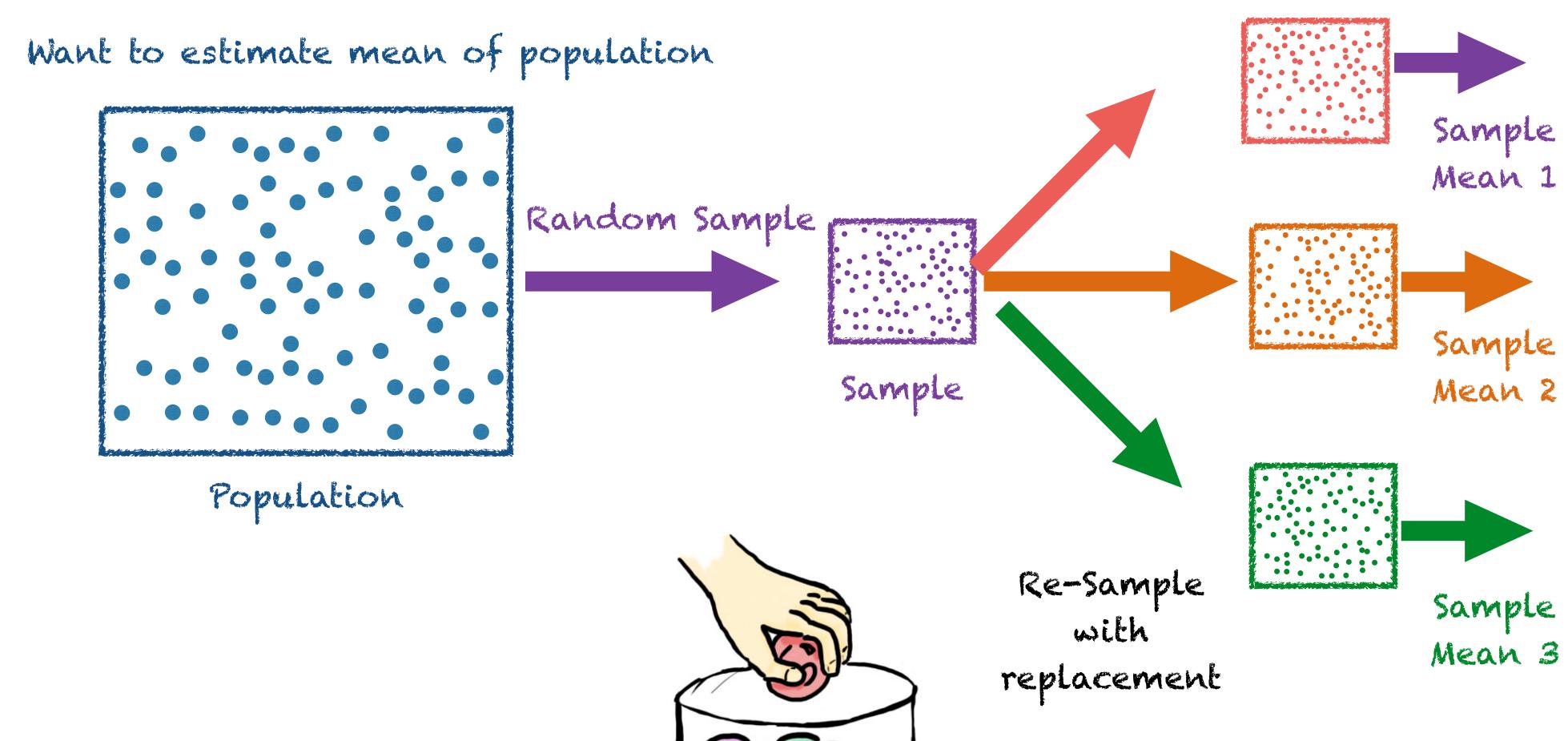


Image: <u>Source</u>

Estimating the variance on mean: Bootstrapping

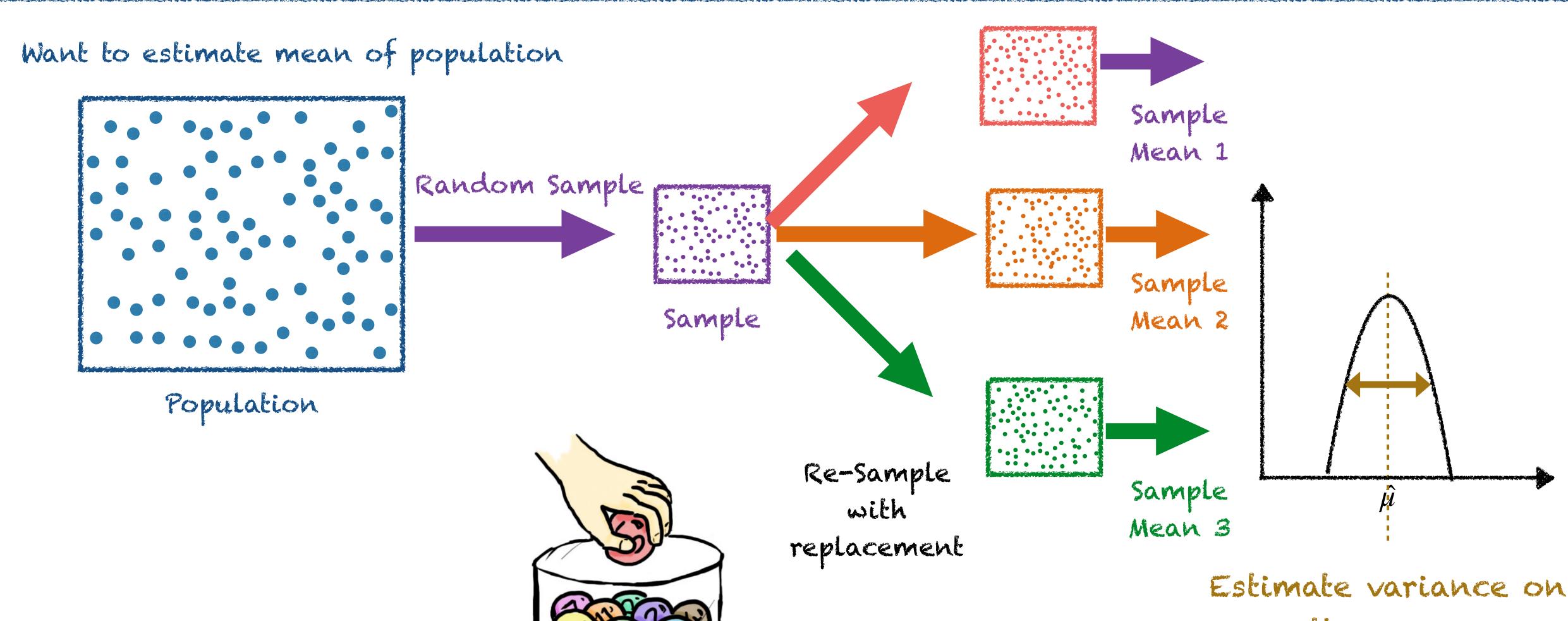
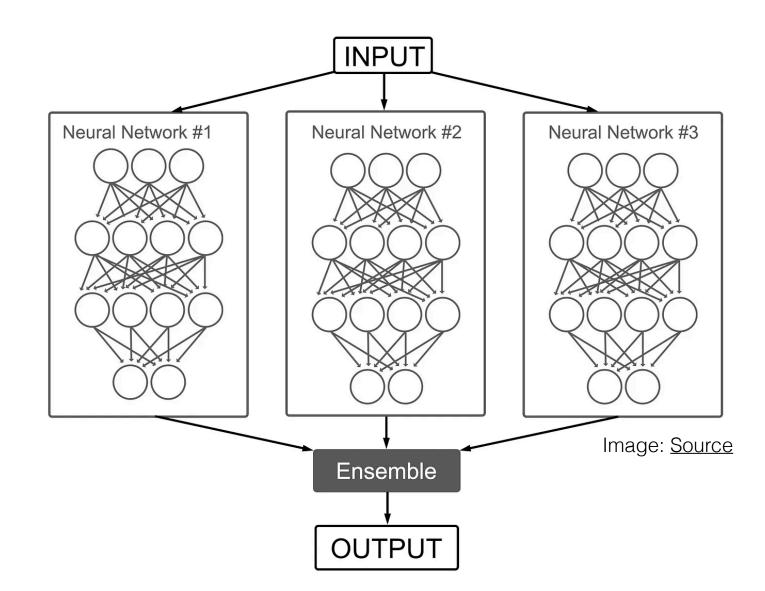


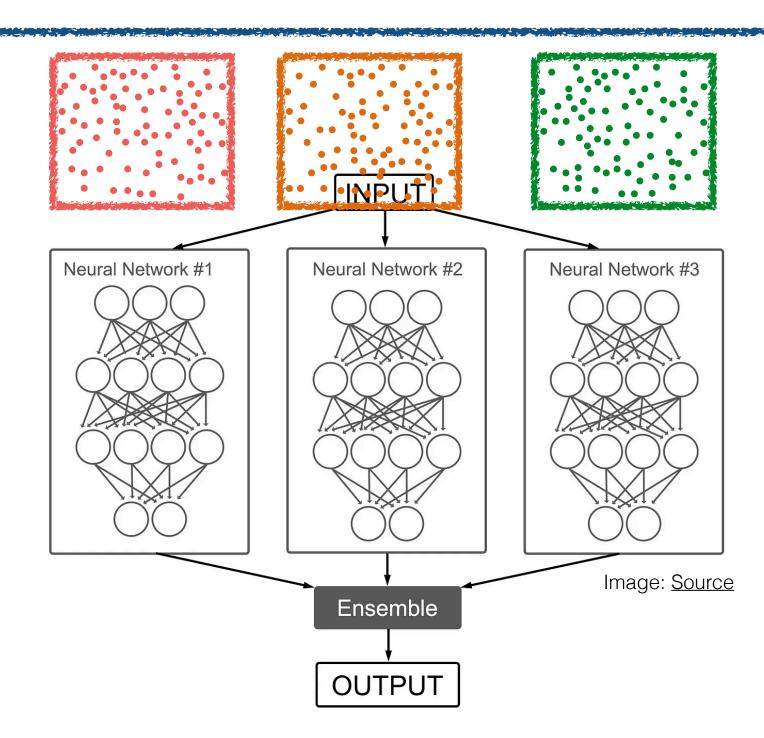
Image: <u>Source</u>

the mean

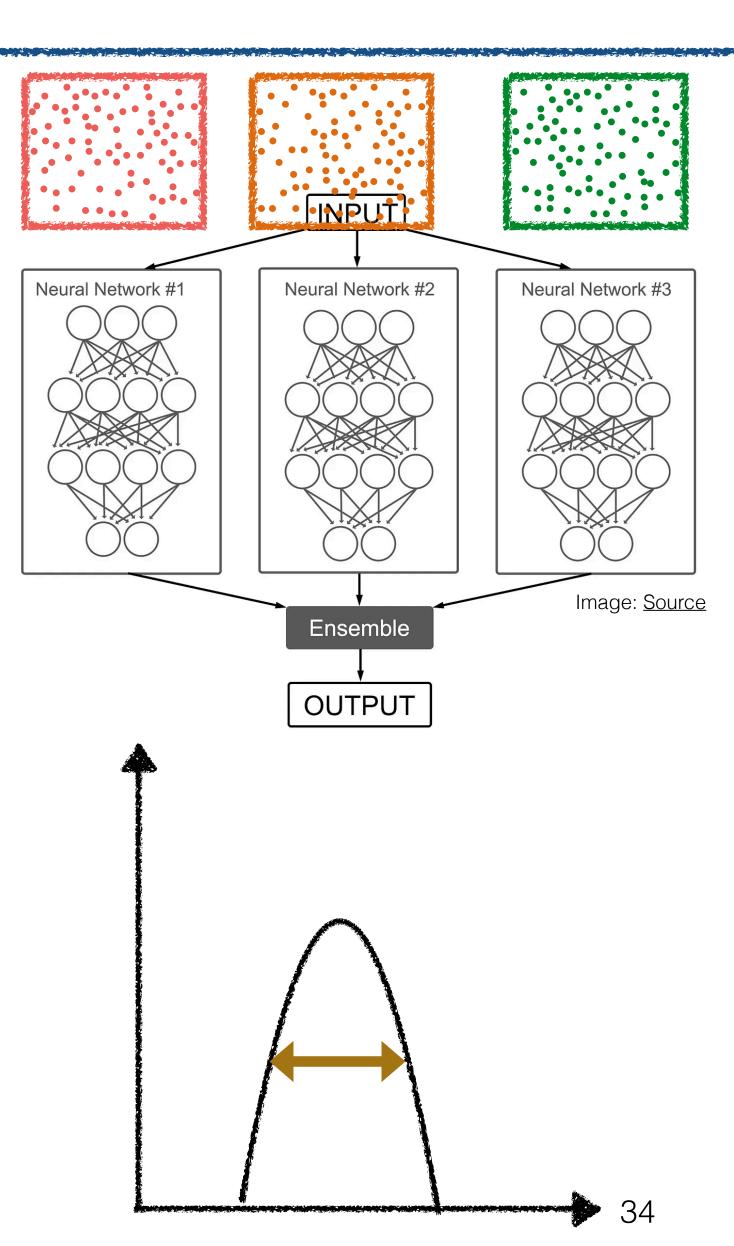
- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?



- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?

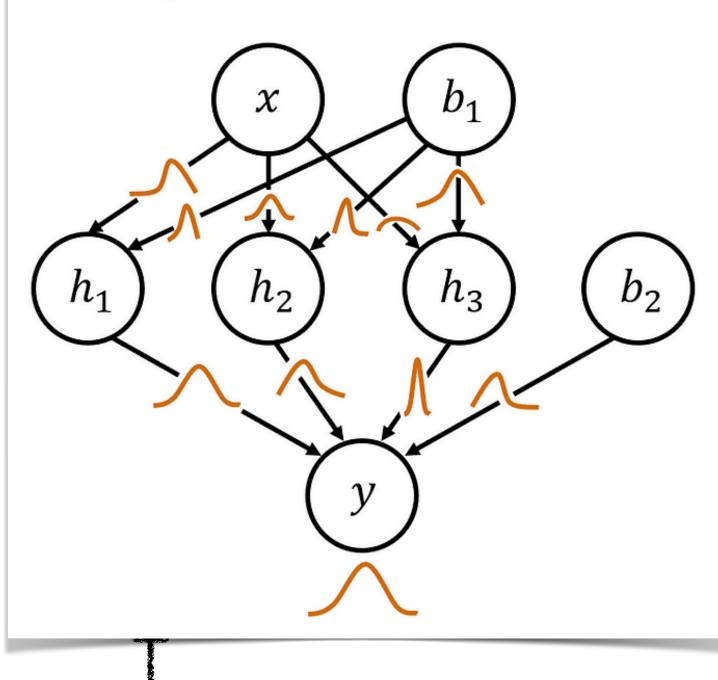


- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?

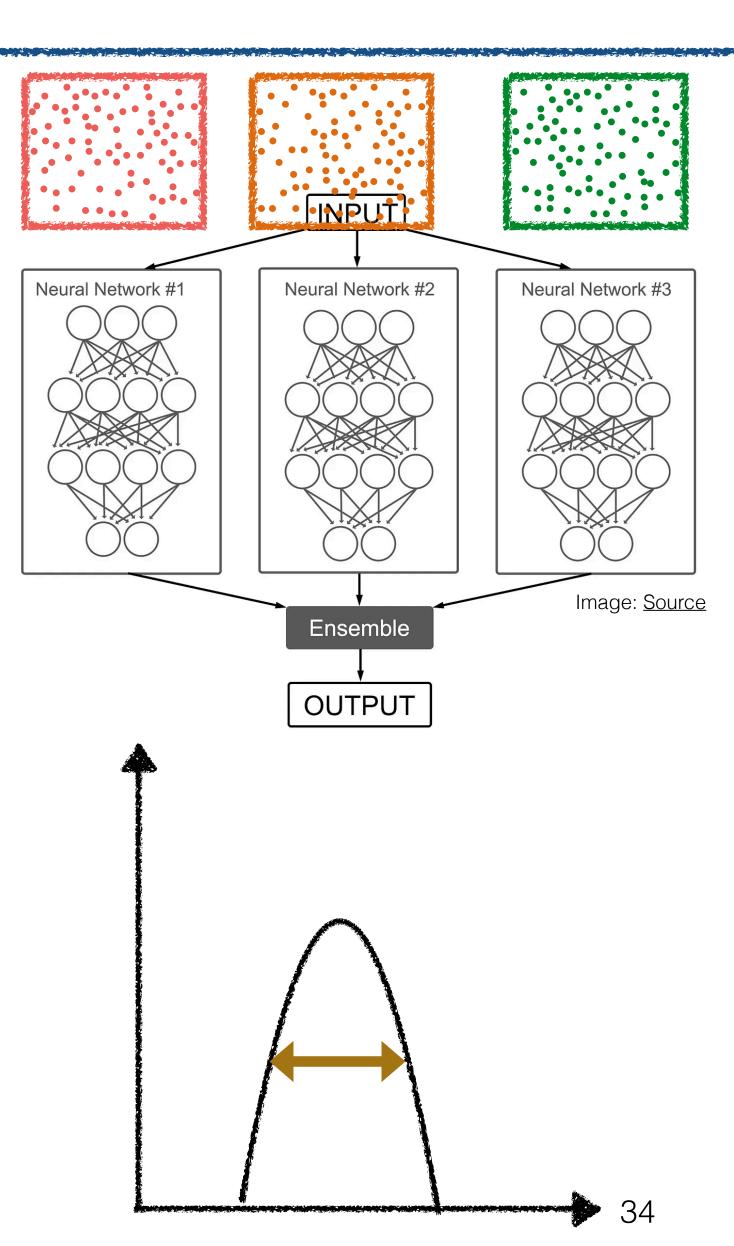


- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?

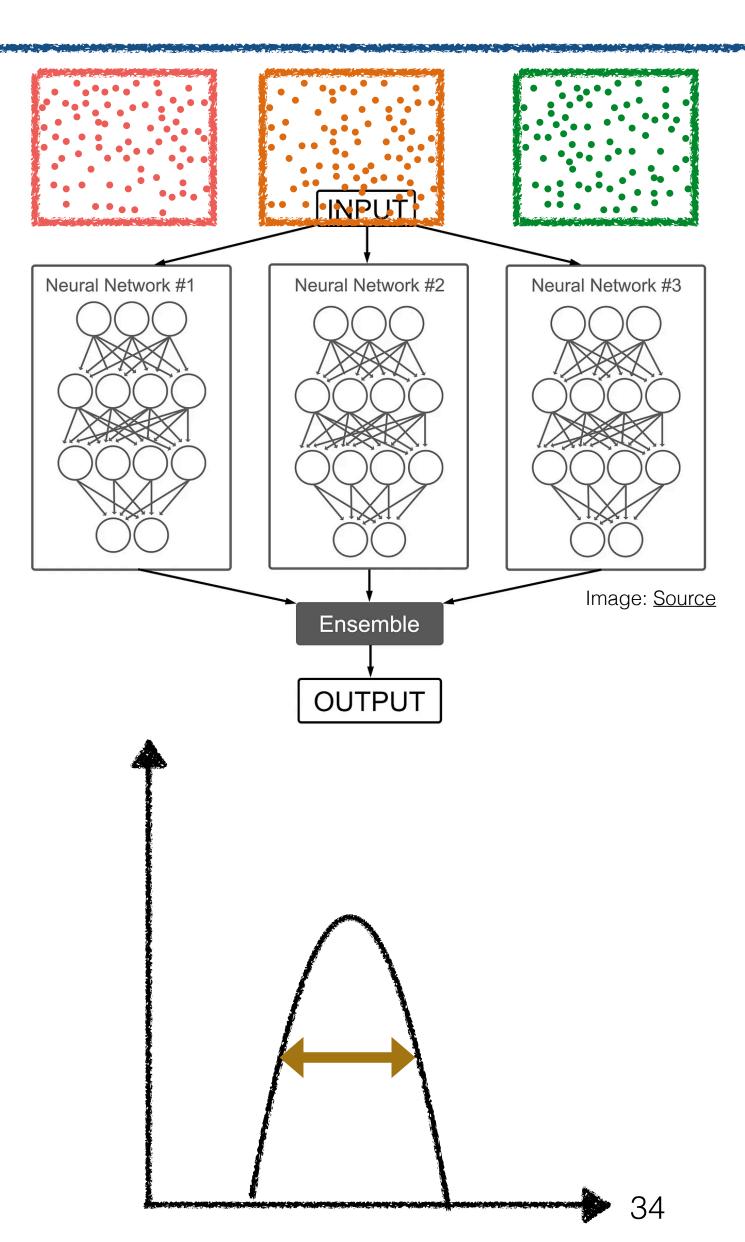
Bayesian Neural Network



- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?

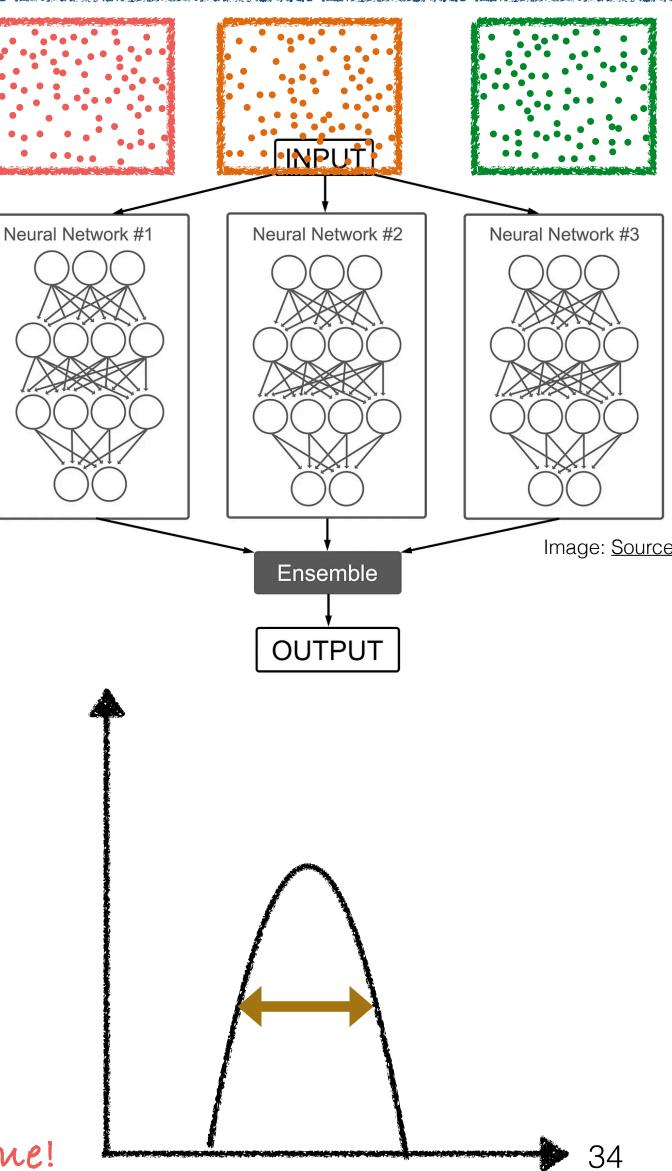


- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, <u>arXiv2408.15136]</u>
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?
- Does this trivially extend to pre-trained / foundation models?
- If your simulator is itself a generative model, how to efficiently propagate statistical uncertainties through?

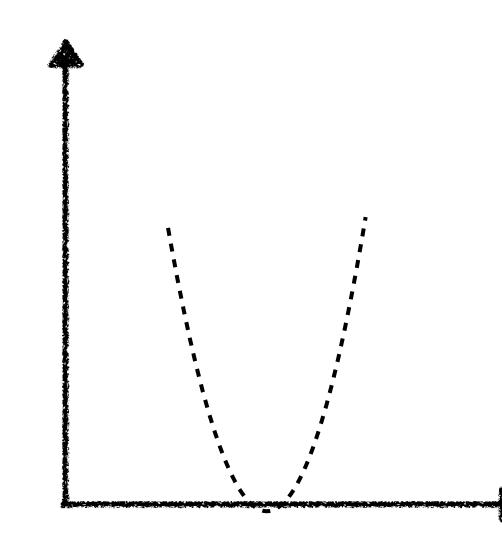


- Train an ensemble of networks, each on a bootstrapped version of the training dataset
 - Or Bayesian networks ? [Delaunoy et al, <u>arXiv2408.15136]</u>
- The spread in their prediction provides the uncertainty due to limited training statistics, and random network initialisation
- Ensemble average used as final prediction, so what's the uncertainty on that?
 - Too expensive to train thousands of ensembles
 - Create bootstrapped ensembles ?
 - Each network trained on bootstrapped training dataset?
- Does this trivially extend to pre-trained / foundation models?
- If your simulator is itself a generative model, how to efficiently propagate statistical uncertainties through?

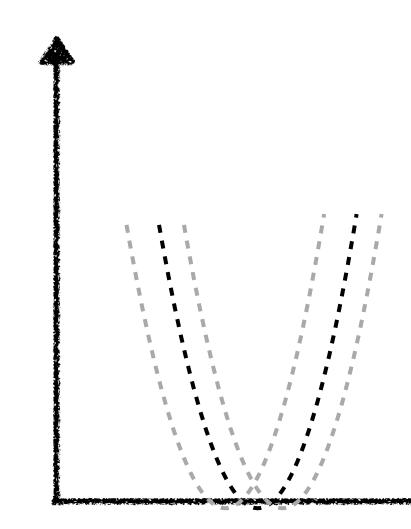
If these questions interest you, come chat with me!



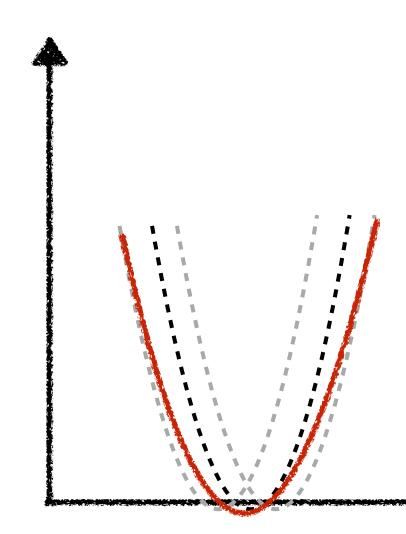
- In histogram analysis we assign 1 nuisance parameter per bin for statistical uncertainty in template histograms built from simulations
 - NSBI: 1 nuisance parameter per event?
- Brute force: check impact on final result and 'profile'?
- Use methods from traditional unbinned analyses?
- Maybe all of this is overkill if we perform the Neyman construction?



- In histogram analysis we assign 1 nuisance parameter per bin for statistical uncertainty in template histograms built from simulations
 - NSBI: 1 nuisance parameter per event?
- Brute force: check impact on final result and 'profile'?
- Use methods from traditional unbinned analyses?
- Maybe all of this is overkill if we perform the Neyman construction?

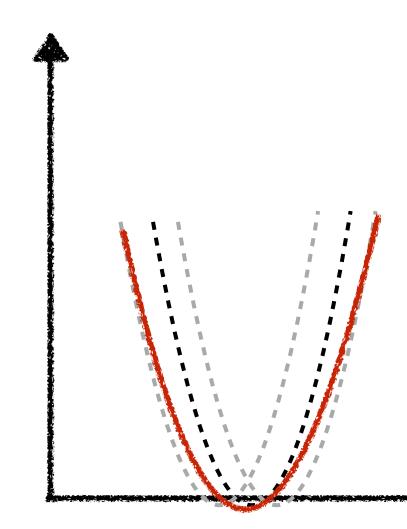


- In histogram analysis we assign 1 nuisance parameter per bin for statistical uncertainty in template histograms built from simulations
 - NSBI: 1 nuisance parameter per event?
- Brute force: check impact on final result and 'profile'?
- Use methods from traditional unbinned analyses?
- Maybe all of this is overkill if we perform the Neyman construction?



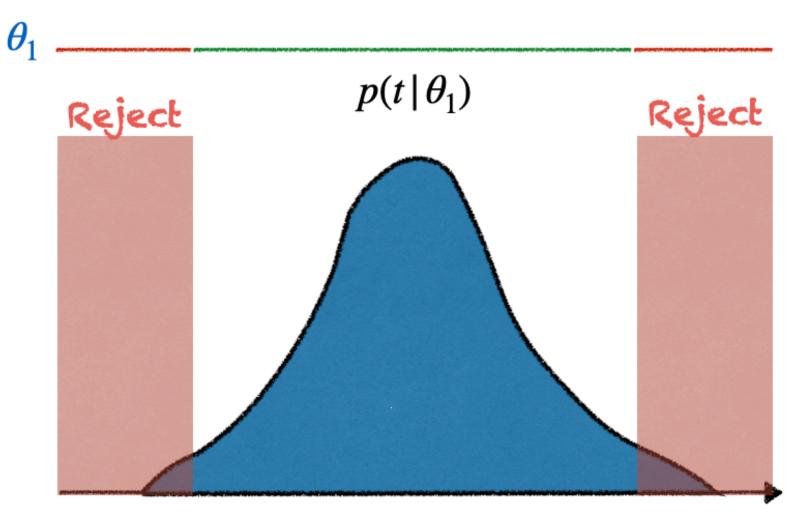
- In histogram analysis we assign 1 nuisance parameter per bin for statistical uncertainty in template histograms built from simulations
 - NSBI: 1 nuisance parameter per event?
- Brute force: check impact on final result and 'profile'?
- Use methods from traditional unbinned analyses?
- Maybe all of this is overkill if we perform the Neyman construction?

If these questions interest you, come chat with me!



Neyman construction: Constructing confidence belts

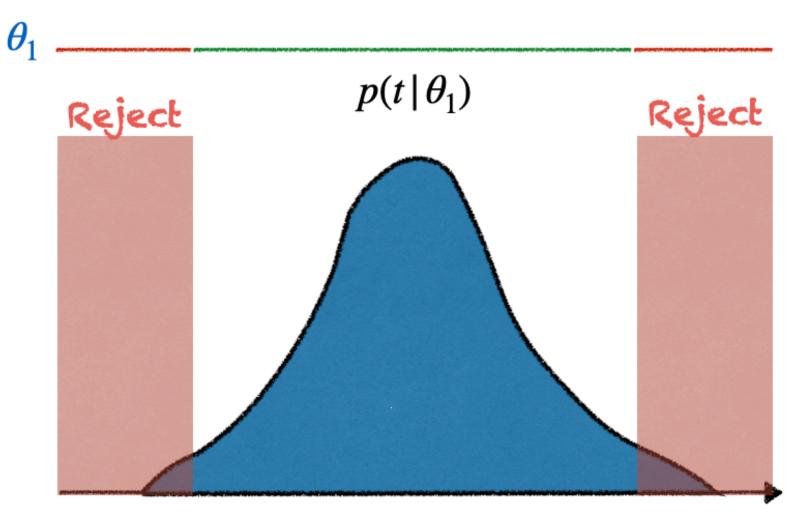
- To build confidence intervals for θ , we need to 'invert the hypothesis test'
- Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta



 $(t \mid \theta_1) \rightarrow$

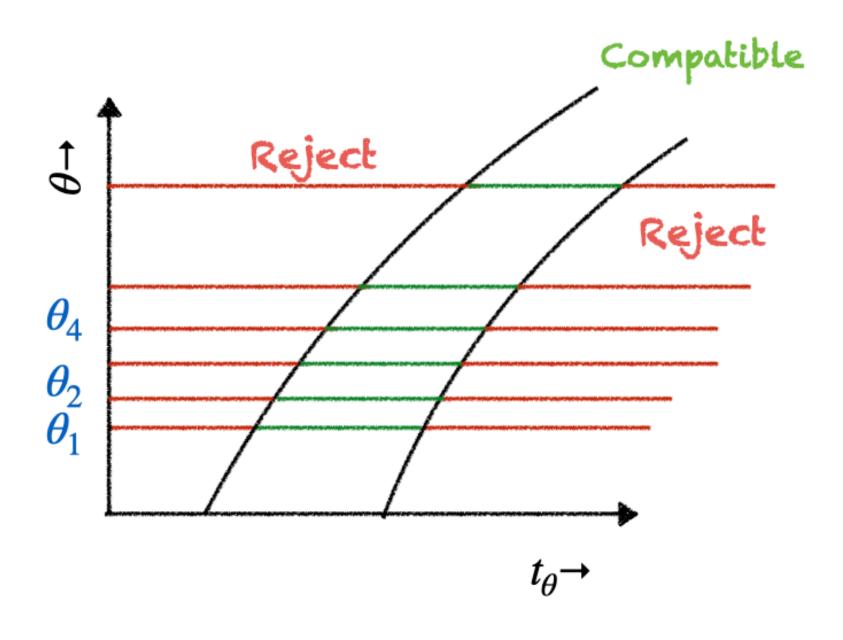
Neyman Construction

- To build confidence intervals for θ , we need to 'invert the hypothesis test'
- Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta

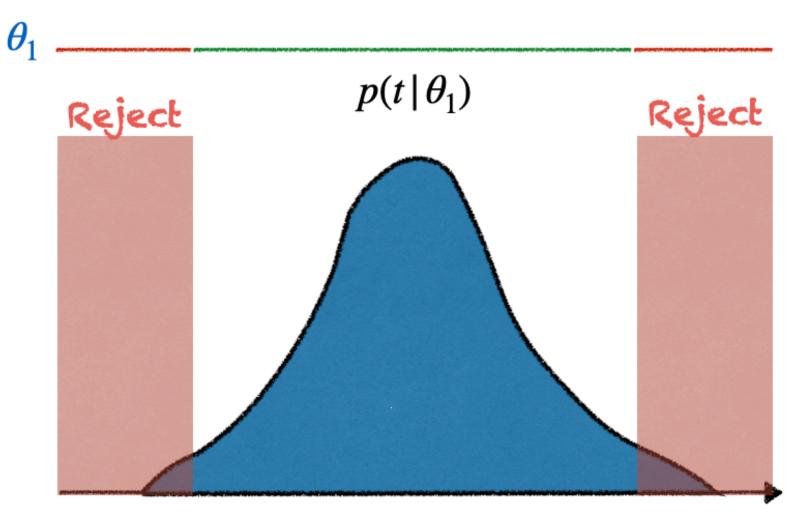


 $(t \mid \theta_1) \rightarrow$

Neyman Construction

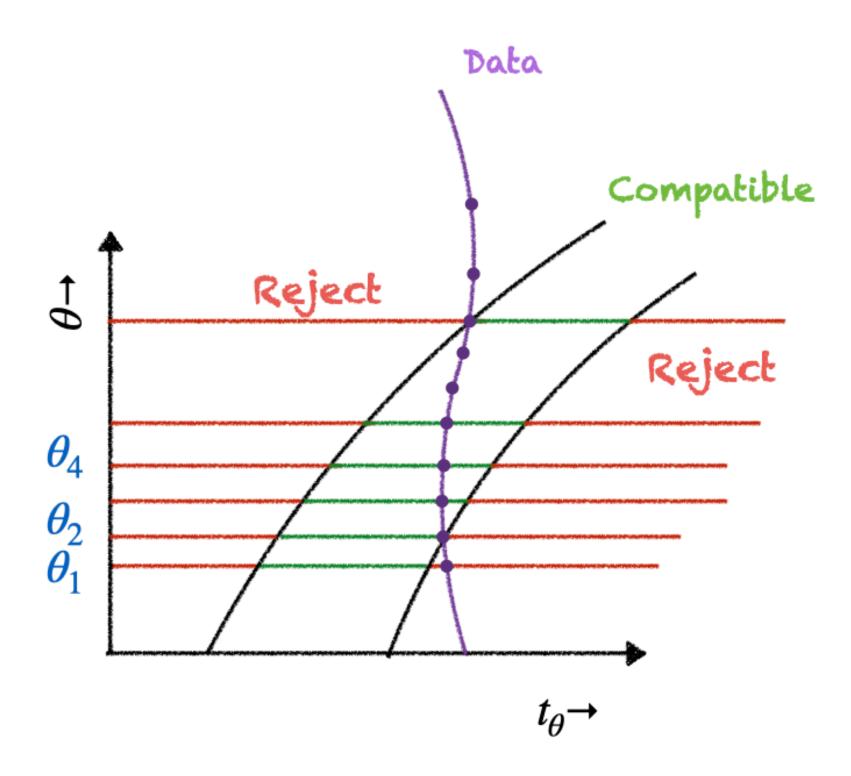


- To build confidence intervals for θ , we need to 'invert the hypothesis test'
- Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta



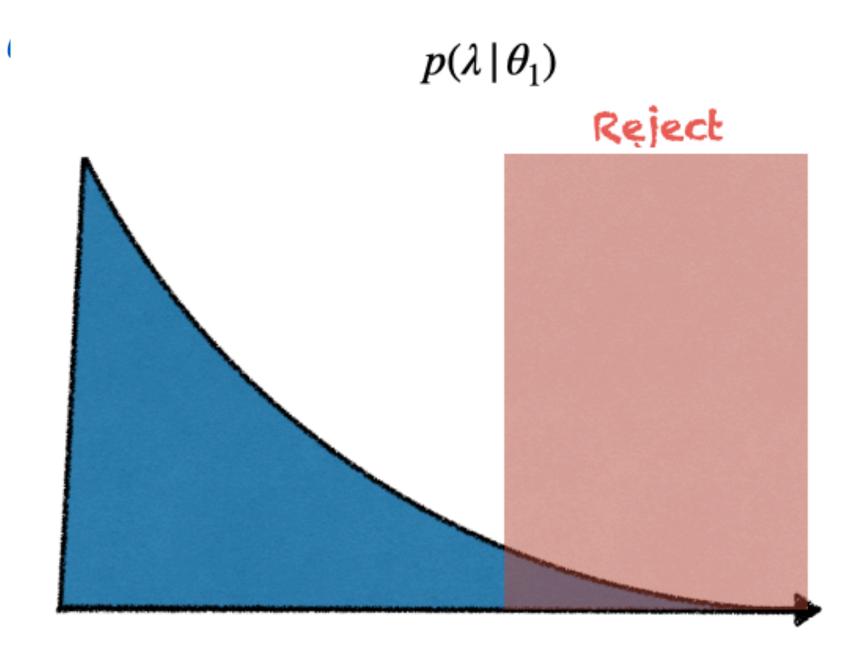
 $(t \mid \theta_1) \rightarrow$

Neyman Construction



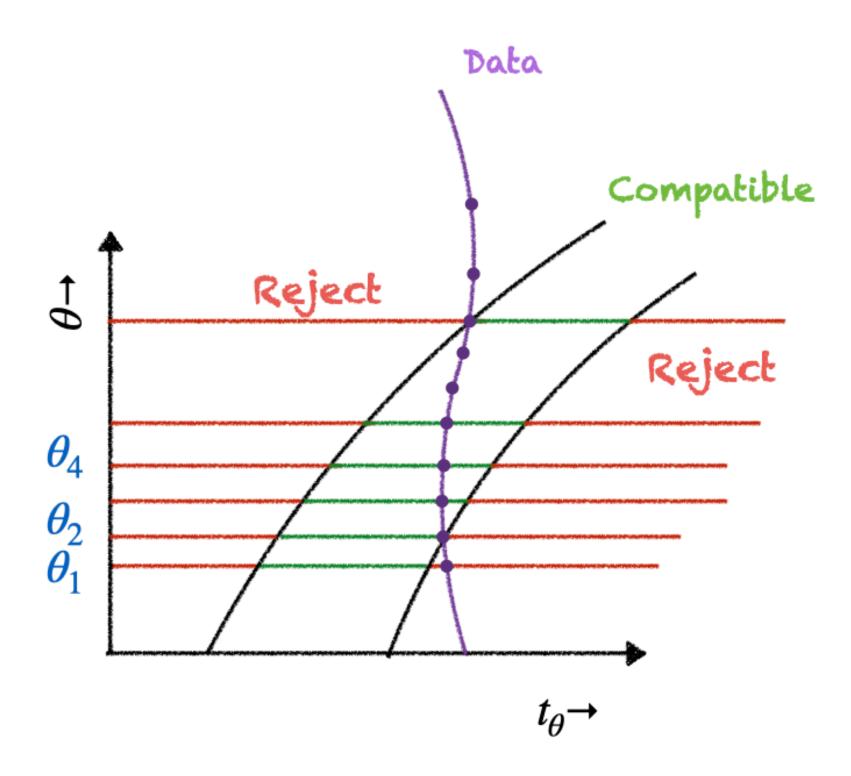
Neyman Construction

- To build confidence intervals for heta, we need to 'invert the hypothesis test'
- Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta



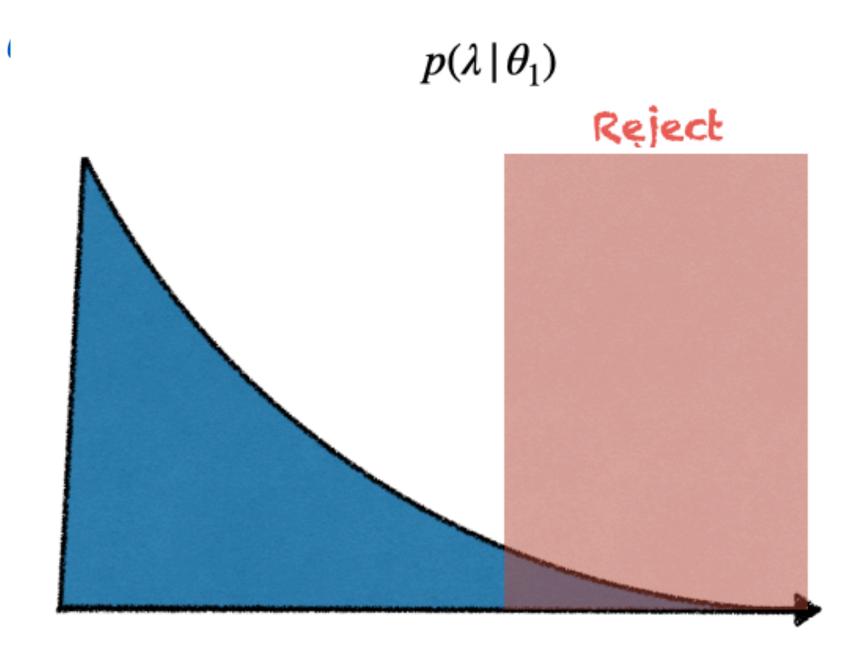
 $(\lambda \mid \theta_1) \rightarrow$

) 'invert the hypothesis test' termine 1σ & 2σ CI as a function of heta

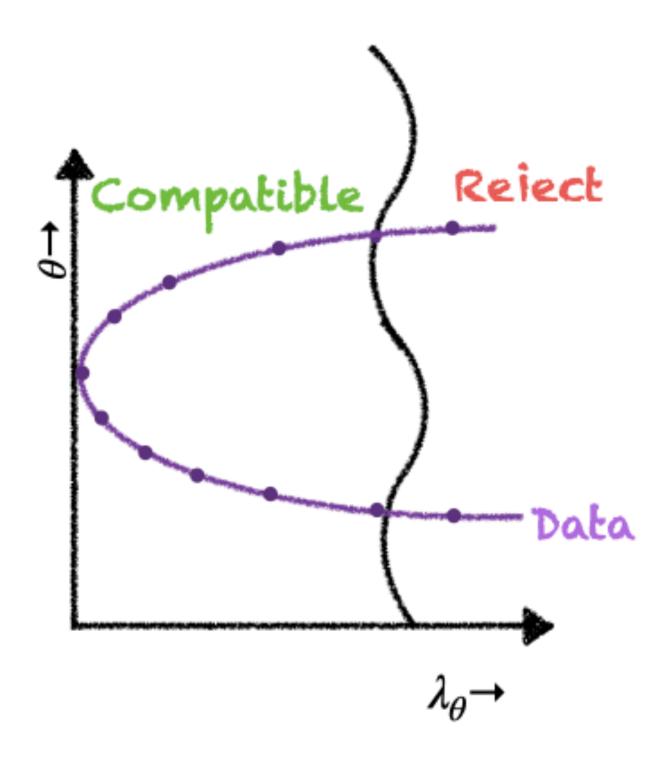


Neyman Construction

- To build confidence intervals for θ , we need to 'invert the hypothesis test' - Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta

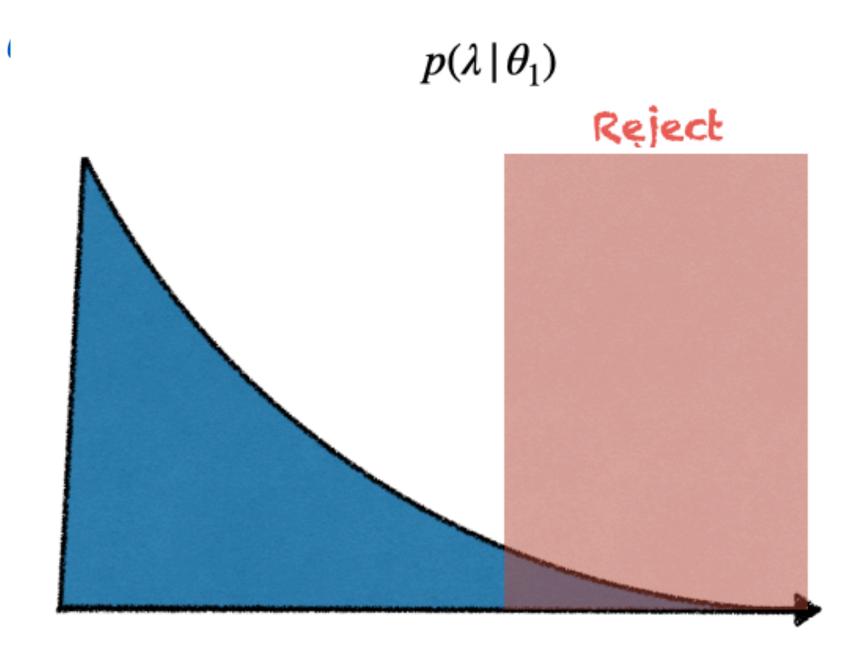


 $(\lambda | \theta_1) \rightarrow$



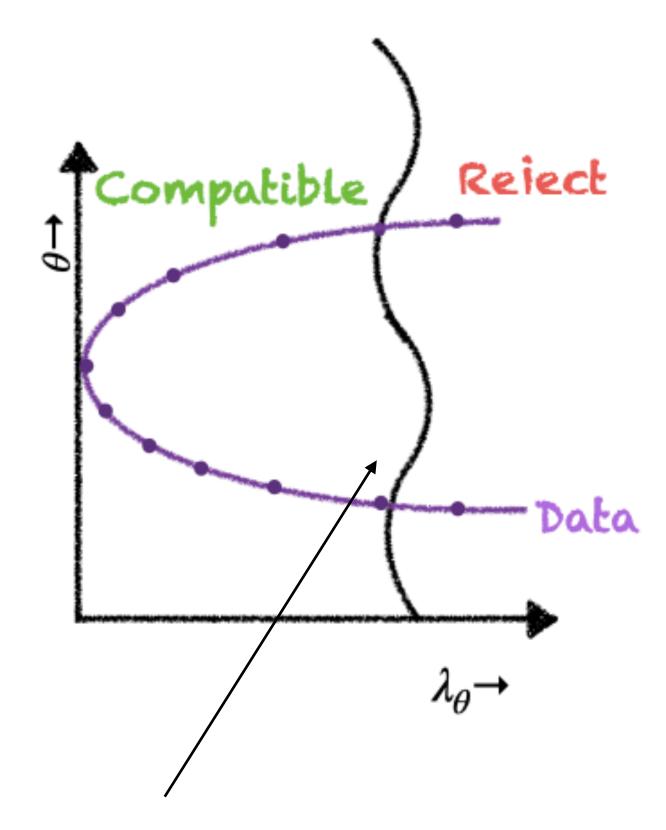
Neyman Construction

- To build confidence intervals for heta, we need to 'invert the hypothesis test' - Generate pseudo-experiments ('toys') and determine 1σ & 2σ CI as a function of heta



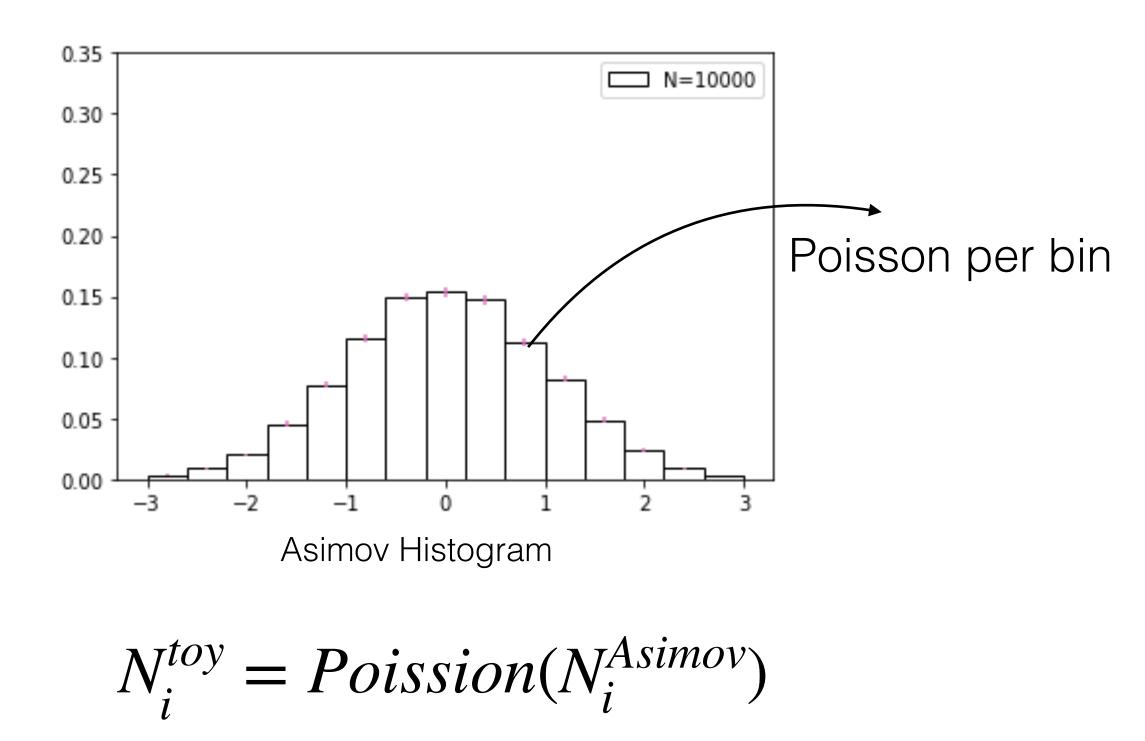
 $(\lambda | \theta_1) \rightarrow$

Estimated with pseudo-experiments Can look wavy when away from asymptotic regime



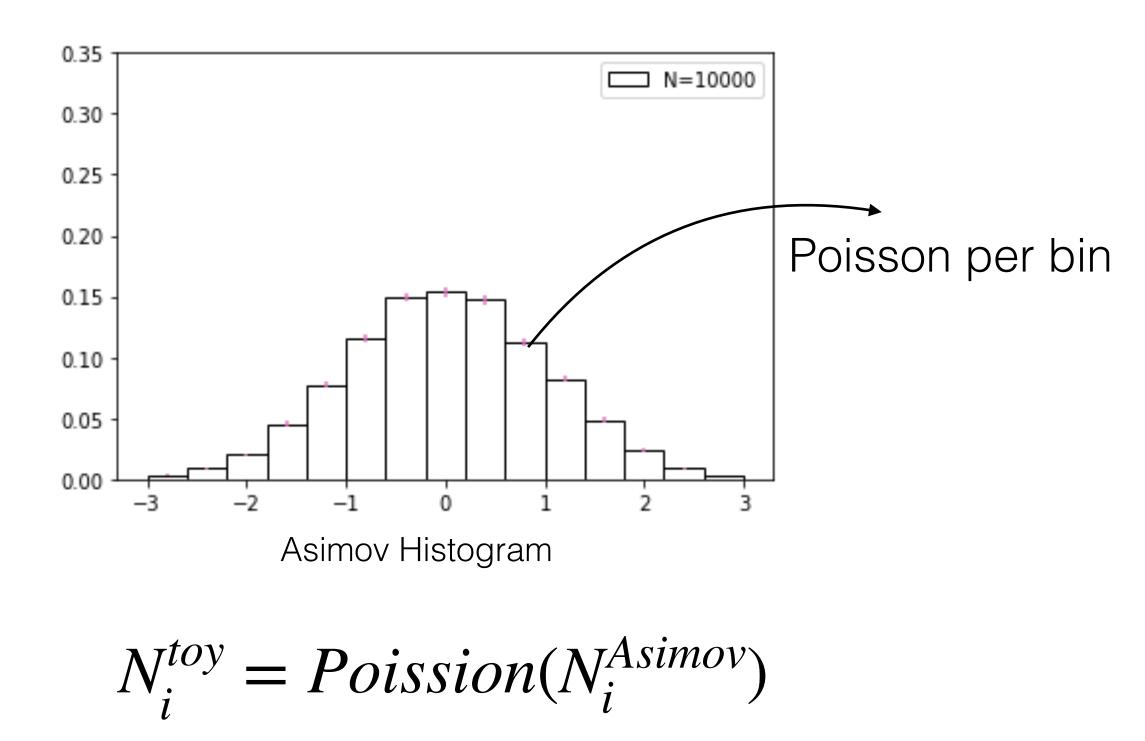
Generating high-dimensional pseudo-experiments

Traditionally:



Generating high-dimensional pseudo-experiments

Traditionally:

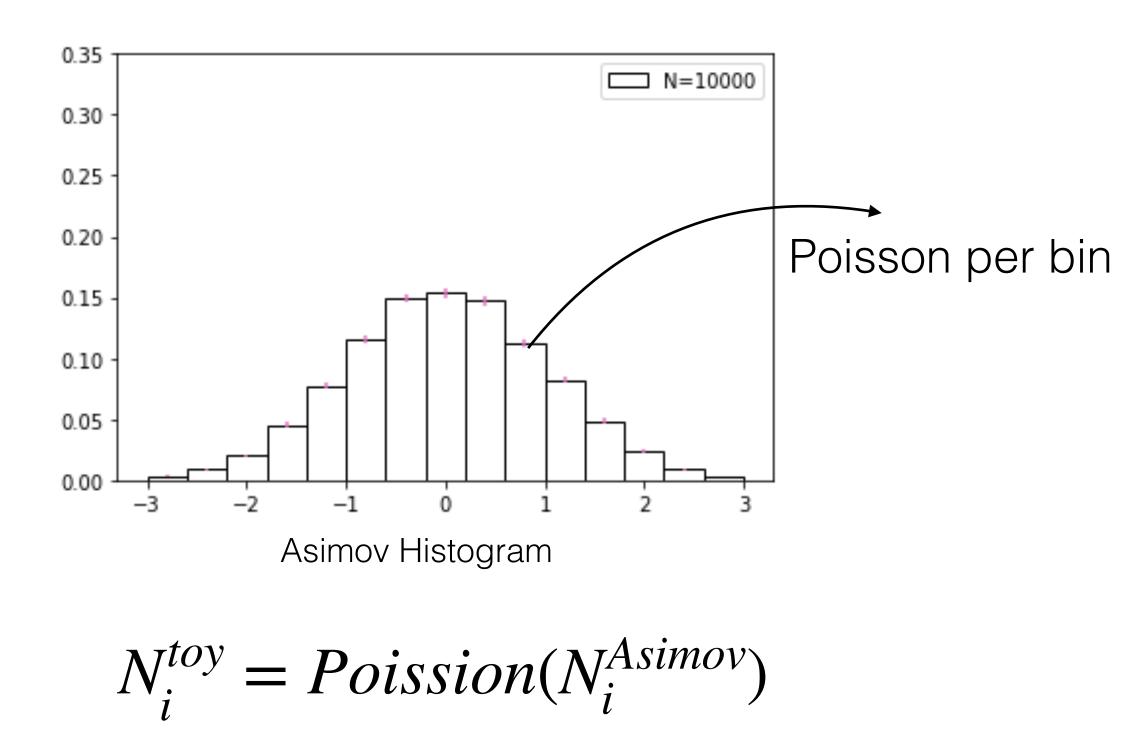


NSBI?

- More simulated samples?
- Amplify simulated statistics with generative models

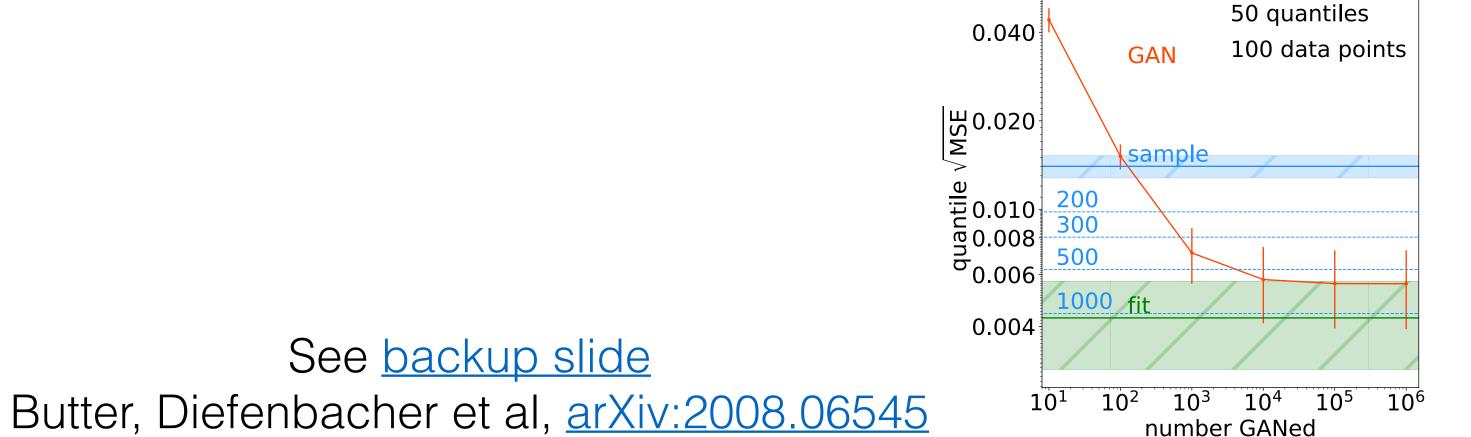
Generating high-dimensional pseudo-experiments

Traditionally:



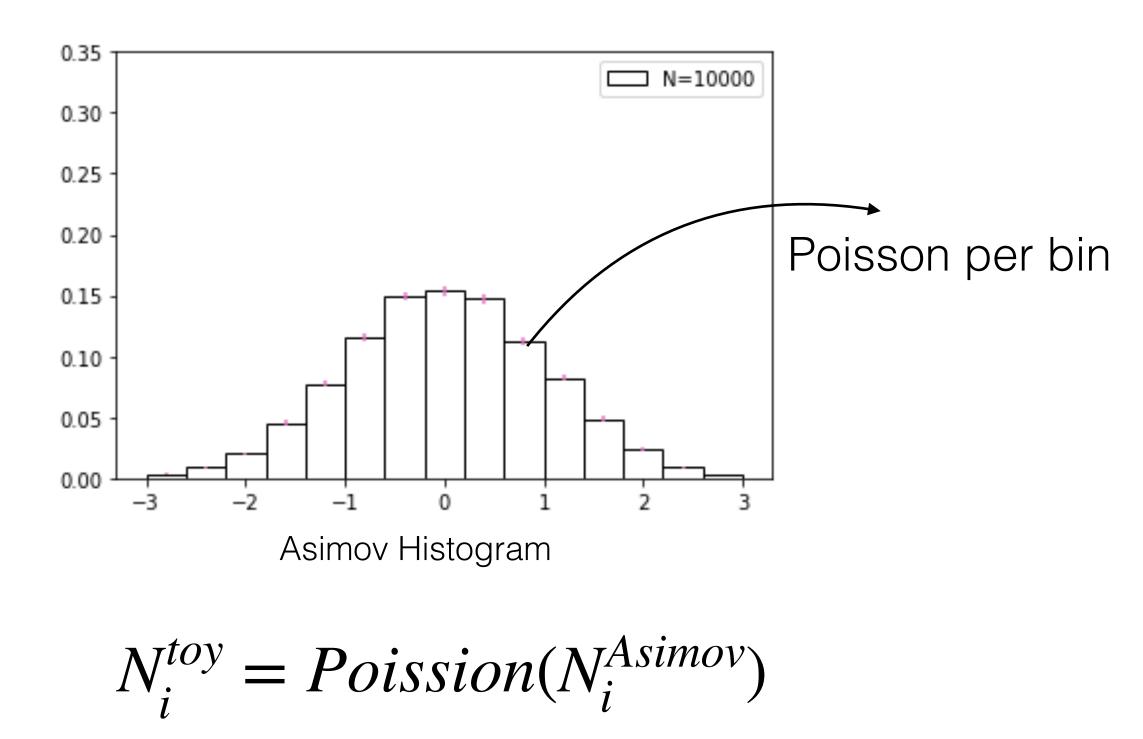
NSBI?

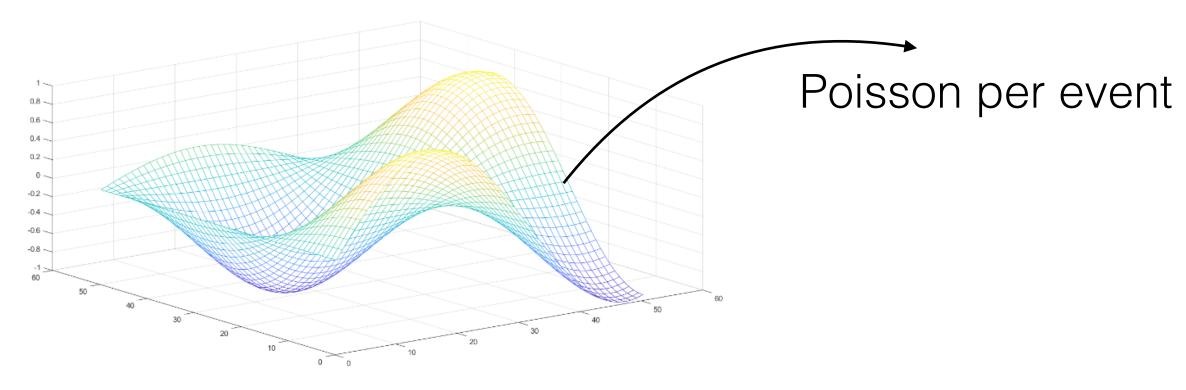
- More simulated samples?
- Amplify simulated statistics with generative models



Throwing high-dimensional toys

Traditionally:



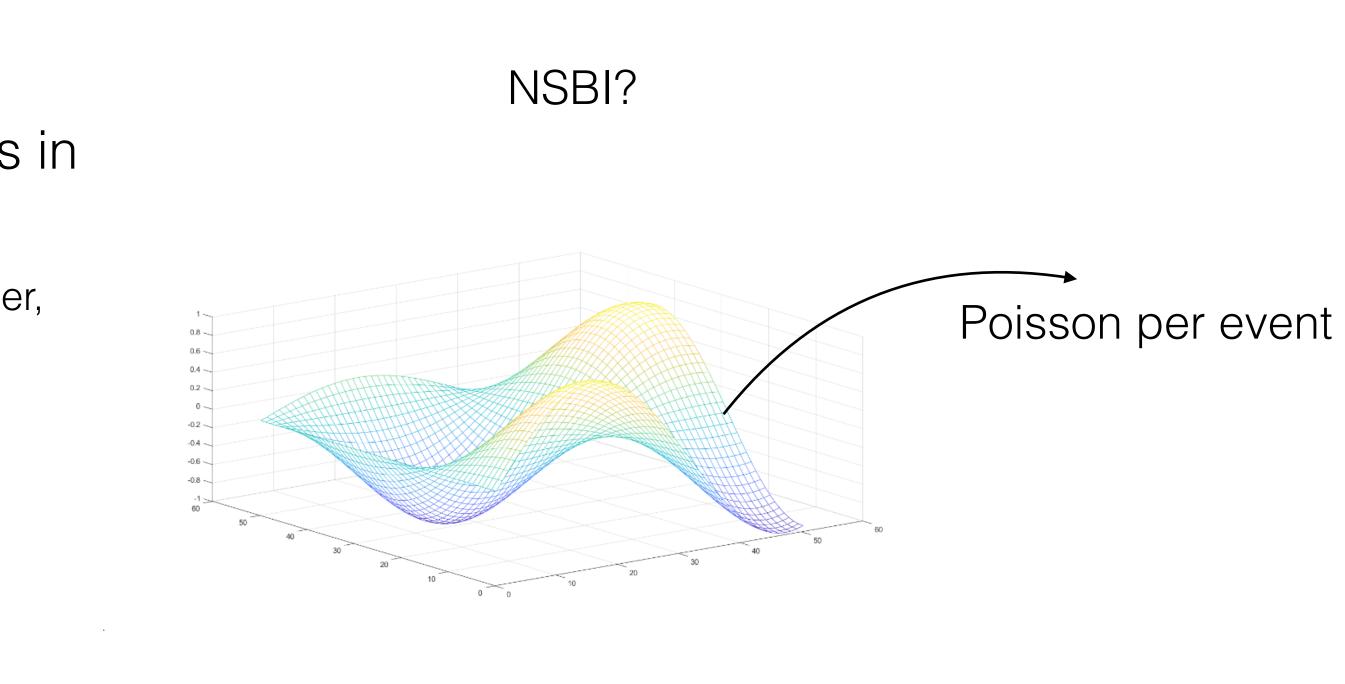


$$w_i^{toy} = Poisson(w_i^{Asimov})$$

Or unweight + bootstrap

- Negative weighted samples?
 - Don't want negative weighted events in lacksquaretoys
 - NN positive resampler (Nachman & Thaler, arXiv:2007.11586) too expensive to perform+validate for each θ
- Using any ML method provokes the ulletquestion: "Use NSBI to validate NSBI ?"
- Can we have a definitive statistical method to throw high-dimensional toys?

Throwing high-dimensional toys



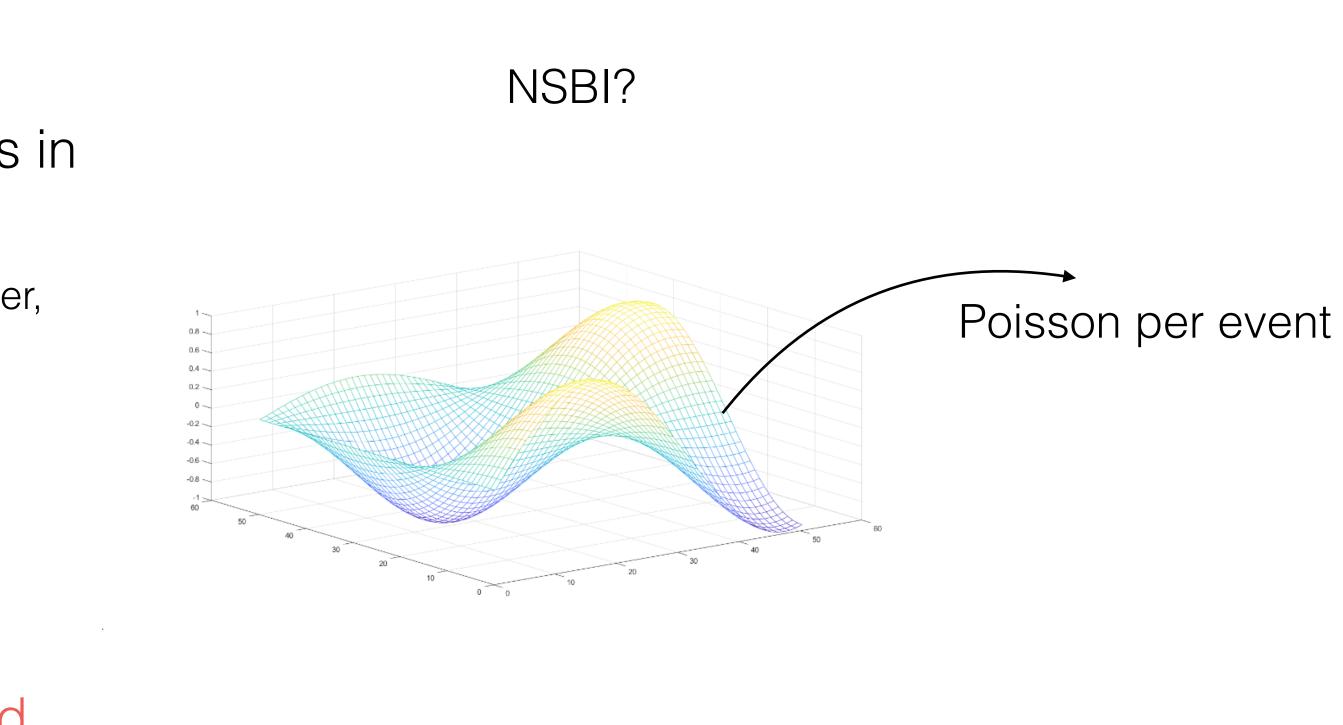
$$w_i^{toy} = Poisson(w_i^{Asimov})$$

('Unweighted' events, i.e. integer weights)

- Negative weighted samples?
 - Don't want negative weighted events in \bullet toys
 - NN positive resampler (Nachman & Thaler, arXiv:2007.11586) too expensive to perform+validate for each θ
- Using any ML method provokes the ulletquestion: "Use NSBI to validate NSBI ?"
- Can we have a definitive statistical method to throw high-dimensional toys?

If you think you have a non-ML solution, come chat with me!

Throwing high-dimensional toys



$$w_i^{toy} = Poisson(w_i^{Asimov})$$

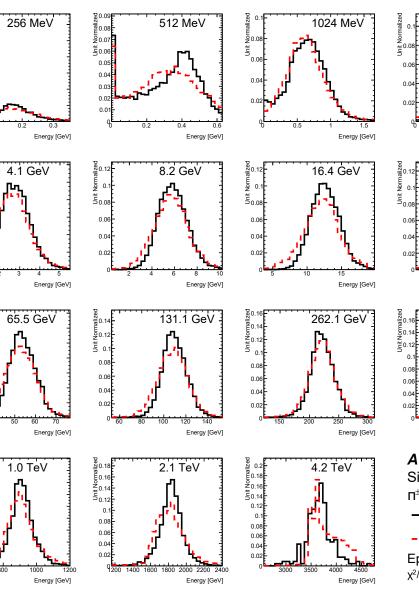
('Unweighted' events, i.e. integer weights)

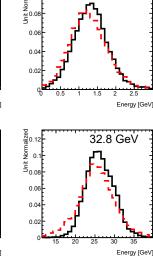
Automating network evaluation: Issue for NSBI and generative models

41

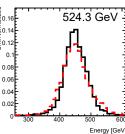
0.14 0.12 0.08 0.08 0.06 0.04 0.02 0 3

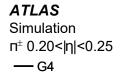
10.16 0.14 0.12 0.12 0.08 0.06 0.04 0.02 0 60

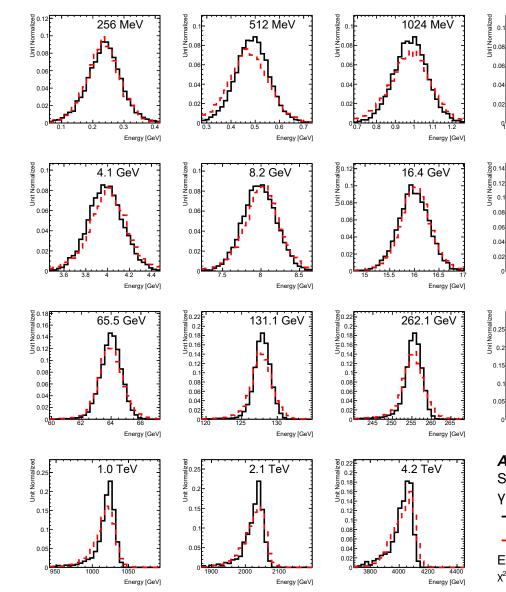


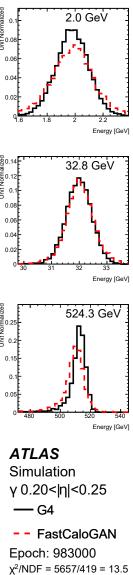


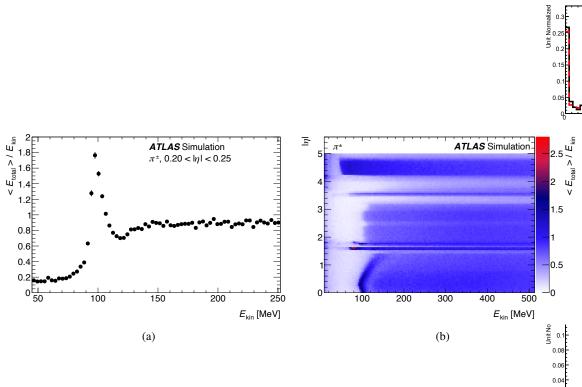
2.0 GeV

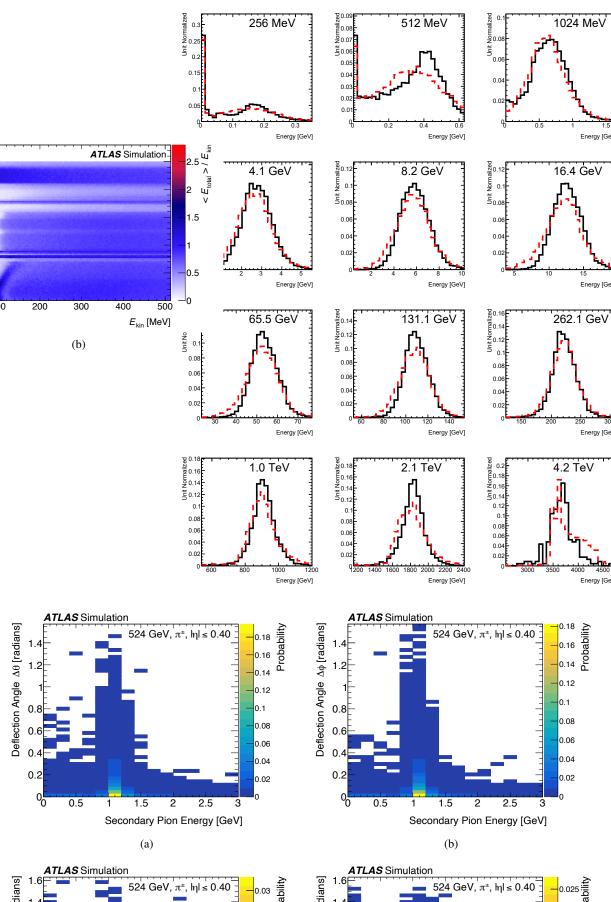


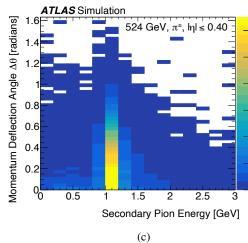


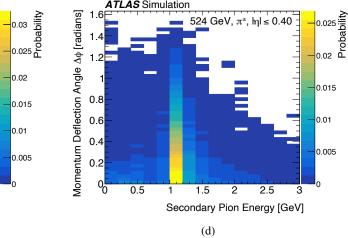


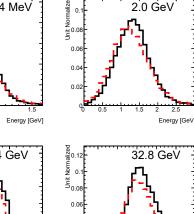


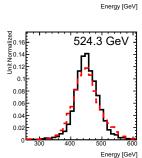








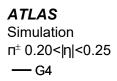


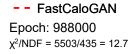


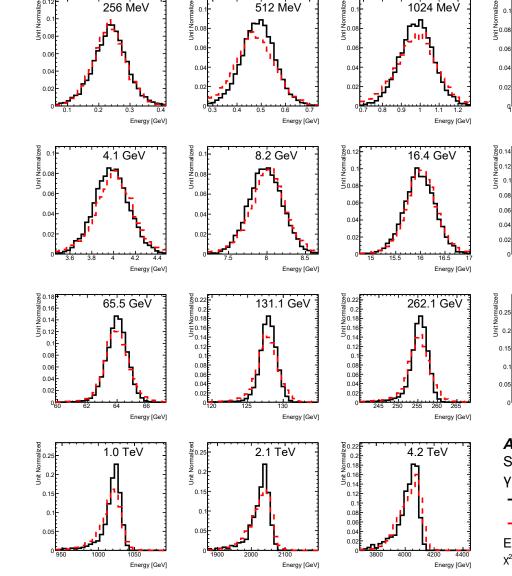
Energy [GeV]

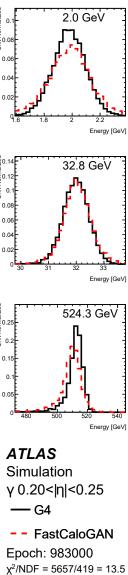
Energy [GeV]

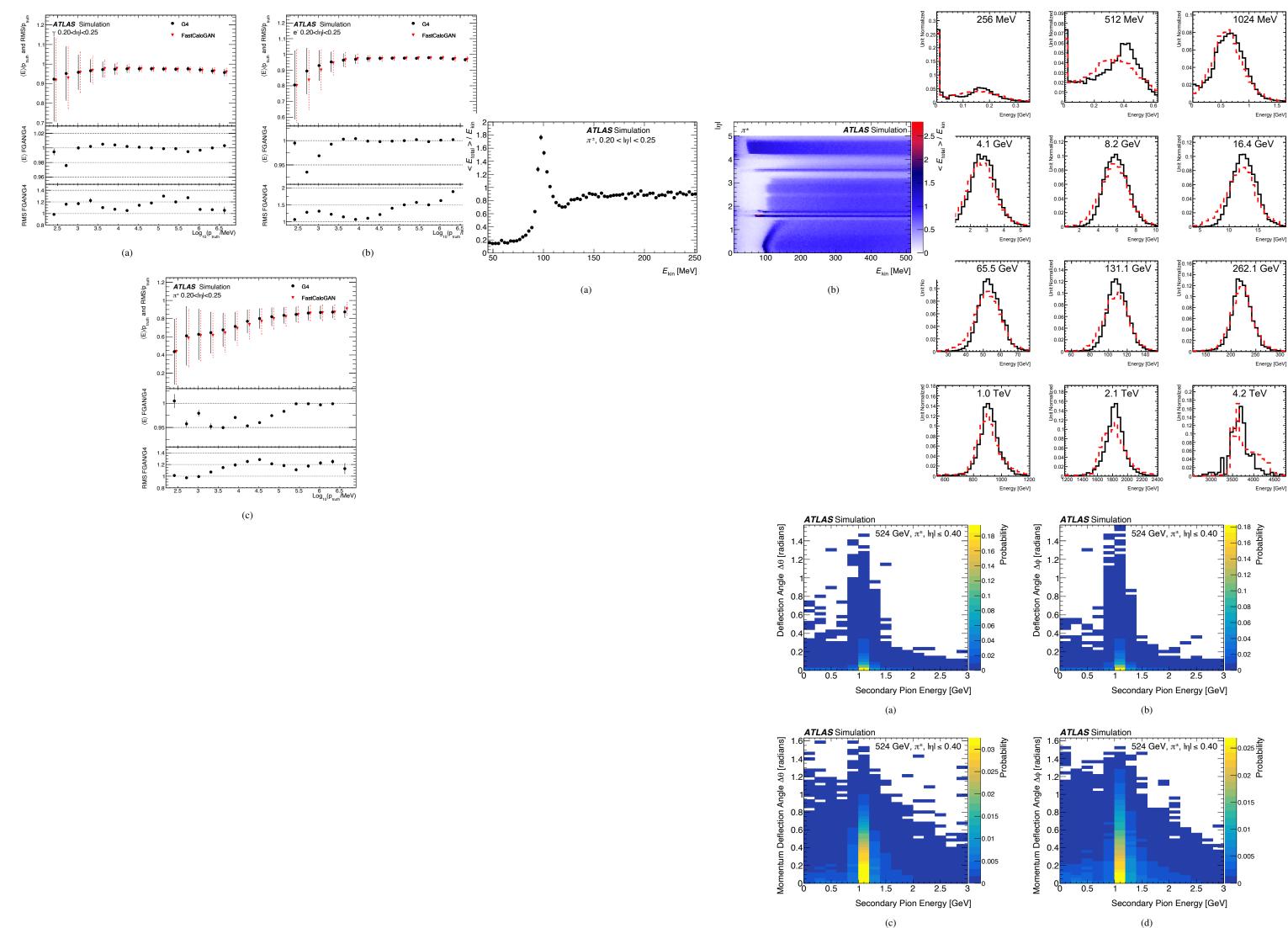
Energy [Ge

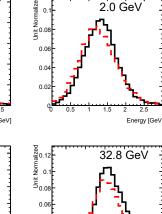


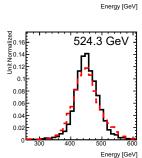


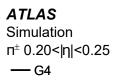


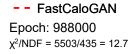


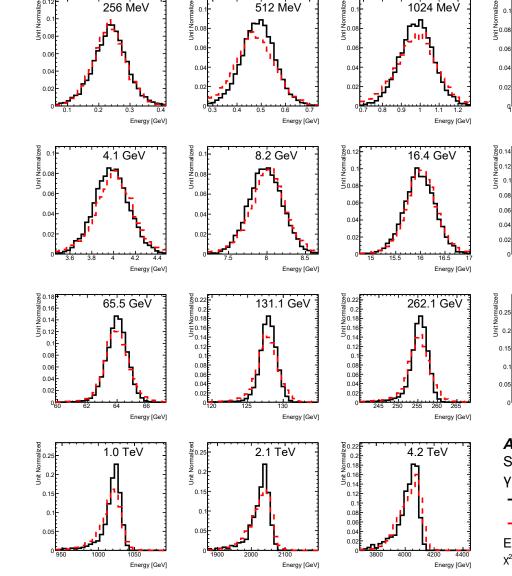


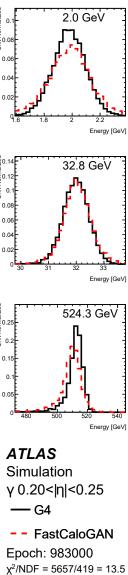


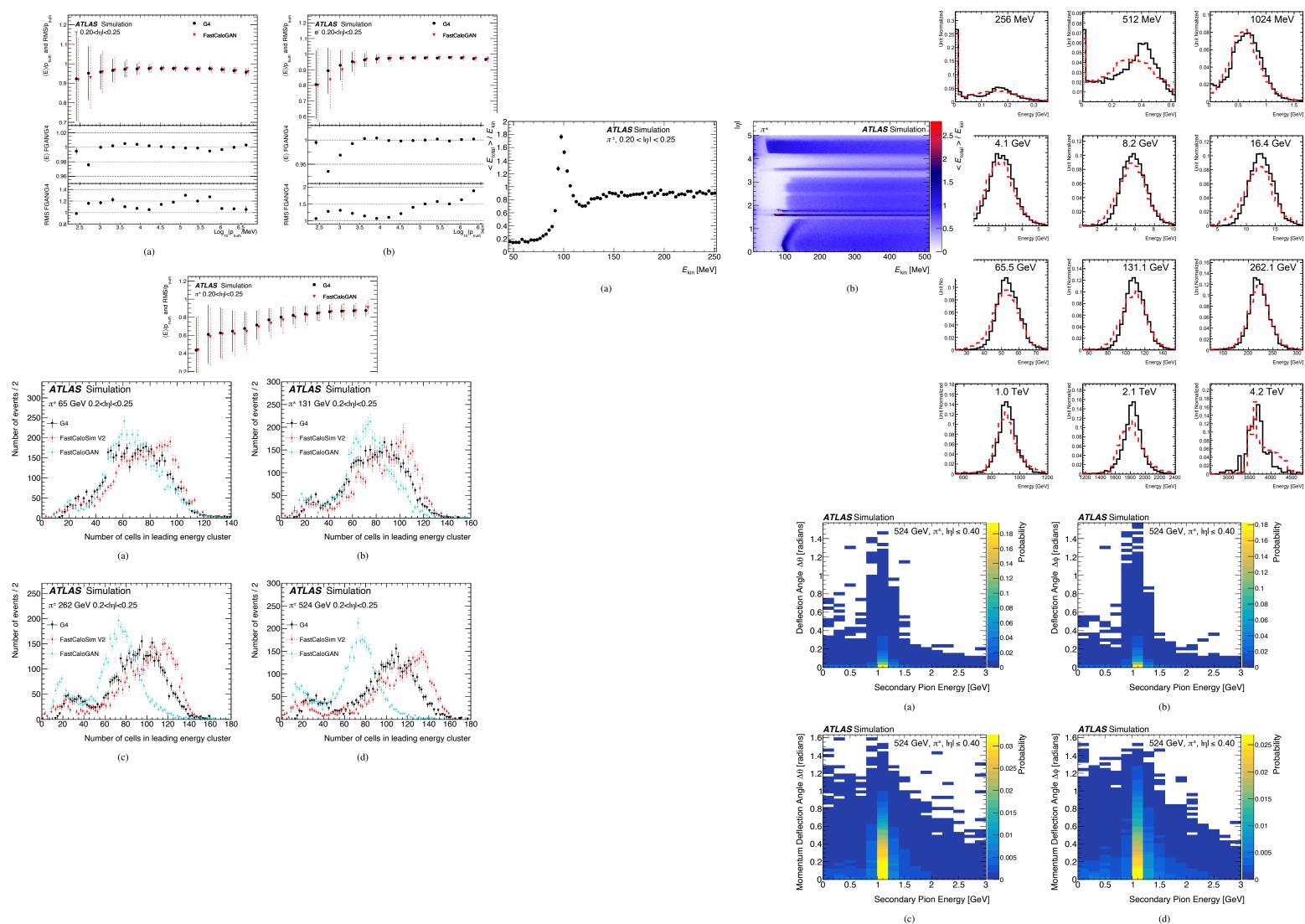


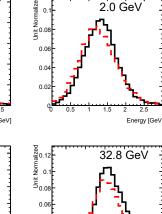


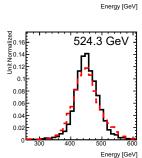


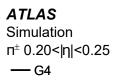


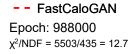


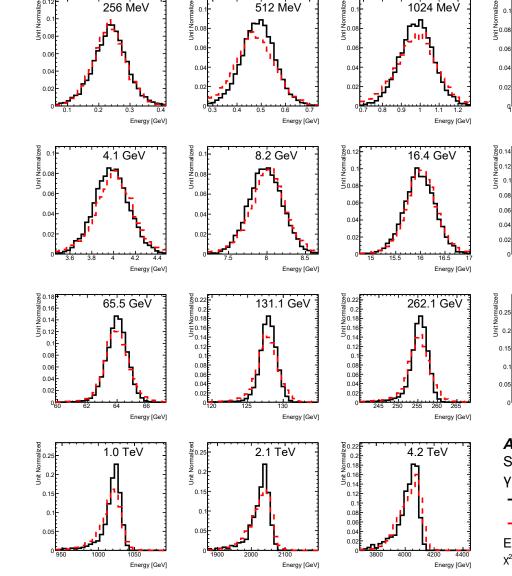


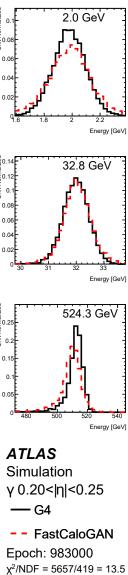


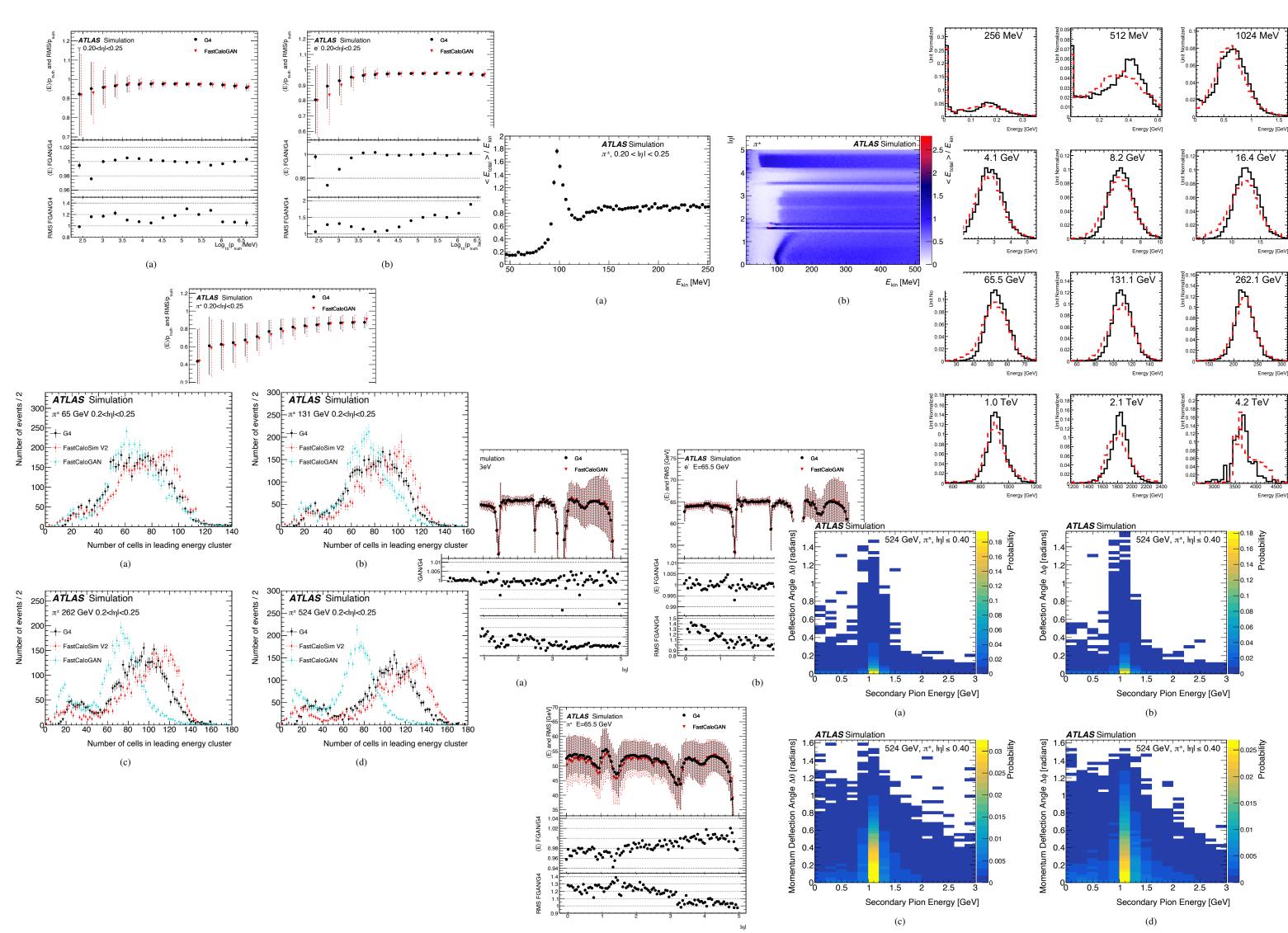




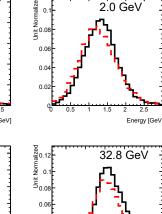


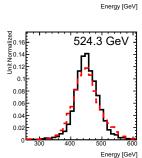


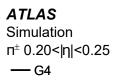


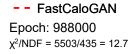


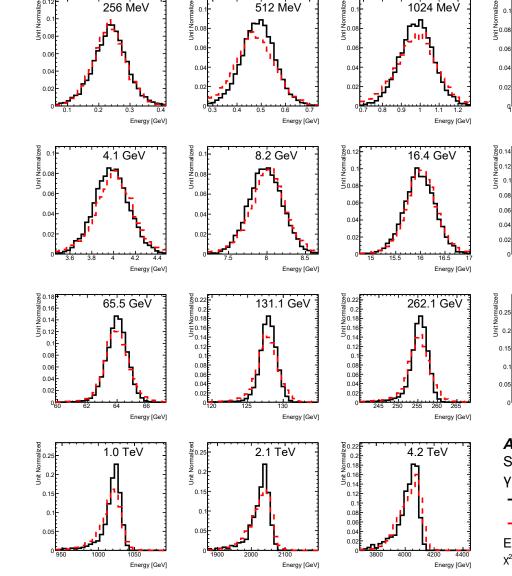
(c)

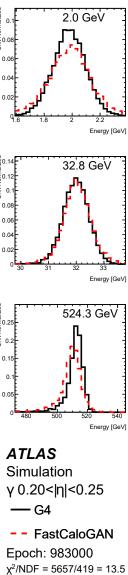


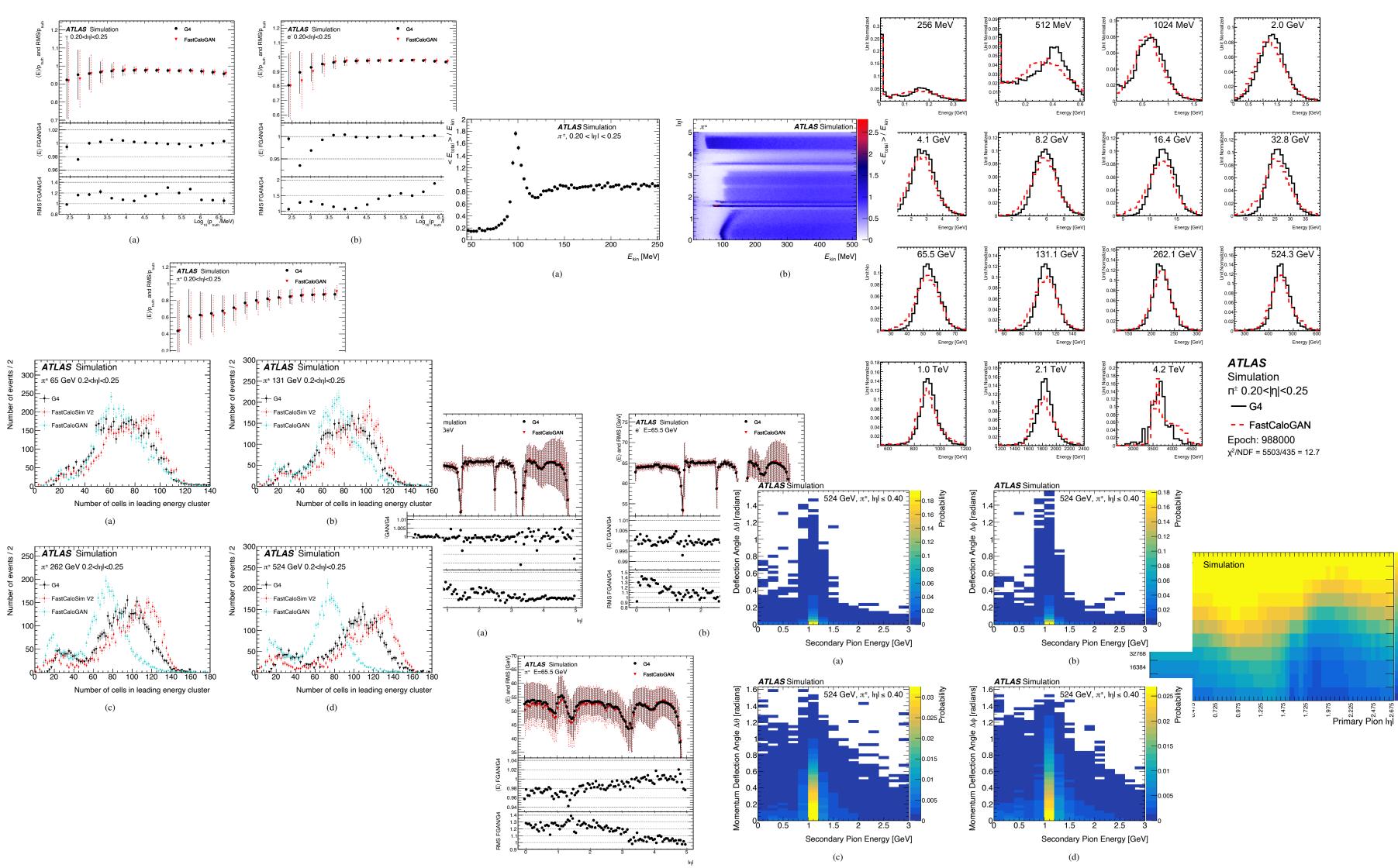




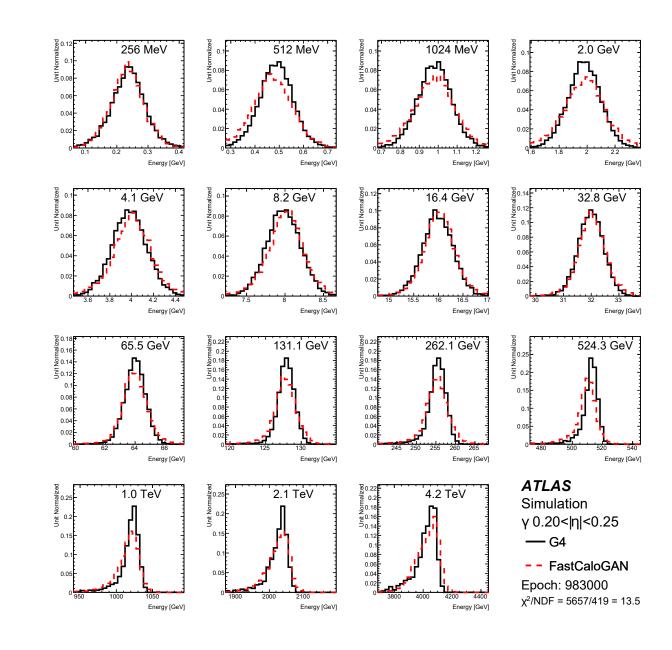


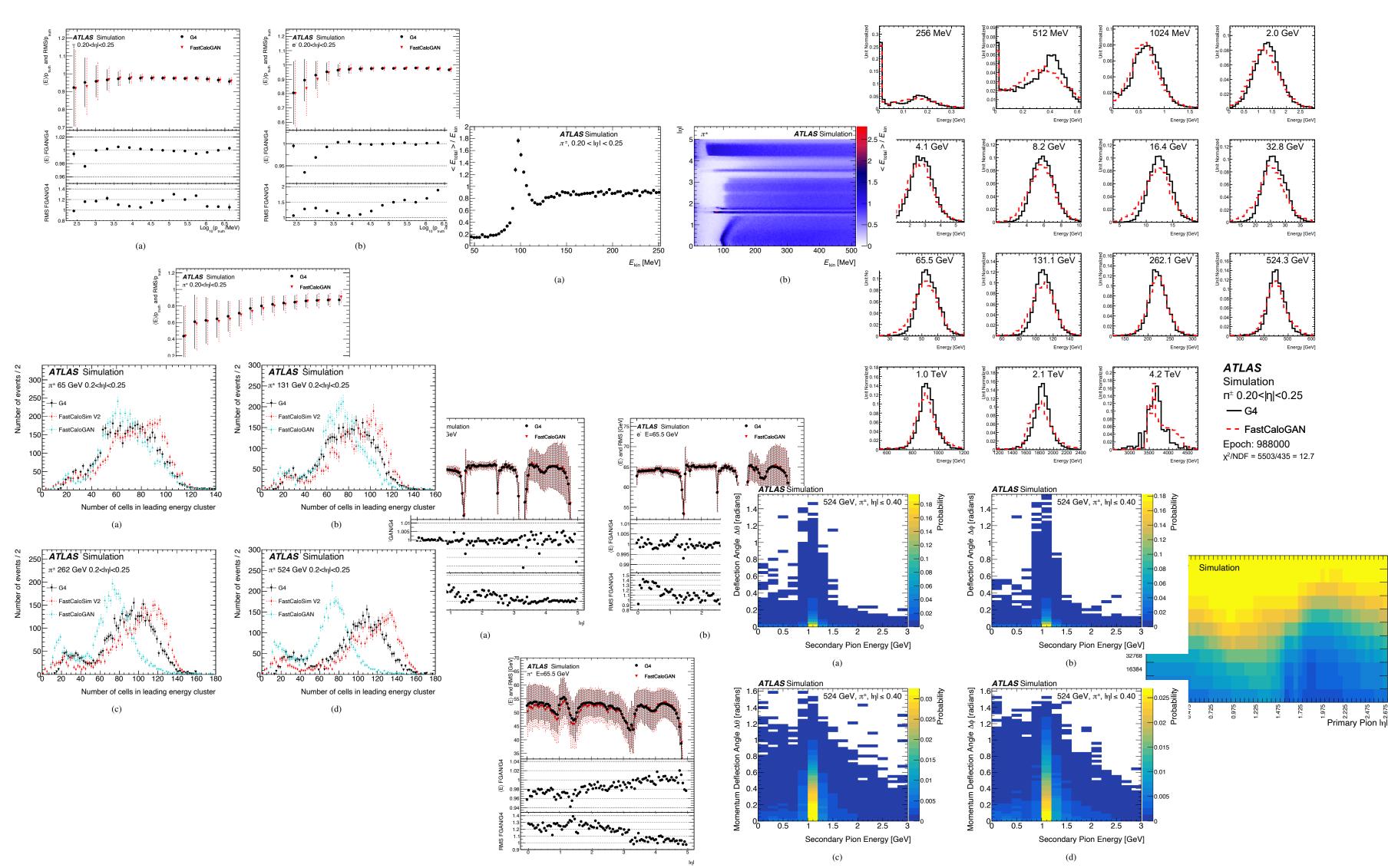




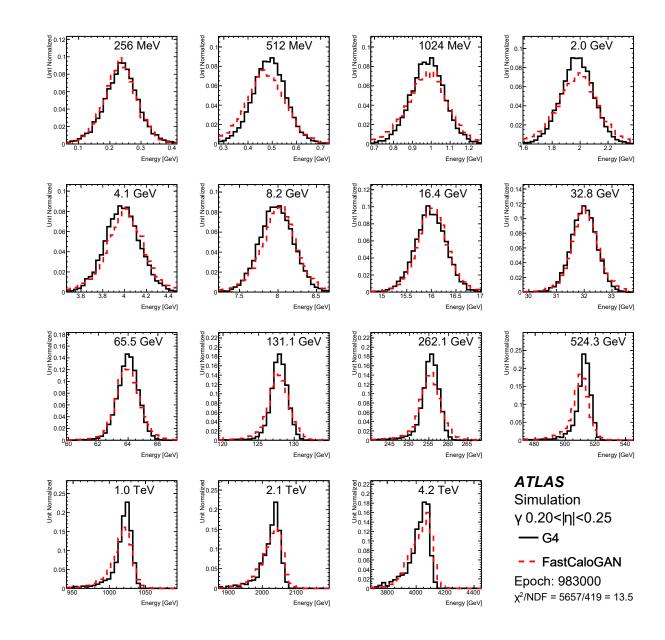


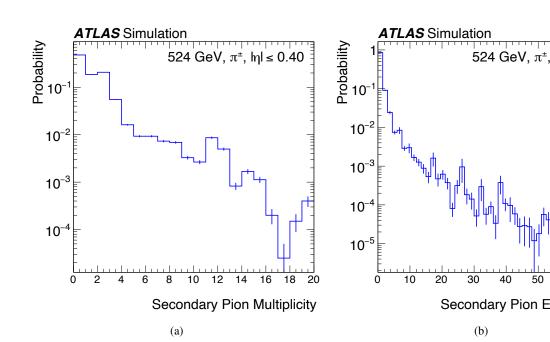
(c)





(c)





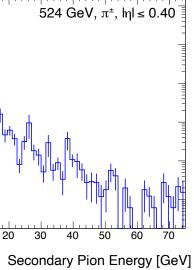
07

0.6 0.5

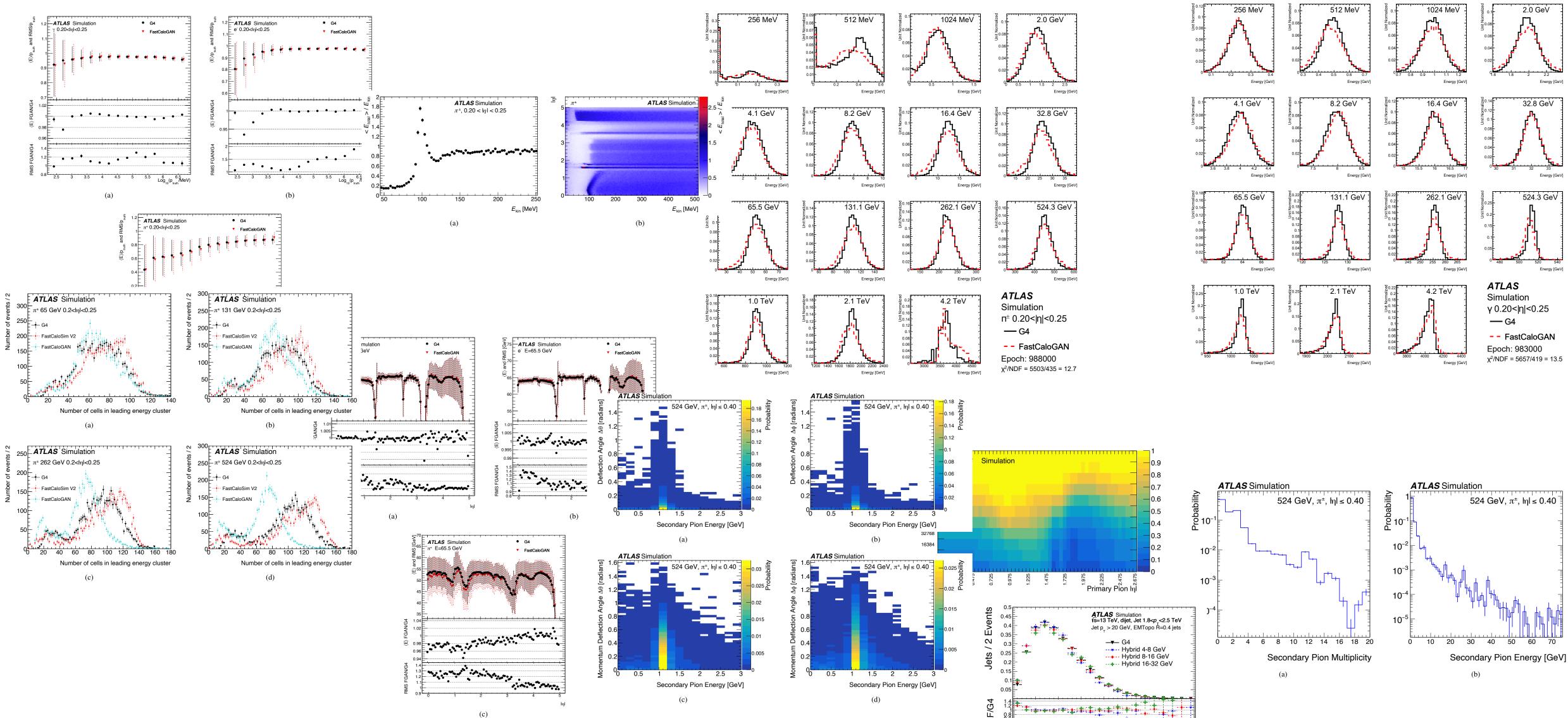
0.4

0.3

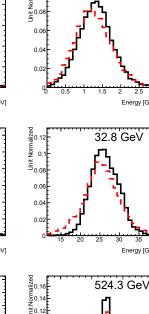
02

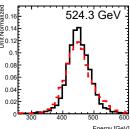


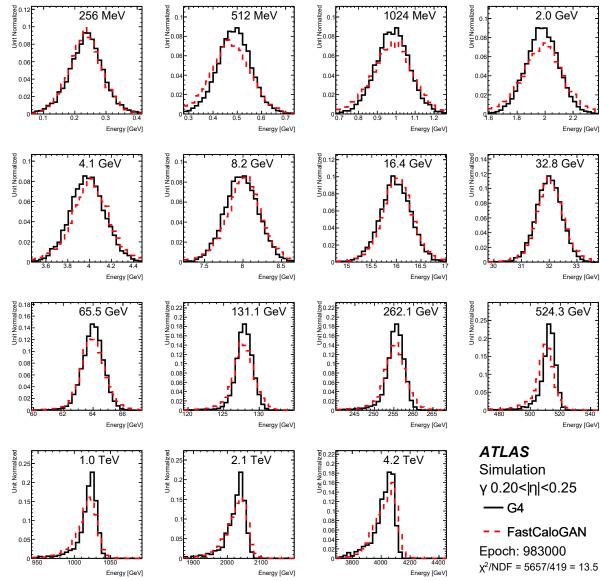
Evaluating Fast Calo Simulators



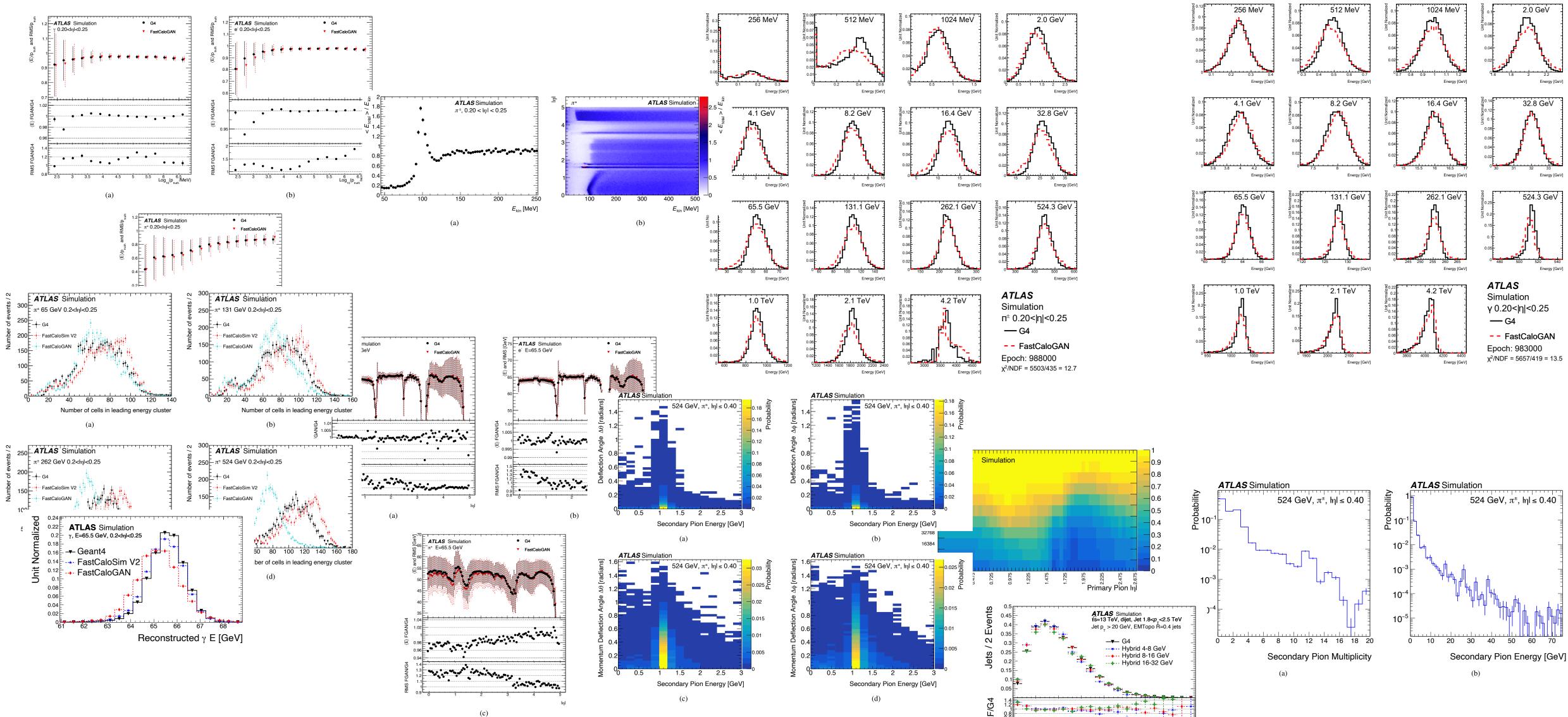
(c)

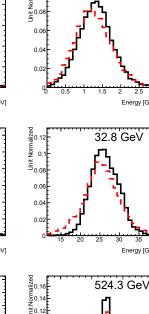


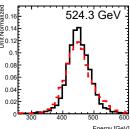


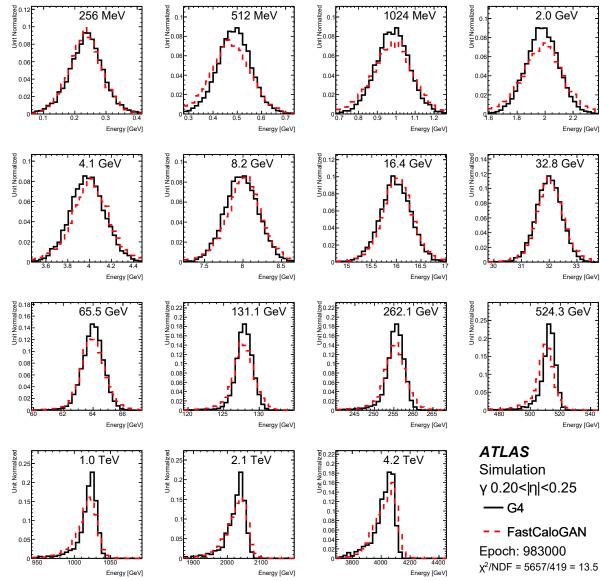


Evaluating Fast Calo Simulators



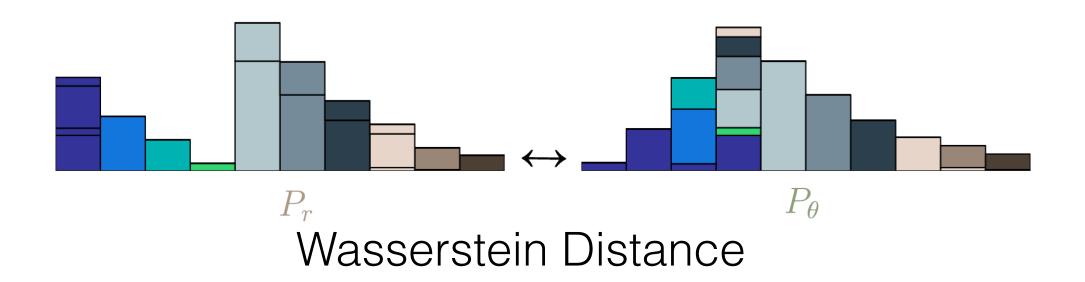






KS, Aderson-Darling, etc

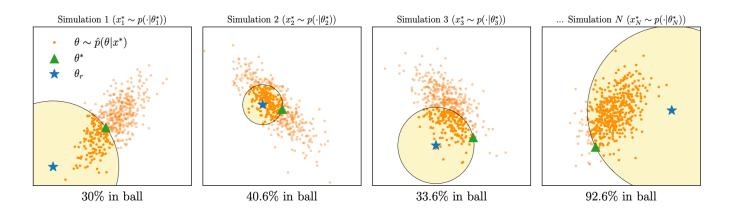
Independent classifier test



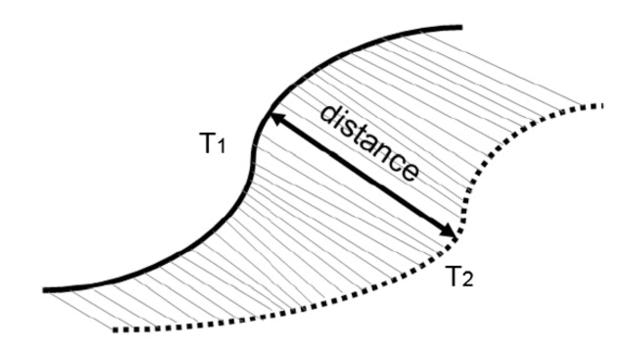
How can we automise the evaluation ?

Need robust measures of distance \rightarrow Several options thrown around in recent years

P(x | Geant) $P(x \mid Gen)$



TARP



Fréchet Distance

A large comparison of metrics

On the Evaluation of Generative Models in High Energy Physics

Raghav Kansal[®],* Anni Li[®], and Javier Duarte[®] University of California San Diego, La Jolla, CA 92093, USA

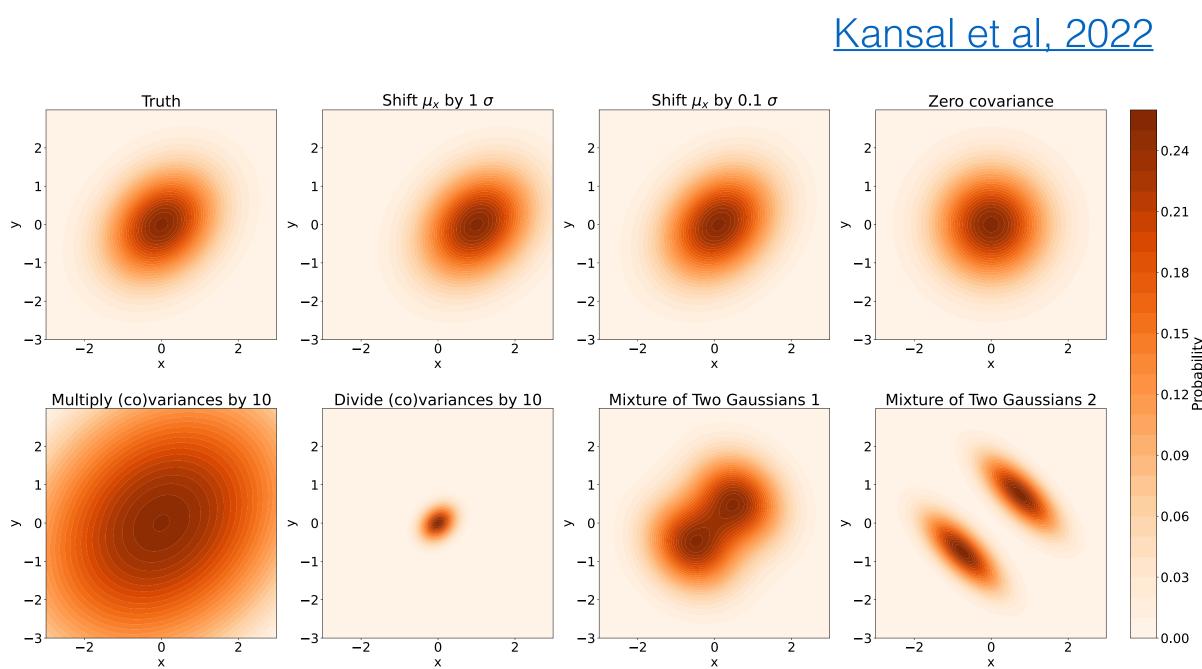
Nadezda Chernyavskaya, Maurizio Pierini European Center for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

Breno Orzari[®], Thiago Tomei[®] Universidade Estadual Paulista, São Paulo/SP, CEP 01049-010, Brazil

(Dated: November 21, 2022)

Detailed comparison on Gaussian toys where you have full control Application on jet dataset with hand designed distortions Suggests 'Fréchet Gaussian Distance'

My personal opinion: This is still an open question!



A large comparison of metrics

On the Evaluation of Generative Models in High Energy Physics

Raghav Kansal[®],* Anni Li[®], and Javier Duarte[®] University of California San Diego, La Jolla, CA 92093, USA

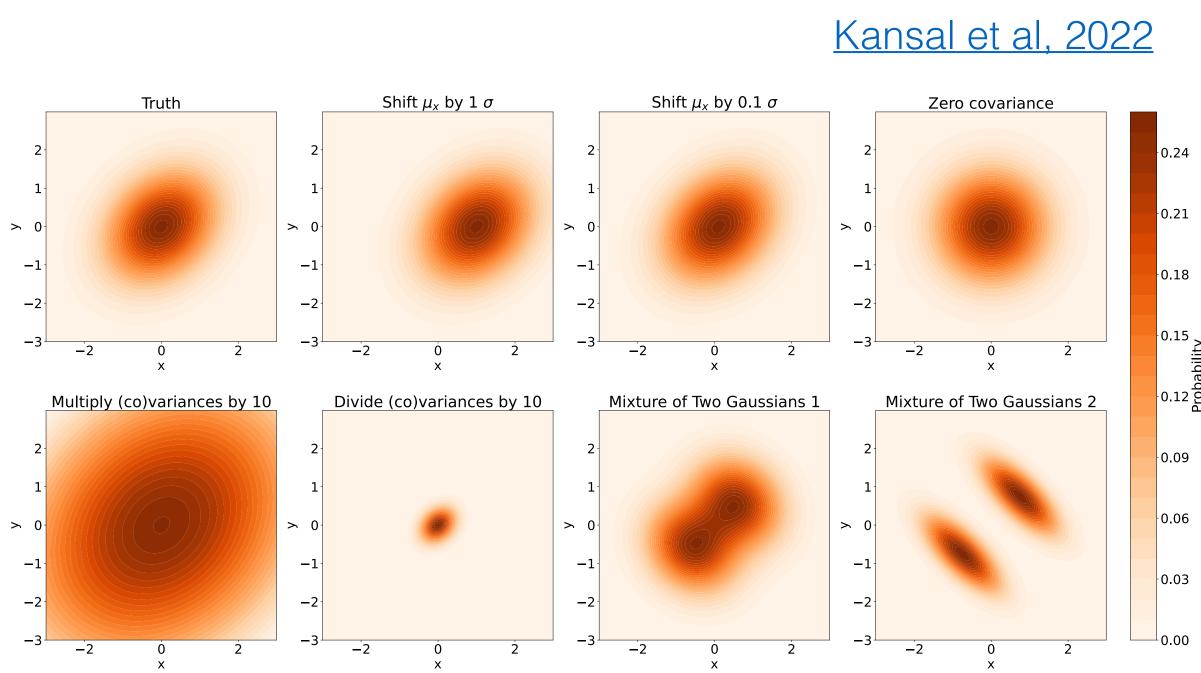
Nadezda Chernyavskaya, Maurizio Pierini European Center for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

Breno Orzari[®], Thiago Tomei[®] Universidade Estadual Paulista, São Paulo/SP, CEP 01049-010, Brazil

(Dated: November 21, 2022)

Detailed comparison on Gaussian toys where you have full control Application on jet dataset with hand designed distortions Suggests 'Fréchet Gaussian Distance'

My personal opinion: This is still an open question!



Think you have a solution? Come chat with me!

- Lots of exciting opportunities in HEP, Cosmo, Astro, elsewhere to use neural SBI
 - Leverages detailed knowledge in simulators
 - High-dimensional inference
 - Speed, amoritised inference
 - Differentiable likelihoods
- More powerful methods \rightarrow more sensitivity \rightarrow larger concern for model misspecification
- Interesting statistical questions on propagating uncertainties, coverage tests
- Tools in development to test robustness, interpretability, automatise performance evaluation

The devil is always in the details, come join us in answering these questions!

Conclusion

- Lots of exciting opportunities in HEP, Cosmo, Astro, elsewhere to use neural SBI
 - Leverages detailed knowledge in simulators
 - High-dimensional inference
 - Speed, amoritised inference
 - Differentiable likelihoods
- More powerful methods \rightarrow more sensitivity \rightarrow larger concern for model misspecification
- Interesting statistical questions on propagating uncertainties, coverage tests
- Tools in development to test robustness, interpretability, automatise performance evaluation

The devil is always in the details, come join us in answering these questions!

Conclusion

Thank you!

$$r(x_i \mid \theta, ref) = \frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i)}{1 - s(x_i)}$$

Intractable

$$p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$$

This part is accessible

- Fully Automatic computation at
 - NLO* (cross-section)
 - NLO* matched to PS

Madminer by Brehmer, et al, <u>arXiv:1907.19621</u>Merging (FxFx)

*NLO= NLO in QCD

$$r(x_i \mid \theta, ref) = \frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i)}{1 - s(x_i)}$$

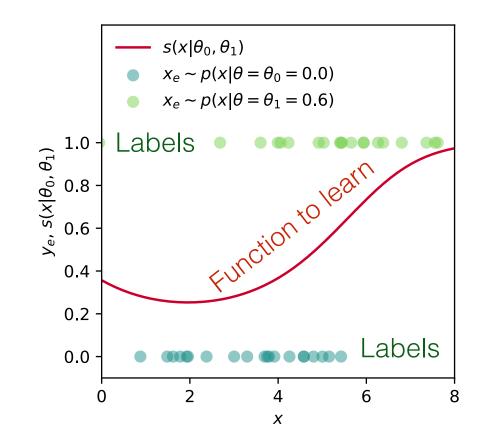
Intractable

$$p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$$

This part is accessible

- Fully Automatic comput
 - NLO* (cross-section)
 - NLO* matched to PS

Madminer by Brehmer, et al, <u>arXiv:1907.19621</u>^{Merging} (FxFx)



tation at	
)	
6	
*NLO= NLO in QCE)

$$r(x_i \mid \theta, ref) = \frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i)}{1 - s(x_i)}$$

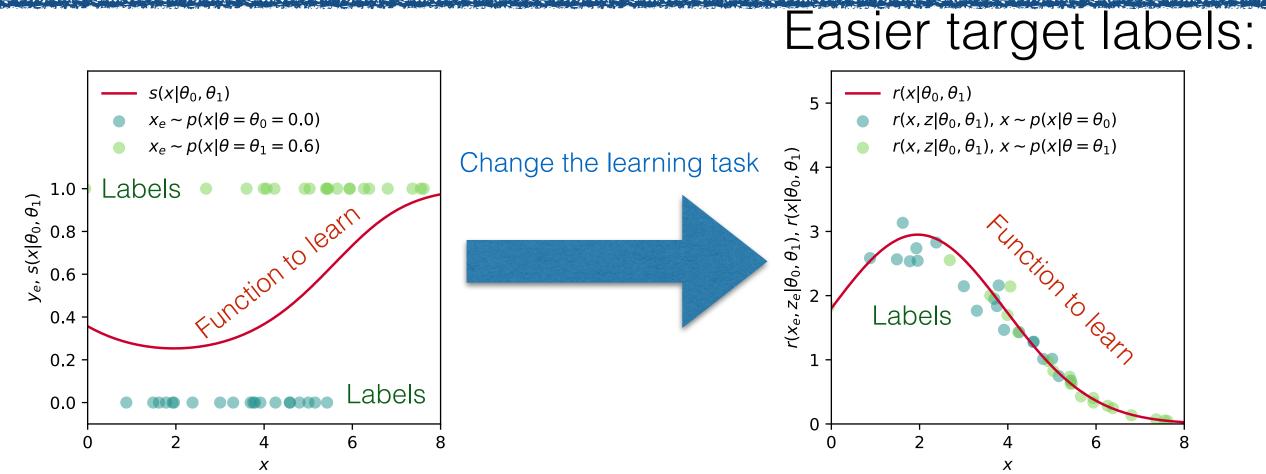
Intractable

$$p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$$

This part is accessible

- Fully Automatic computation at
 - NLO* (cross-section)
 - NLO* matched to PS

Madminer by Brehmer, et al, <u>arXiv:1907.19621</u>Merging (FxFx)



*NLO= NLO in QCD

$$r(x_i \mid \theta, ref) = \frac{p(x_i \mid \theta_1)}{p(x_i \mid ref)} = \frac{s(x_i)}{1 - s(x_i)}$$

Intractable

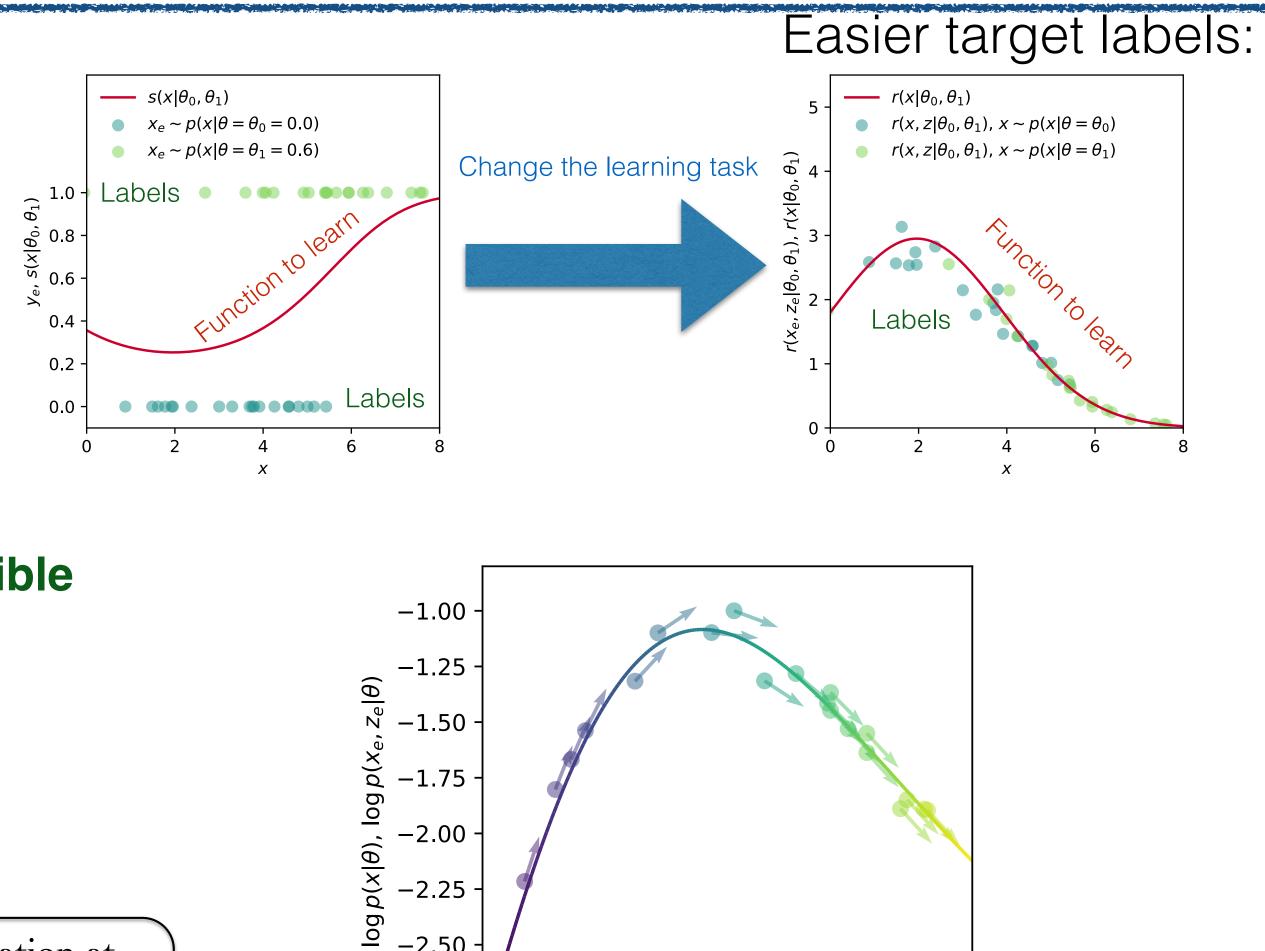
$$p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$$

This part is accessible

• Fully Automatic computation at

- NLO* (cross-section radients:
- NLO* matched to PS

Madminer by Brehmer, et al, <u>arXiv:1907.19621</u>Merging (FxFx)



 $\log p(x=4|\theta)$

0.0

A

-0.5

 $\log p(x = 4, z | \theta), t(x = 4, z | \theta)$

0.5

1.0

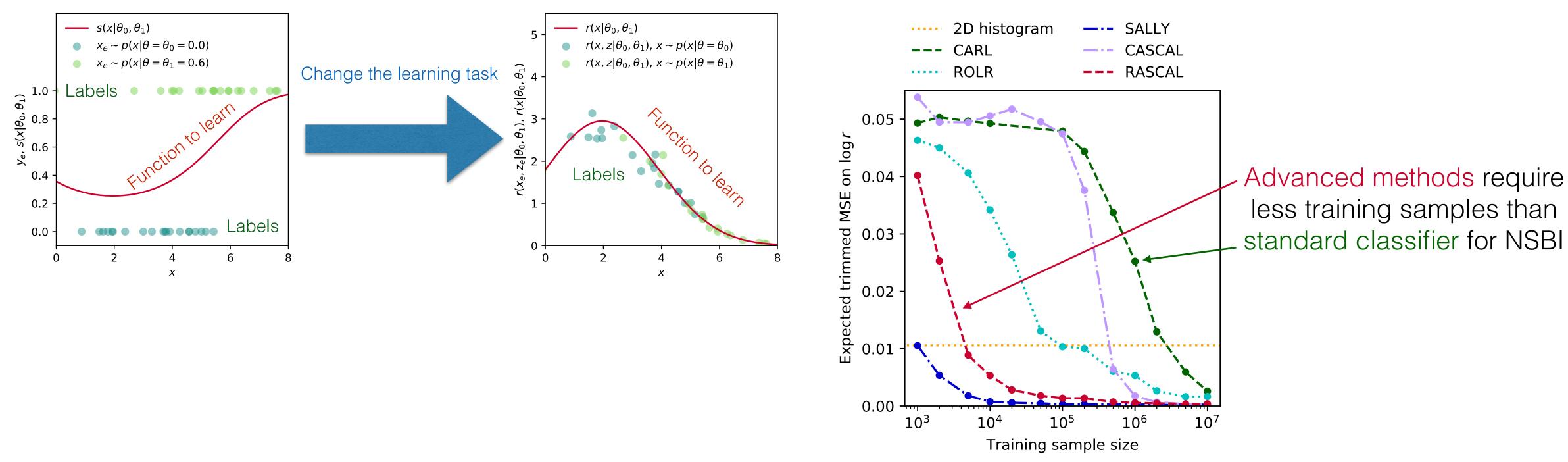
-2.50

-2.75

-3.00 -

-1.0

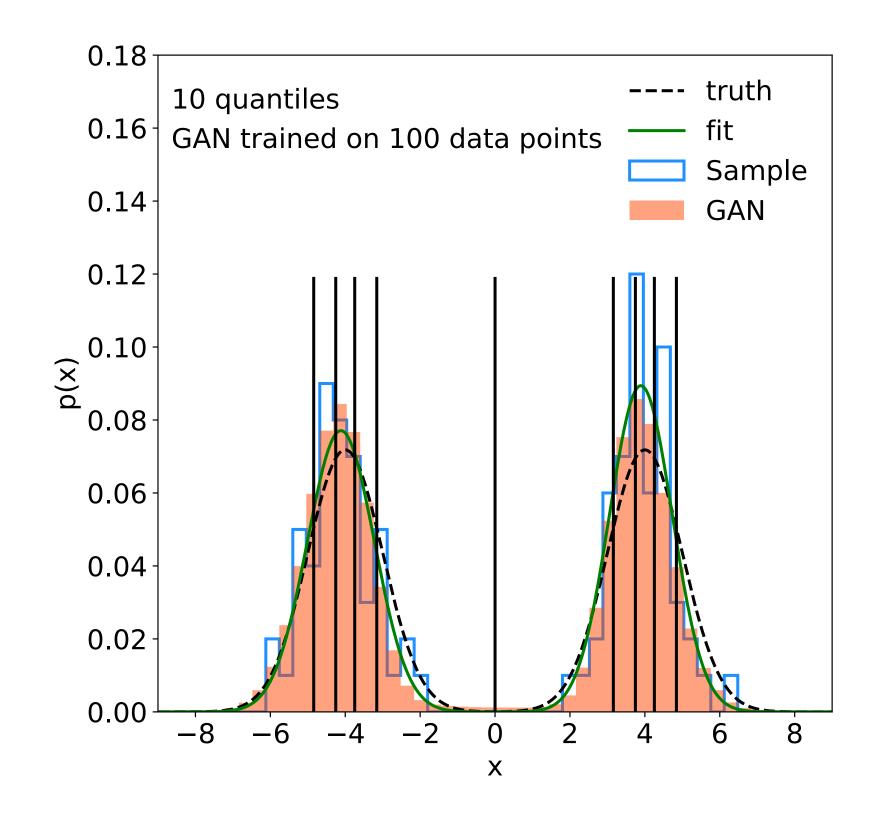
*NLO= NLO in QCD



- Requires calling the simulator N times per event ullet
- Instead, we could simulate N times the samples \bullet
- Intuition says former is more compute efficient, might be analysis dependent \bullet

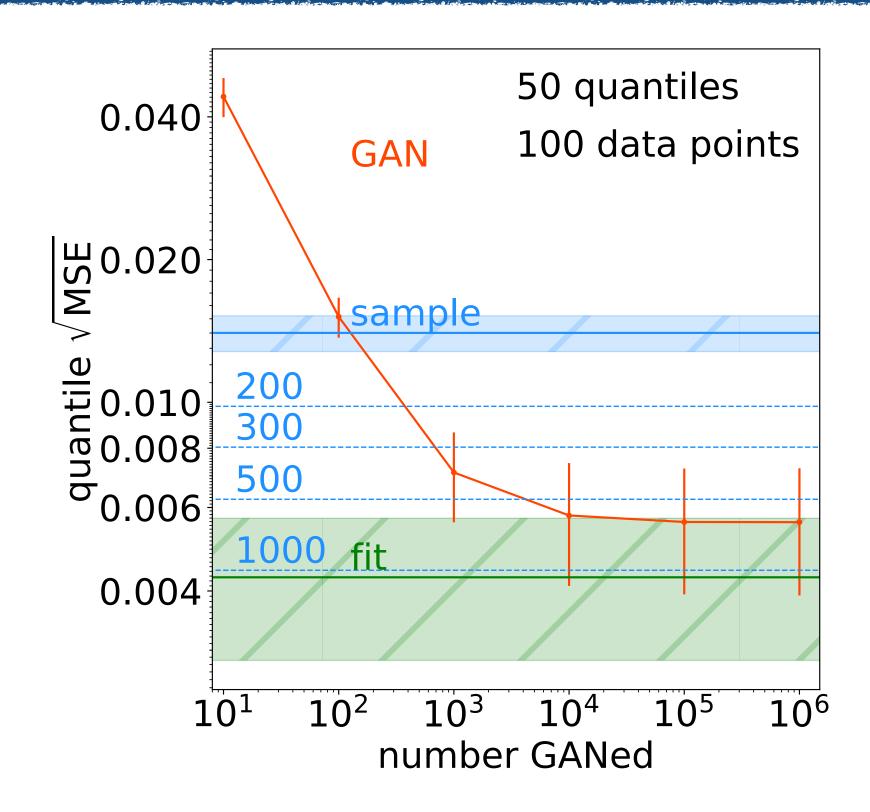
What is it worth?

Amplify statistics with generative models

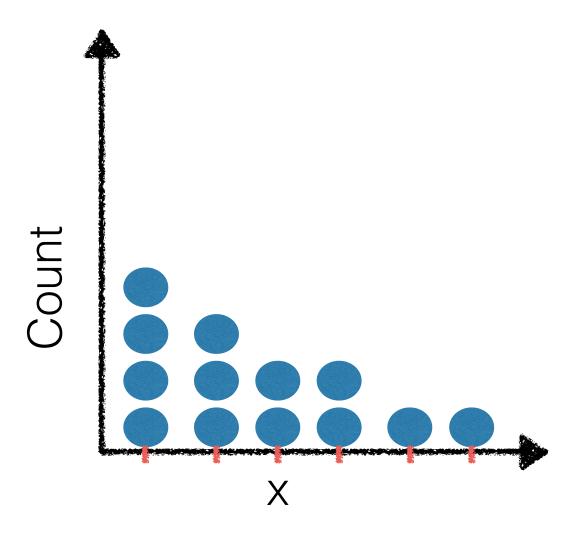


Generative models appear to produce more meaningful samples than training dataset Smooths over the statistical fluctuations

Butter, Diefenbacher et al, <u>arXiv:2008.06545</u>

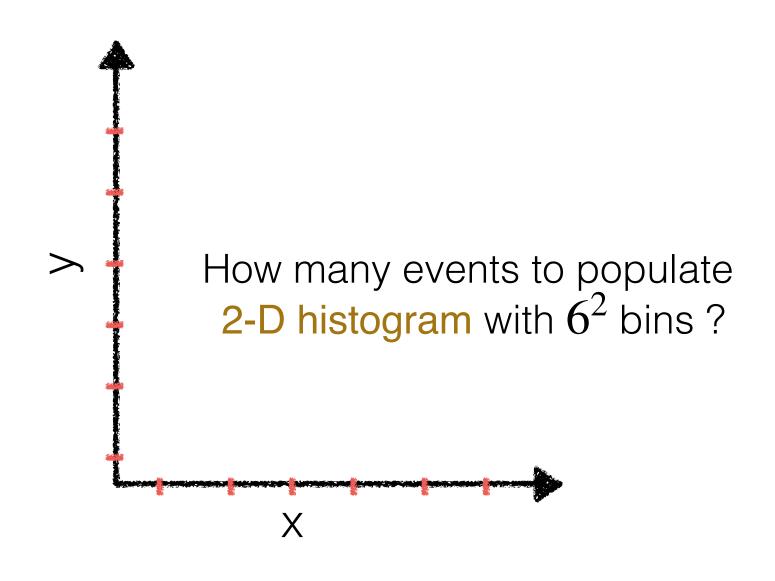


Density estimation in higher dimensions, the curse (of dimensionality)



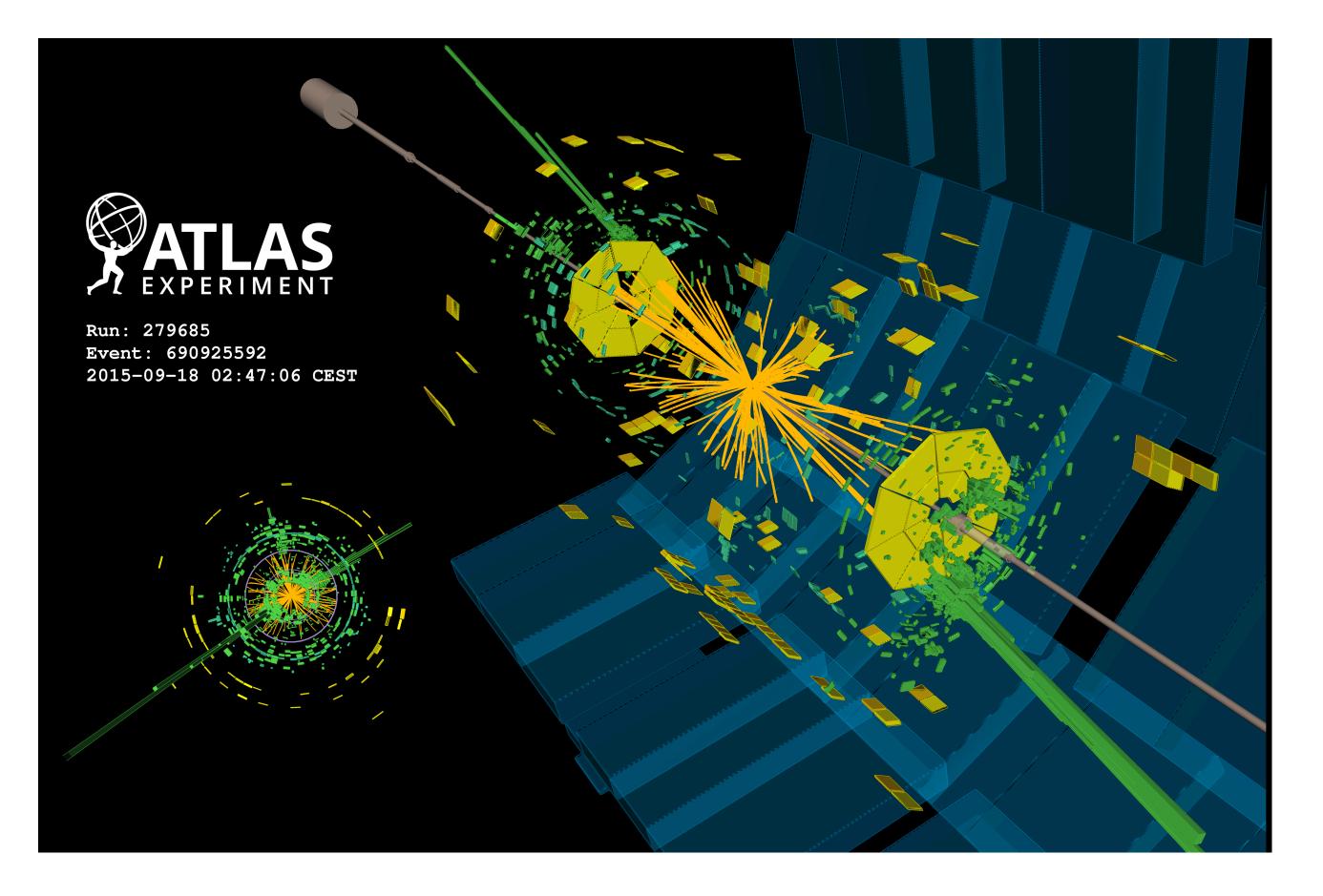
1-D histogram with 6 bins: few events enough to populate it

How many events for 50-D histogram with 6^{50} bins ?

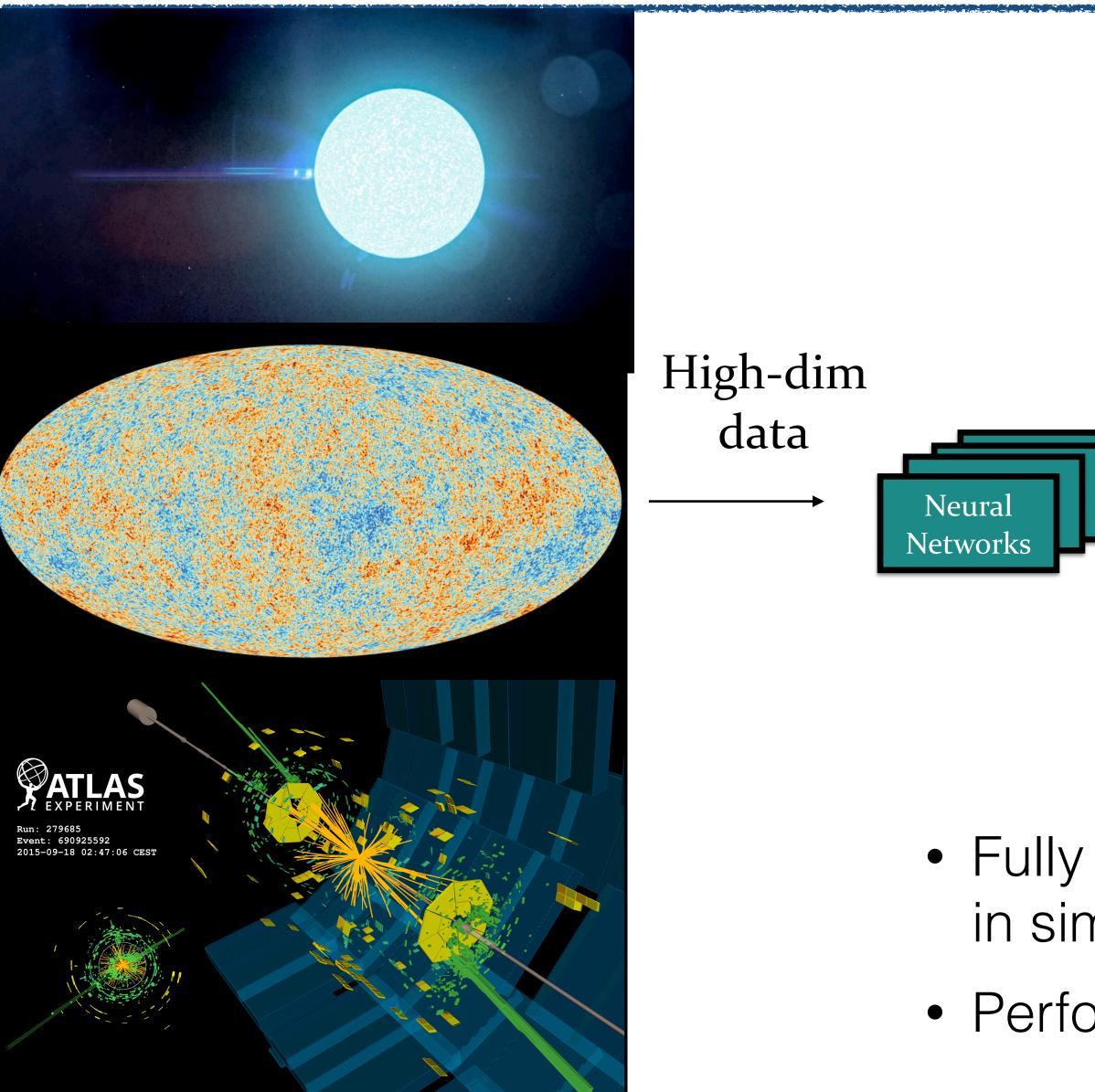


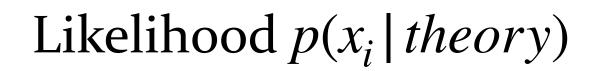
High-dimensional data

- Detector has O(100 million) sensors
- Can't build 100M dimensional histogram
- Reconstruction pipeline, event selection
- Design sensitive one-dimensional observable

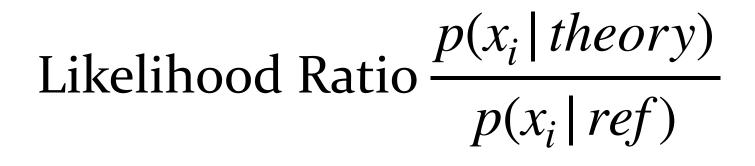


Core idea: Neural networks for inference





or



Posterior p(theory | x)

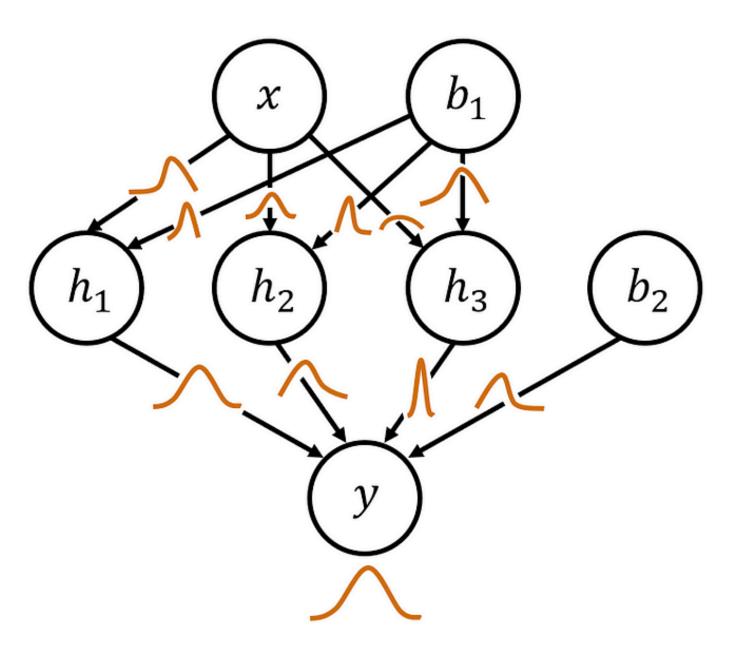
 Fully leverage detailed physics knowledge stored in simulators

Perform high-dimensional inference

- Each weight replaced by a distribution of weights
 - Eg. Sampled from learnt {mean, std}
- The distribution in NN prediction for each event gives you an uncertainty estimate
- Open question: How to interpret this uncertainty? What is the coverage?
 - Calibrate the uncertainties <u>arXiv:2408.00838</u>: Bringer et al (incl. Diefenbacher)
 - ... more work needed here before if they are to become standard tools in frequentist frameworks

Bayesian Networks

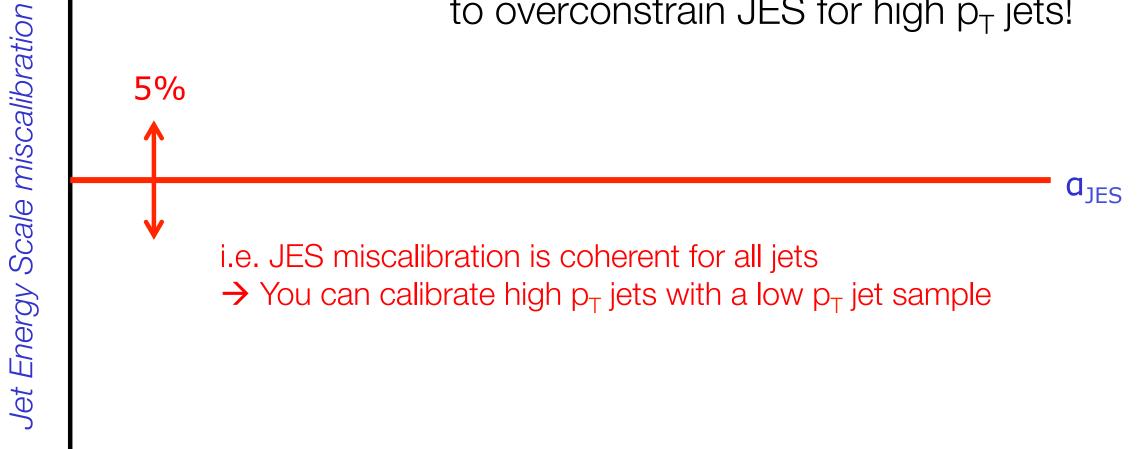
Bayesian Neural Network



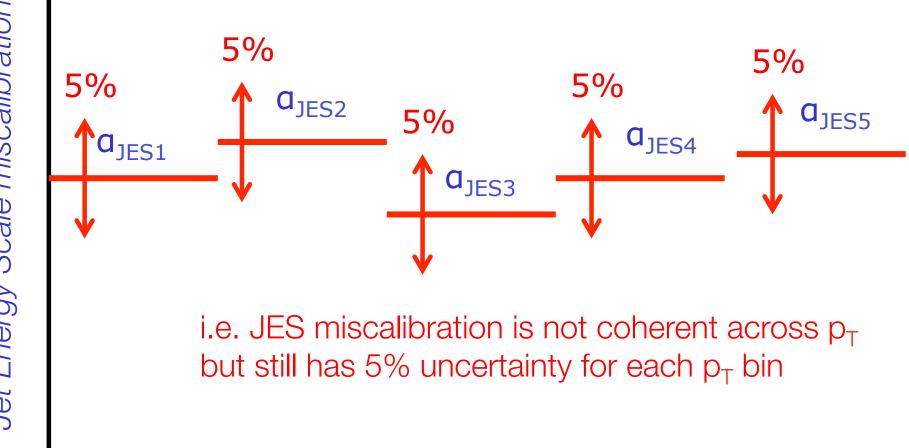
Overconstraining NP

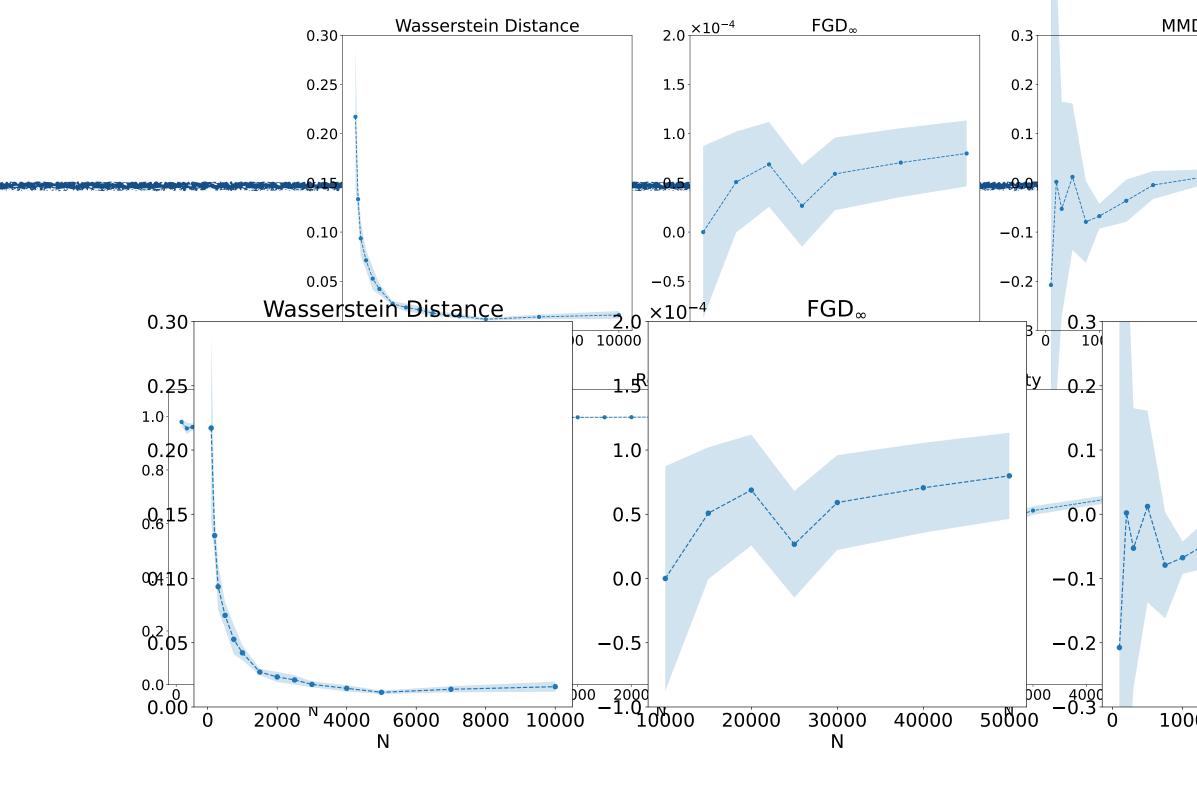
Our modelling of NPs might be over-simplified

If you assume one NP – chances are that your physics Likelihood will exploit this oversimplified JES model to overconstrain JES for high p_T jets!



From <u>W. Verkerke</u>:



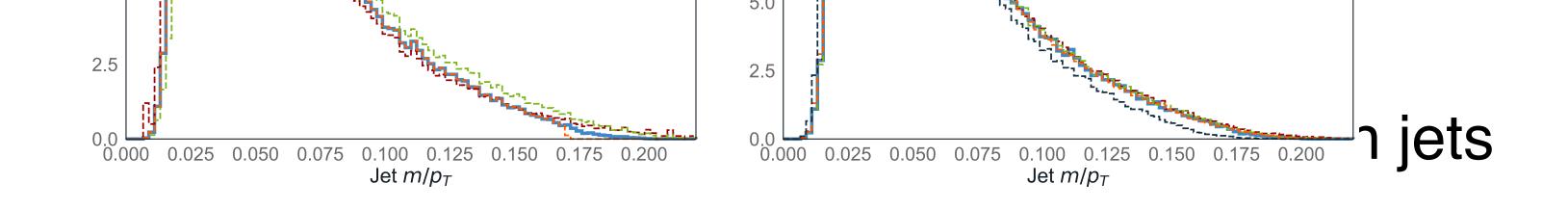


Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	$\boldsymbol{0.036\pm0.003}$	0.191 ± 0.005
$FGD_{\infty} \times 10^3$	0.08 ± 0.03	$\bf 1011 \pm 1$	11.0 ± 0.1	32.3 ± 0.2	9400 ± 8	935.1 ± 0.7	0.07 ± 0.03	0.03 ± 0.03
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	${f 19}{ m k}\pm{f 1}{ m k}$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	0.9976 ± 0.0007
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.9976 ± 0.0006	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	0.9970 ± 0.0009
Density	3.23 ± 0.06	2.48 ± 0.08	3.19 ± 0.07	3.1 ± 0.1	0.60 ± 0.02	5.7 ± 0.3	2.99 ± 0.09	0.989 ± 0.009
Coverage	0.876 ± 0.002	0.780 ± 0.006	0.872 ± 0.005	0.872 ± 0.004	0.60 ± 0.01	0.406 ± 0.008	0.871 ± 0.002	0.956 ± 0.006

ID	
Study	
MMD 0 2000 3000 N 4000 5000 N	• FGD_{∞} , MMD unbiased • W too expensive for large
······································	•

FGD_{∞} most promising (with caveats)

N

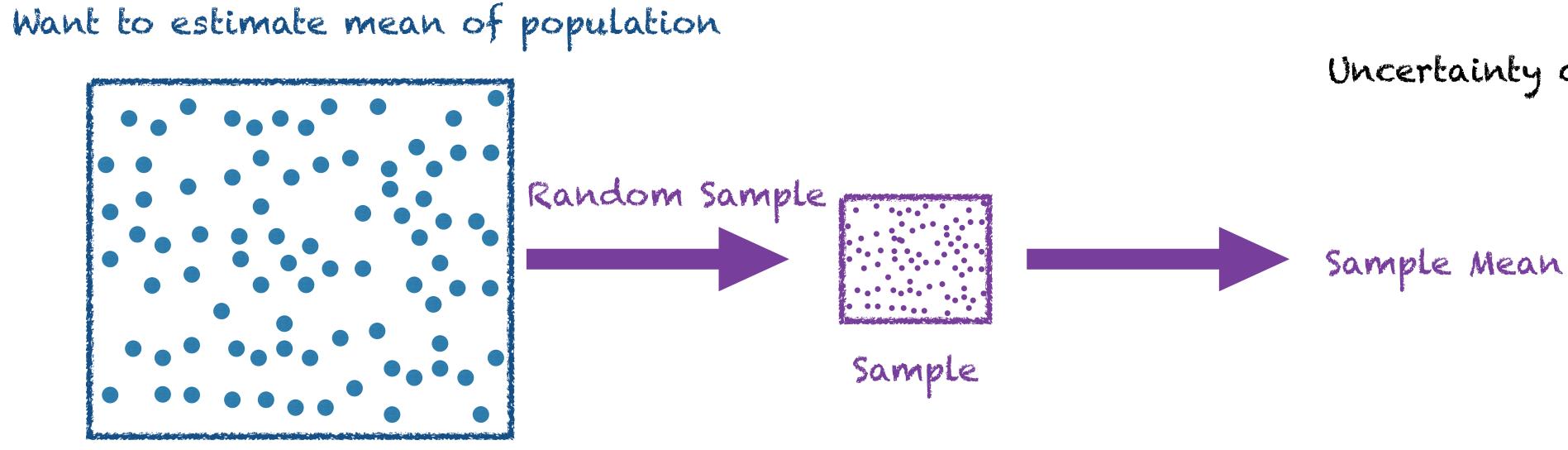


Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$\begin{array}{c} { m Particle} \\ p_{{ m T}}^{{ m rel}} \\ { m smeared} \end{array}$	${\mathop{Particle}\limits_{p_{\mathrm{T}}^{\mathrm{rel}}}}$
$W_1^M \times 10^3$	0.28 ± 0.05	2.1 ± 0.2	6.0 ± 0.3	0.6 ± 0.2	1.7 ± 0.2	0.9 ± 0.3	0.5 ± 0.2	5.8 ± 0.2
Wasserstein EFP	0.02 ± 0.01	0.09 ± 0.05	0.10 ± 0.02	0.016 ± 0.007	0.19 ± 0.08	0.03 ± 0.01	0.03 ± 0.02	0.06 ± 0.02
$\mathrm{FGD}_{\infty} \mathrm{EFP} \times 10^3$	0.01 ± 0.02	21.5 ± 0.3	26.8 ± 0.3	2.31 ± 0.07	23.4 ± 0.3	3.59 ± 0.09	2.29 ± 0.05	28.9 ± 0.2
MMD EFP $\times 10^3$	-0.006 ± 0.005	0.17 ± 0.06	0.9 ± 0.1	0.03 ± 0.02	0.35 ± 0.09	0.08 ± 0.05	0.01 ± 0.02	1.8 ± 0.1
Precision EFP	0.9 ± 0.1	0.94 ± 0.04	0.978 ± 0.005	0.88 ± 0.08	0.7 ± 0.1	0.94 ± 0.06	0.7 ± 0.1	0.79 ± 0.09
Recall EFP	0.9 ± 0.1	0.88 ± 0.07	0.97 ± 0.01	0.92 ± 0.06	0.83 ± 0.05	0.92 ± 0.07	0.8 ± 0.1	0.8 ± 0.1
Wasserstein PN	1.65 ± 0.06	1.7 ± 0.1	2.4 ± 0.4	1.71 ± 0.08	4.5 ± 0.1	1.79 ± 0.05	4.0 ± 0.4	7.6 ± 0.2
$\mathrm{FGD}_{\infty} \ \mathrm{PN} \ \times 10^3$	0.8 ± 0.7	40 ± 2	193 ± 9	5.0 ± 0.9	$\bf 1250 \pm 10$	20 ± 1	1230 ± 10	3640 ± 10
MMD PN $\times 10^3$	-2 ± 2	4 ± 8	80 ± 10	-1 ± 4	500 ± 100	3 ± 2	560 ± 60	1100 ± 40
Precision PN	0.68 ± 0.07	0.64 ± 0.04	0.71 ± 0.06	0.73 ± 0.03	0.09 ± 0.04	0.75 ± 0.08	0.08 ± 0.04	0.39 ± 0.08
Recall PN	0.70 ± 0.05	0.61 ± 0.04	0.61 ± 0.08	0.73 ± 0.06	0.014 ± 0.009	0.7 ± 0.1	0.01 ± 0.01	0.57 ± 0.09
Classifier LLF AUC	0.50	0.52	0.54	0.50	0.97	0.81	0.93	0.99
Classifier HLF AUC	0.50	0.53	0.55	0.50	0.84	0.64	0.74	0.92

Kansal et al, 2022

- FGD_{∞} on EFPs does quite well in these tests
- Would be interesting to see it used and stress tested !

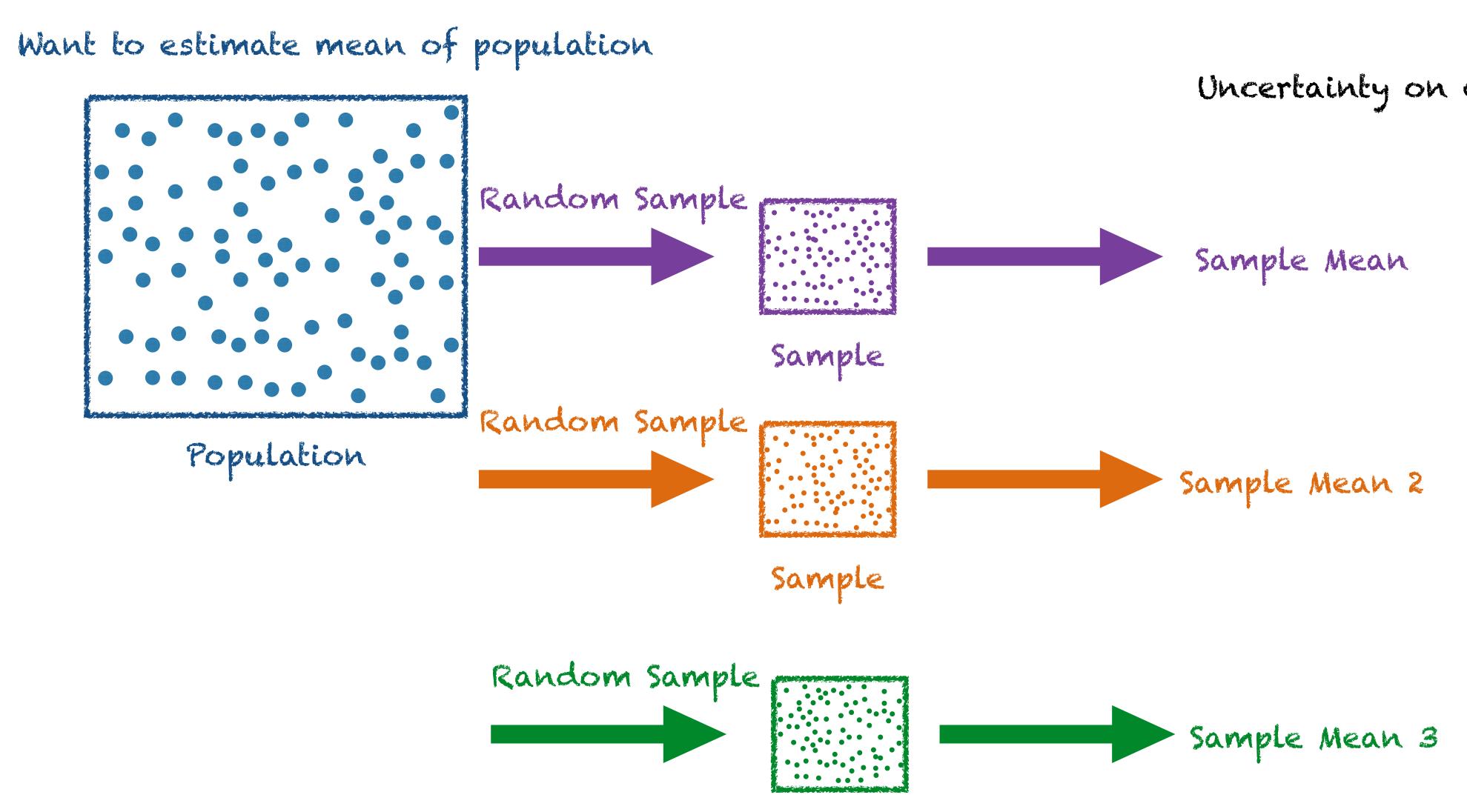
Estimating the variance on mean: Ideal Scenario



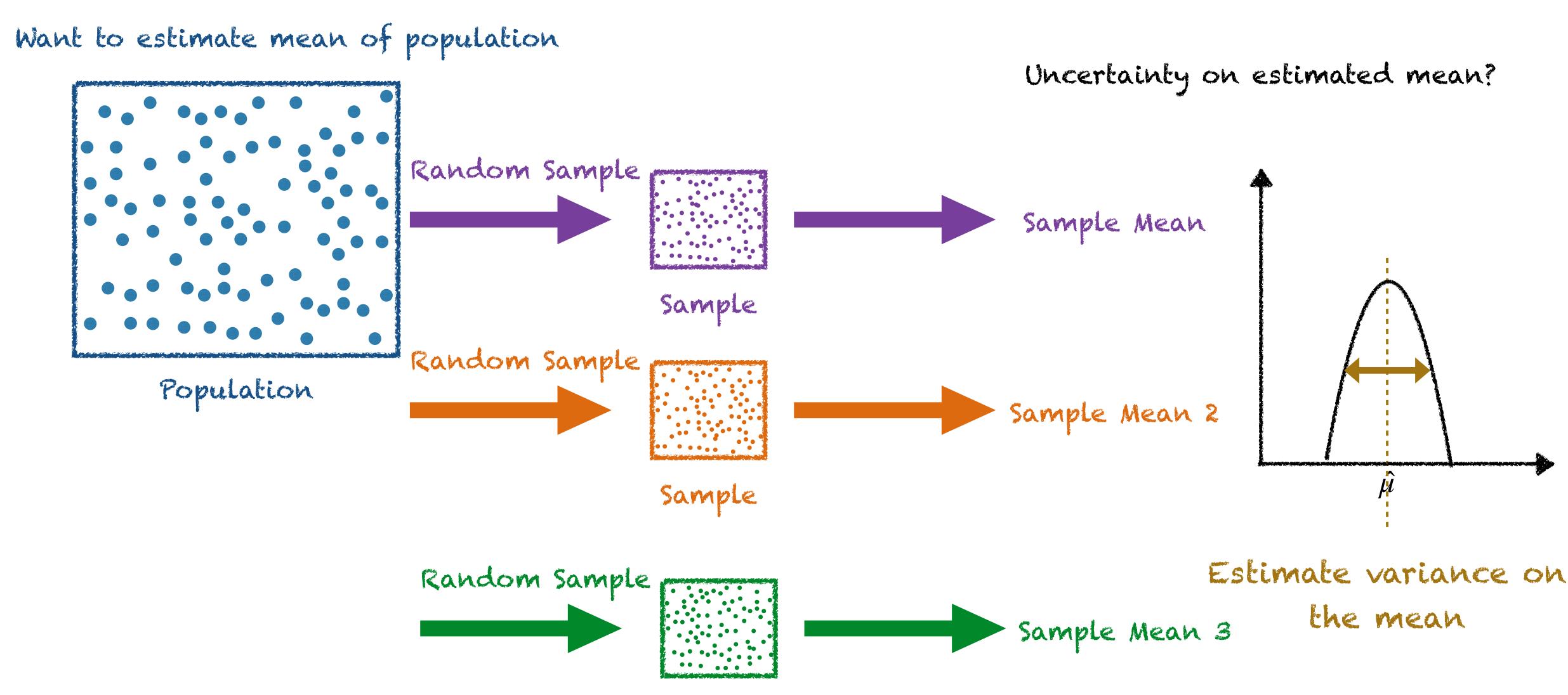
Population

Uncertainty on estimated mean?

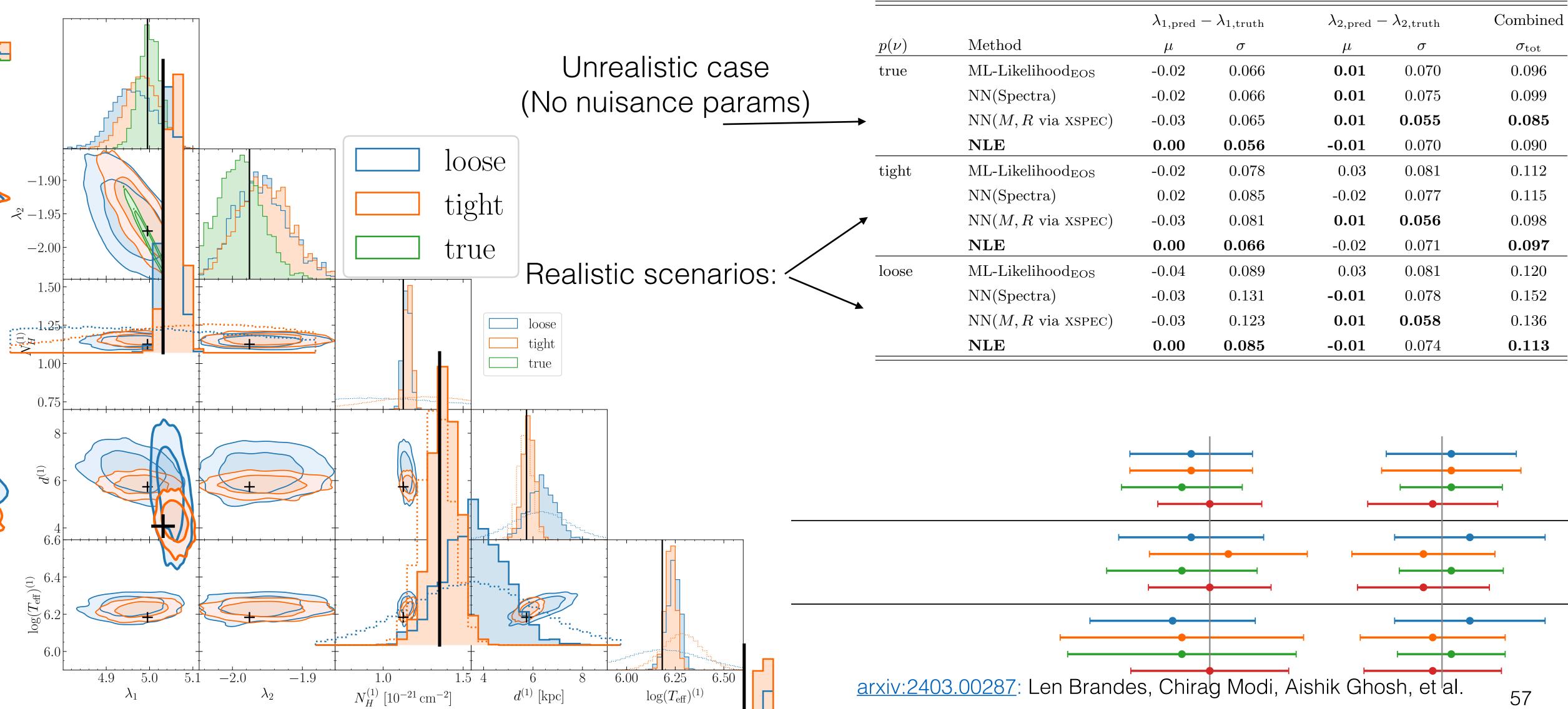
Estimating the variance on mean: Ideal Scenario



Estimating the variance on mean: Ideal Scenario



SBI for Neutron Stars: Beats all previous methods in sensitivity and interpretability



			$\lambda_{1, ext{pred}} - \lambda_{1, ext{truth}}$		$\lambda_{2, ext{pred}} - \lambda_{2, ext{truth}}$		C
	p(u)	Method	μ	σ	μ	σ	
se	true	ML -Likelihood $_{EOS}$	-0.02	0.066	0.01	0.070	
rams)		NN(Spectra)	-0.02	0.066	0.01	0.075	
		NN(M, R via XSPEC)	-0.03	0.065	0.01	0.055	
		NLE	0.00	0.056	-0.01	0.070	
	tight	ML -Likelihood $_{EOS}$	-0.02	0.078	0.03	0.081	
		NN(Spectra)	0.02	0.085	-0.02	0.077	
		$\operatorname{NN}(M, R \text{ via XSPEC})$	-0.03	0.081	0.01	0.056	
		NLE	0.00	0.066	-0.02	0.071	
os: <	loose	ML -Likelihood $_{EOS}$	-0.04	0.089	0.03	0.081	
		NN(Spectra)	-0.03	0.131	-0.01	0.078	
-		NN(M, R via XSPEC)	-0.03	0.123	0.01	0.058	
		NLE	0.00	0.085	-0.01	0.074	