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Simulation-Based Inference in PHY-STAT

Workshop in Munich this summer

This talk: Statistical questions, with bias towards 
frequentist LHC applications

This workshop alone !
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FIG. 4: Similar to Fig. 3, but only for the tight scenario the median and the 68% and 95% posterior credible bands
are shown for the pressure as a function of energy density and the radius as a function of mass. The ground-truth
value for the equation of state and the corresponding mass-radius relation is depicted as a dashed black line. Black

dots indicate the mass-radius values of the 10 simulated stars.
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FIG. 5: Corner plot depicting the posterior distribution of the parameters �1 and �2 of one example EoS. The
posterior is computed based on the simulated spectra of 5 (olive), 10 (blue), or 20 (purple) stars with the nuisance
parameters known with the uncertainties in Tab. II of the loose scenario. The ground-truth parameter values are

depicted as black crosses/lines.

algorithms can easily be scaled to thousands of dimensions, hence we do not anticipate the dimensionality to be a
limiting factor in the scaling of our approach.

C. Average performance on test set

After discussing one example EoS, now we turn to the average performance of NLE with a test set of simulated
data from 100 di↵erent equations of states. To compare the average performance to the previous ML approaches that
infer the neutron star EoS directly from telescope spectra described in Sec. III, we use the same accuracy measure as

https://arxiv.org/pdf/2403.00287


5

Testing theories / hypothesis

p(theory |data) =
p(data | theory)p(theory)

p(data)

What we all 
want 

(Posterior)

Likelihood Prior

Evidence

Bayesian statistics: Assign a prior, then calculate the posterior  → Credible intervals 
Frequentist statistics: No prior, so no posterior. Statements about confidence in our 
analysis method → Confidence intervals 

What we both like: Likelihoods

9

0 200 400 600 800 1000
� [MeV fm�3]

0

200

400

600

P
[M

eV
fm

�
3 ]

95%

68%

median

10 12 14
R [km]

1.0

1.5

2.0

2.5

M
[M

�
]

95%

68%

median

FIG. 4: Similar to Fig. 3, but only for the tight scenario the median and the 68% and 95% posterior credible bands
are shown for the pressure as a function of energy density and the radius as a function of mass. The ground-truth
value for the equation of state and the corresponding mass-radius relation is depicted as a dashed black line. Black

dots indicate the mass-radius values of the 10 simulated stars.

4.8 5.0
�1

�2.00

�1.95

�1.90

�
2

�2.0 �1.9
�2

5 stars

10 stars

20 stars

FIG. 5: Corner plot depicting the posterior distribution of the parameters �1 and �2 of one example EoS. The
posterior is computed based on the simulated spectra of 5 (olive), 10 (blue), or 20 (purple) stars with the nuisance
parameters known with the uncertainties in Tab. II of the loose scenario. The ground-truth parameter values are

depicted as black crosses/lines.

algorithms can easily be scaled to thousands of dimensions, hence we do not anticipate the dimensionality to be a
limiting factor in the scaling of our approach.

C. Average performance on test set

After discussing one example EoS, now we turn to the average performance of NLE with a test set of simulated
data from 100 di↵erent equations of states. To compare the average performance to the previous ML approaches that
infer the neutron star EoS directly from telescope spectra described in Sec. III, we use the same accuracy measure as

https://www.researchgate.net/figure/Observed-and-expected-95-confidence-level-upper-limits-on-the-Higgs-boson-production_fig3_51900429
https://arxiv.org/pdf/2403.00287


6

How to obtain the likelihood?

We got our data from observation / experiment  
Now how do we calculate  ?p(data | theory)



6

How to obtain the likelihood?

We got our data from observation / experiment  
Now how do we calculate  ?p(data | theory)

A known analytical formula 
• Often uses approximations 
• Restrict data space to where it works 

Most domains in science have a detailed 
forward simulator
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Forward simulator but inverse problem

p(zh |zp) p(zp |θ)p(x |zh)∫ dzp(x |θ) =
Intractable:
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Forward simulator but inverse problem

Simulator let’s you sample from the 
likelihood 

But no analytical formula, no tractable 
likelihood 

Typically, simulator cannot be run in reverse

p(zh |zp) p(zp |θ)p(x |zh)∫ dzp(x |θ) =
Intractable:
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Traditional solution at LHC: Histograms
Likelihood can be calculated in low-dimensional summary statistic

The count of events in each bin follows a 
Poisson distribution 

P(Nobs = k |Nexp = λ) =
λke−k

k!

From theory simulation

From experiment data

High-dimensional data compressed into 1 
variable and binned into histogram



9

Density estimation with summary statistic
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With histograms we can ask “Given the data, what is the likelihood a  hypothesis vs  hypothesis?”μ = 1 μ = 2

Measure single strength μ
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Traditional method collapsed information about star into 2 numbers: mass and radius 

Perform statistical inference in this low dimensional space

arxiv:2403.00287: Len Brandes, Chirag Modi, Aishik Ghosh, et al.

Summary statistics, a neutron stars example

Lossy compression !
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FIG. 1: Overview of the regression task, which involves either inferring stellar summary quantities such as mass and
radius, which can then be used to deduce the equation of state as in earlier work [18–21] or inference of EOS directly

from stellar spectra, as is demonstrated in this study.

physics, often increasing the statistical power of di�cult-
to-collect data [23] while allowing robust handling of un-
certainties [24]. Where earlier neural networks were lim-
ited in size, computing progress especially in the form
of Graphical Processing Units (GPUs), has enabled the
deployment of larger and deeper networks that can han-
dle more complex and higher-dimensional data [25, 26],
allowing direct analysis of data without requiring dimen-
sional reduction, or other preprocessing steps, that can
often sacrifice useful information. The full power of these
techniques has not yet been brought to bear on many as-
trophysical tasks.

In the context of the inference of neutron star EOS,
recent work by Fujimoto et al. [18, 19] demonstrated the
ability of deep networks to regress the EOS directly from
a set of stellar mass-radius pairs, without the need to
extract the functional relationship between mass and ra-
dius. Their analysis used a toy model to describe the
uncertainties in mass and radius, assuming uncorrelated
Gaussian errors randomly drawn from ad-hoc priors.
Real measurements, of course, do not often obey these
simplifying assumptions, and show complex correlations
between mass and radius [27]. Related work [20] has
demonstrated similar regression, again assuming Gaus-
sian uncertainty on mass and radius values, but with
clever e↵orts to reduce dependence on EOS parameter-
ization. An alternative approach [21] uses both neural
networks and support vector machines to regress the EOS
from stellar radii and tidal deformations.

More realistic characterization of the uncertainties in
the mass-radius plane can be extracted using the state-

of-the-art tool xspec [28], which assumes a theoretical
model for the star and telescope response, allowing for
explicit calculation of the likelihood of telescope spectra
for various mass and radius values. The likelihood can
be used in the standard way to extract best-estimates
and uncertainty contours of any shape in the mass-radius
plane. However, these complex mass-radius likelihoods
cannot be trivially incorporated into the existing EOS
inference schemes, motivating the simplifying assump-
tions of uncorrelation normal distributions which can be
described by two width values. An additional concern
is that xspec’s contours rely on the simplifying assump-
tions of the theoretical model.

What has received less attention in the literature are
likelihood-free methods to infer the EOS directly from
the telescope spectra, without the intermediate stepping
stone of the mass-radius determination and the chal-
lenges of its representation. This would allow for the full
propagation of realistic uncertainties and the relaxation
of assumptions about the theoretical model.

In this paper, we present a technique of EOS infer-
ence which allows for the full propagation of the uncer-
tainties in the X-ray spectra, without making simplify-
ing assumptions about the shape of the contours in the
mass-radius plane. We proceed in three steps, begin-
ning from an approach similar to the state of the art but
with realistic uncertainty propagation, and moving to-
wards end-to-end infererence. In the first step, our neu-
ral network model infers the neutron star EOS from a
set of stellar masses and radii extracted from xspec, but
rather than making simplifying assumptions or extract-

13

FIG. 7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS parameters �1 and
�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.
For the same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and

bottom shows a “loose” scenario in which the NPs are not well constrained by priors.

In the case of M ,R-estimation for an individual star, the performance of the ML-Likelihood method matches the
performance of xspec when the nuisance parameters are known. This is an important validation of the technique,
as the simulated samples are generated by xspec and so its internal likelihood estimation represents something
of an upper bound on possible performance. Though xspec can provide point estimates and other analysis, ML-
Likelihood in this case is valuable as a building block for further analysis, as xspec does not provide an e�cient
interface to its internal calculations. For example, in the cases where nuisance parameters weaken the inference,
ML-Likelihood is able to improve on xspec ’s performance by marginalizing over the stellar nuisance parameters.
Given access to the full likelihood, one could also choose to profile over the nuisance parameters. In addition, while
xspec ’s inference is linked to a particular theoretical model, ML-Likelihood can be trained on a variety or mixture
of models, providing a smooth interpolation between otherwise distinct conceptual approaches [49].

The M,R-likelihood estimation is a building block toward the the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters. The residuals in this case
again are narrower than the pure regression approach, nearly matching the performance of xspec in the true case,
and exceeding it in the realistic case where nuisance parameter uncertainty is important.

The neural networks developed for this work enable end-to-end, fast simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating plausible neutron star

https://arxiv.org/abs/2403.00287
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�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.
For the same specra, center shows a more realistic “tight” scenario in which uncertainty has be integrated out, and

bottom shows a “loose” scenario in which the NPs are not well constrained by priors.

In the case of M ,R-estimation for an individual star, the performance of the ML-Likelihood method matches the
performance of xspec when the nuisance parameters are known. This is an important validation of the technique,
as the simulated samples are generated by xspec and so its internal likelihood estimation represents something
of an upper bound on possible performance. Though xspec can provide point estimates and other analysis, ML-
Likelihood in this case is valuable as a building block for further analysis, as xspec does not provide an e�cient
interface to its internal calculations. For example, in the cases where nuisance parameters weaken the inference,
ML-Likelihood is able to improve on xspec ’s performance by marginalizing over the stellar nuisance parameters.
Given access to the full likelihood, one could also choose to profile over the nuisance parameters. In addition, while
xspec ’s inference is linked to a particular theoretical model, ML-Likelihood can be trained on a variety or mixture
of models, providing a smooth interpolation between otherwise distinct conceptual approaches [49].

The M,R-likelihood estimation is a building block toward the the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters. The residuals in this case
again are narrower than the pure regression approach, nearly matching the performance of xspec in the true case,
and exceeding it in the realistic case where nuisance parameter uncertainty is important.

The neural networks developed for this work enable end-to-end, fast simulation of neutron star spectra for a range
of EOS parameters and nuisance parameters, including the intermediate step of generating plausible neutron star

NPsDirect estimation of likelihood from high-dimensional raw data 
gives better results!

https://arxiv.org/abs/2403.00287
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This is a density estimation problem, not a supervised regression

High-dimensional density estimation with neural networks,  
unsupervised methods like: 
• Normalising flows for neural likelihood estimation 
• Diffusion models for neural posterior estimation 

Or ‘supervised’ method! 
• Classifiers for neural ratio estimation

See PHY-STAT Munich workshop for different examples
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FIG. 7: Scans of the likelihood for two example sets of stellar spectra s (left, right) versus EOS parameters �1 and
�2. Top demonstrates the ideal nuisance parameter (NP) conditions where the NPs are fixed to their true values.

For the same simulated observed spectra, the center shows a more realistic “tight” scenario, and the bottom shows a
“loose” scenario in which the NPs are not well constrained by priors. In the “loose” and “tight” scenarios,

dependence on the nuisance parameters has been integrated out as described in the text.

The M,R-likelihood estimation is a building block toward the estimation of EOS parameters for sets of stars.
In this case, as well, the likelihood provides for reliable inference of the EOS parameters, as demonstrated by the
performance of ML-LikelihoodEOS. The residuals in this case again are narrower than the pure regression approach,
nearly matching the performance of xspec in the true case, and exceeding its unmarginalized estimates in the realistic
case where nuisance parameter uncertainty is important.

Our method uses machine learning to enable what is typically termed a forward process, in that it aids the calculation
of the likelihood of experimental data from the parameters, rather than backward inference of the parameters from the
data. In this sense, it can be considered a fast and flexible simulation tool. The neural networks developed for this work
e↵ectively enable end-to-end, fast, and convenient simulation of neutron star spectra for a range of EOS parameters
and nuisance parameters, including the intermediate step of generating plausible neutron star properties (mass and
radius) for a given set of EOS parameters. In the case where the true likelihood exists but is not made conveniently
accessible, our approach provides a powerful and flexible new interface, even without speed enhancements. In the
more general case, such as for EOS inference, the approach additionally allows for more rapid generation of simulated
stellar masses and radii for specific EOS parameters without solving the complex sets of equations underlying the
physical model.

We do not know the true  of an event even in our simulationsp(xi | theory)

https://indico.cern.ch/event/1355601/timetable/?view=standard
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accessible, our approach provides a powerful and flexible new interface, even without speed enhancements. In the
more general case, such as for EOS inference, the approach additionally allows for more rapid generation of simulated
stellar masses and radii for specific EOS parameters without solving the complex sets of equations underlying the
physical model.

We do not know the true  of an event even in our simulationsp(xi | theory)

https://indico.cern.ch/event/1355601/timetable/?view=standard
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The motivation for Neural SBI in particle physics
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Traditional {S vs B} classifier often good enough

We want to compare likelihoods: 
p(𝒟 |μ)
p(𝒟 |μ0)

ℒ(μ |𝒟) = p(𝒟 |μ)
Neyman–Pearson lemma: Likelihood ratio is the most powerful test statistic

s(xi) =
p(xi |S)

p(xi |S) + p(xi |B)
A neural network classifier trained on S vs B, estimates the decision function*:

p(xi |μ)
p(xi |μ = 0)

=
μ ⋅ σS ⋅ p(xi |S) + σB ⋅ p(xi |B)

σB ⋅ p(xi |B)
= μ ⋅

σS

σB
⋅

s(xi)
1 − s(xi)

+ 1.

Which contains all the information required for the likelihood ratio:

Same observable  is optimal to test all  hypotheses!
No need to develop separate analysis per hypothesis 

s μ
μ* Equal class weights
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New challenges, eg. quantum interference

O

C
ou

nt

Background-only model

Signal model

A histogram of any single observable is no longer optimal (see Ghosh et al.)
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2.3. OFF-SHELL HIGGS MEASUREMENT IN THE FOUR LEPTON FINAL STATE

FIG. 5: Overall picture at 13 TeV, (colour online).

FIG. 6: Higgs related contributions in the high m4� region, (colour online).
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(a)

Figure 2.9 – Di�erential cross sections as a function of the invariant mass of the four leptons for
various processes in the four lepton channel, gg æ H

ú
æ ZZ signal (red line), gg æ ZZ background

(blue line), full process gg æ
!
H

ú
æ

"
ZZ (pink line), and the dominant background qq̄ æ ZZ. [29]

processes do so through their low-mass o�-shell tails (see the Feynman diagrams for the main
contributors to the ZZ production in Figure 2.8). Near twice the Z mass, o�-shell production of
the SM Higgs boson has a substantial cross-section at the LHC [31, 32] (see Figure 2.9) because
although the Higgs boson is o�-shell, the intermediate Z bosons in the decay process can go
on-shell. The threshold e�ect can be seen again near twice the top mass, corresponding to the
top quarks in the production process going on-shell. This provides a unique opportunity to
study the Higgs boson at higher energy scales. The destructive interference between certain SM
signal and background processes further enhance the possibility to measure the presence of the
signal.

The high mass o�-shell study has received considerable attention because it is sensitive to various
kinds of New Physics that might change the couplings of the Higgs to other fundamental particles
in the high-mass region or change the ZZ background yield [33–35], and the measurement has
interesting interpretations in the EFT framework [36]. Non-SM operators studied by [37] lead to
enhanced yields in the o�-shell regime coming from gg æ X æ ZZ

ú
æ 4¸ where X indicates New

Physics. The measurements can also help break degeneracies and compliment ttH measurements
to constrain EFT parameters [38].

It is clear that at such high energies, the infinite top mass approximation often used to simplify
the coupling of the Higgs to gluons breaks down, therefore it is essential to take finite top mass
e�ects into account. New Physics could change the couplings to the top as well as introduce
new heavy coloured states running in the loop and these e�ects might remain invisible for the
on-shell Higgs [39]. The presence of any additional agent of symmetry breaking (such as a heavy
neutral Higgs) is likely to a�ect this region of the distribution that is sensitive to interference
e�ects. Finally, the o�-shell measurement would help probe the total width of the Higgs boson,
and the interest for doing so have been described in the previous section.
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Example of where summary statistics break down  in presence of quantum interference

hal-02971995v3: Aishik Ghosh, David Rousseau

H* → ZZ → 4l

https://hal.science/hal-02971995v3/
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Example of where summary statistics break down  in presence of quantum interference

Optimal observable now changes as a function of μ: Cannot collapse problem to 1 dimension

Δηjj

hal-02971995v3: Aishik Ghosh, David Rousseau

Can you spot the green plot?

m4l

(mu=0)
(mu=1)

μ=4 indistinguishable from μ=0 
but other observables can break 
the degeneracy

H* → ZZ → 4l

https://hal.science/hal-02971995v3/
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What breaks down?

No longer in this convenient spacial case: The same observable no longer optimal due to non-linear effects coming from 
quantum interference 

• Does not generalise to an arbitrary theory parameter , (eg. Effective Field Theory parameters) 
• Summary statistics also not optimised for systematics

θ

So many LHC analyses would benefit from high-dimensional inference!

CHAPTER 2. THEORETICAL OVERVIEW

where �g,o�-shell(ŝ) and �V,o�-shell(ŝ) are the o�-shell coupling scale factors associated with the gg � H�

production and the H� � VV decay. Due to the statistically limited sensitivity of the current analysis,
the o�-shell signal strength and coupling scale factors are assumed in the following to be independent
of ŝ in the high-mass region selected by the analysis. The o�-shell Higgs boson signal cannot be treated
independently from the gg � VV background, as sizeable negative interference e�ects appear [7]. The
interference term is proportional to �µo�-shell = �g,o�-shell · �V,o�-shell.
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Figure 1: The leading-order Feynman diagrams for (a) the gg � H� � VV signal, (b) the continuum gg � VV
background and (c) the qq̄� VV background.

In contrast, the cross-section for on-shell Higgs boson production allows a measurement of the signal
strength:

µon-shell �
�gg�H�VV

on-shell

�gg�H�VV
on-shell, SM

=
�2g,on-shell · �2V,on-shell

�H/�SM
H

, (2)

which depends on the total width �H . Assuming identical on-shell and o�-shell Higgs boson coupling
scale factors, the ratio of µo�-shell to µon-shell provides a measurement of the total width of the Higgs boson.
This assumption is particularly relevant to the running of the e�ective coupling �g(ŝ) for the loop-induced
gg � H production process, as it is sensitive to new physics that enters at higher mass scales and could
be probed in the high-mass mVV signal region of this analysis. More details are given in Refs. [12–16].
With the current sensitivity of the analysis, only an upper limit on the total width �H can be determined,
for which the weaker assumption

�2g,on-shell · �2V,on-shell � �2g,o�-shell · �2V,o�-shell , (3)

that the on-shell couplings are no larger than the o�-shell couplings, is su�cient. It is also assumed
that any new physics which modifies the o�-shell signal strength µo�-shell and the o�-shell couplings
�i,o�-shell does not modify the predictions for the backgrounds. Further, neither are there sizeable kinematic
modifications to the o�-shell signal nor new, sizeable signals in the search region of this analysis unrelated
to an enhanced o�-shell signal strength [18, 24].

While higher-order quantum chromodynamics (QCD) and electroweak (EW) corrections are known for
the o�-shell signal process gg � H� � ZZ [25], which are also applicable to gg � H� � WW, no
higher-order QCD calculations are available for the gg� VV background process, which is evaluated at
leading order (LO). Therefore the results are given as a function of the unknown K-factor for the gg� VV
background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
sensitive to the jet multiplicity.
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background. QCD corrections for the o�-shell signal processes have only been calculated inclusively in
the jet multiplicity. The experimental analyses are therefore performed inclusively in jet observables and,
the event selections are designed to minimise the dependence on the boost of the VV system, which is
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Figure 2.8 – Feynman diagrams of the main contributions to the ZZ production processes: (a) gg

produced signal (Higgs-mediated), (b) gg produced background (interferes with the signal), (c) qq̄

produced dominant background.

that is very di�erent from a naive sum of the two. This is known as quantum interference and556

it carries through also to QFT.557

Usually the signal and background processes either have di�erent initial and/or final state par-558

ticles, or come from disjoint phase spaces, and can therefore be simulated separately. As a559

simplified example, consider the probability of having one particular sample X, denoted P (X)560

(with 0 Æ P (X) Æ 1) is a function of the complex Matrix Elements, Ms(X), Mb(X) (with561

Ms, Mb œ C), for the signal and background process respectively, is given by,562

P (X) = |Ms(X) + Mb(X)|2 = |Ms(X)|2
¸ ˚˙ ˝

Ps(X)

+ |Mb(X)|2
¸ ˚˙ ˝

Pb(X)

+2 Re(Ms(X)Mb(X))
¸ ˚˙ ˝

Pi(X)

. (2.49)

If the third term (Pi(X), where ‘i’ stands for ‘interference’) is insignificant, the signal and563

background contributions can be simulated separately (with Pb(X) and Ps(X)) and simply564

combined (because the combination is linear). However in the gg æ (Hú
æ)ZZ case, both the565

initial and final states of the signal (gg æ H
ú

æ ZZ, Figure 2.8a) and background (gg æ ZZ,566

Figure 2.8b) processes are identical, and the phase spaces overlap, therefore the contribution567

from the mixed term cannot be ignored. To produce physical samples, the two processes must be568

simulated together due to the non-linear contribution from Pi(X). The interference component569

can have a negative contribution to P (X). The individual components of the signal, background570

and the full process can be seen in Figure 2.9, and indeed the interference contribution is negative571

(explicitly shown in Figure 2.10).572

A final interesting point to note is that if the couplings are scaled in such a way as to increase573

the signal contribution by a factor Ô
µ then the corresponding matrix element needs to be scaled574

by Ô
µ so that,575

|Ms(X)|2 æ |
Ô

µ · Ms(X)|2, (2.50)
then the interference component consequently is scaled by the square root of that factor (i.e576
Ô

µ) as,577

Re(Ms(X)Mb(X)) æ Re(Ôµ · Ms(X)Mb(X)), (2.51)
and therefore the full probability becomes578

Pscaled(X) = µ · Ps(X) + Pb(X) + Ô
µ · Pi(X). (2.52)

This will play a crucial role in introducing non-linear e�ects in the yields in Chapter 6 and579

Chapter 7.580

2.3.2 A unique opportunity for o�-shell measurements581

Since the mass of the Higgs is only around 125 GeV, the vector bosons (2mZ ¥ 182 GeV,582

2mW ¥ 160 GeV) and top quarks (2mt ¥ 346 GeV) that contribute to the on-shell Higgs583
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Nexp = μ ⋅ S + B+ μ ⋅ I
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θ1
ref

Which contains all the information required for the likelihood ratio:

We can even obtain this as a function of  !θ

p(xi |θ2)
p(xi |ref )

=
s(xi, θ = θ2)

1 − s(xi, θ = θ2)

p(xi |θ3)
p(xi |ref )

=
s(xi, θ = θ3)

1 − s(xi, θ = θ3)

…

https://arxiv.org/abs/1506.02169


Core idea

18

Obs	Data

θ1

Likelihood	Ratio		

( ℒ(θ1 |𝒟)
ℒ(ref |𝒟) )

The neural inference framework:

Traditional framework:

Statistical	
Fit

Summary	
Histogram

θ1

Likelihood	
ℒ(θ1 |𝒟)

Summarisation	
to	histogram

High-dim	data

High-dim	data

Core	Core	Core	Neural	
Networks

1506.02169: Cranmer et al

https://arxiv.org/abs/


Core idea

18

Obs	Data

θ1

Likelihood	Ratio		

( ℒ(θ1 |𝒟)
ℒ(ref |𝒟) )

The neural inference framework:

Traditional framework:

Statistical	
Fit

Summary	
Histogram

θ1

Likelihood	
ℒ(θ1 |𝒟)

Summarisation	
to	histogram

High-dim	data

High-dim	data

Core	Core	Core	Neural	
Networks

1506.02169: Cranmer et al

https://arxiv.org/abs/


Core idea

18

Obs	Data

θ1

Likelihood	Ratio		

( ℒ(θ1 |𝒟)
ℒ(ref |𝒟) )

The neural inference framework:

Traditional framework:

Statistical	
Fit

Summary	
Histogram

θ1

Likelihood	
ℒ(θ1 |𝒟)

Summarisation	
to	histogram

High-dim	data

High-dim	data

Core	Core	Core	Neural	
Networks

• Fully leverage detailed 
physics knowledge 
stored in simulators 

• Perform high-dimensional 
inference

1506.02169: Cranmer et al

https://arxiv.org/abs/


19

hal-02971995v3: Aishik Ghosh, David Rousseau

Phenomenology studies promise a dramatic improvement
with high-dimensional inference

An example for Higgs width 
measurement

https://hal.science/hal-02971995v3/


19

hal-02971995v3: Aishik Ghosh, David Rousseau

Phenomenology studies promise a dramatic improvement
with high-dimensional inference

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

(a) SM, without rate (b) SM with rate

(c) µ = 2, without rate (d) µ = 2 with rate

(e) µ = 4, without rate (f) µ = 4 with rate

Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.

170

7.7. INFERENCE AND EVALUATION OF RESULTS

8

1 σ limits

Tr
ue

 v
al

ue

Improvement1 σ limits

Tr
ue

 v
al

ue

Improvement

(a)

1 σ limits

Tr
ue

 v
al

ue

(b)

7

1 σ limits

Tr
ue

 v
al

ue

Tr
ue

 v
al

ue

Improvement
Improvement

1 σ limits

(c)

Figure 7.15 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb≠1 where the true value is indicated with the golden

vertical line and the 1‡ limit threshold indicated by the grey horizontal line

169

Improvement

s = 13 TeV,  36 fb−1

NSBI
Histogram ML 

Expected sensitivity 

 limits1σ

An example for Higgs width 
measurement

https://hal.science/hal-02971995v3/


19

hal-02971995v3: Aishik Ghosh, David Rousseau

Phenomenology studies promise a dramatic improvement
with high-dimensional inference

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

(a) SM, without rate (b) SM with rate

(c) µ = 2, without rate (d) µ = 2 with rate

(e) µ = 4, without rate (f) µ = 4 with rate

Figure 7.16 – Negative log likelihood curves for Asimov datasets generated at µ = 1, µ = 2, µ = 4
with and without using the total cross section (rate) information.

170

7.7. INFERENCE AND EVALUATION OF RESULTS

8

1 σ limits

Tr
ue

 v
al

ue

Improvement1 σ limits

Tr
ue

 v
al

ue

Improvement

(a)

1 σ limits

Tr
ue

 v
al

ue

(b)

7

1 σ limits

Tr
ue

 v
al

ue

Tr
ue

 v
al

ue

Improvement
Improvement

1 σ limits

(c)

Figure 7.15 – p-value scans for Asimov test dataset generated at (a) µ = 4, (b) µ = 2, and (c)
standard model (µ = 1) for a luminosity of 36 fb≠1 where the true value is indicated with the golden

vertical line and the 1‡ limit threshold indicated by the grey horizontal line

169

Improvement

s = 13 TeV,  36 fb−1

NSBI
Histogram ML 

Expected sensitivity 

 limits1σ

“Traditional ML” baseline

An example for Higgs width 
measurement

https://hal.science/hal-02971995v3/


20

Challenges for NSBI:
• Robustness: Design and validation 
• Uncertainties: Quantifying and propagating systematics 
• Neyman Construction: Throwing toys in high-dimensions
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Figure 1: A classifier-based metric measures the divergence between posterior approximations and a ground
truth by means of evaluating the classifier’s discriminative performance through Area Under the Receiver
Operating Characteristics curve (auroc). The metric indicates that both the overconfident and the conser-
vative approximations are equally accurate as it yields auroc = 0.7 for both of them. From an inference
perspective however, the conservative approximation is more suitable because it produces credible regions
larger than they should be.

of the parameter space. The credible region is the set of parameters whose density is greater than a given
threshold fitted to achieve the desired credibility level 1 ≠ –. Additional details are described in Appendix A.

2.2 Statistical quality assessment

Common metrics for evaluating the quality of a posterior surrogate include the Classifier Two-sample Test
(Lehmann & Romano, 2006; Lopez-Paz & Oquab, 2017) and Maximum Mean Discrepancy (Gretton et al.,
2012; Bengio et al., 2014; Dziugaite et al., 2015). The main problem with these metrics is that they assess
exactness of an approximation through a divergence with respect to the posterior. All approximations will
diverge from the posterior and there are no criteria to what constitutes an acceptable estimator. For this
reason, we argue that metrics evaluating the reliability for scientific inquiry should be used alongside the
divergence evaluation when evaluating estimators.

To clarify this point, consider the demonstration in Figure 1. A binary classifier is trained to discriminate
between samples from a posterior approximation and the true posterior, as in a classifier two-sample test.
The discriminative performance of the classifier is expressed through Area Under the Receiver Operating
Characteristics curve (auroc) and serves as a measure for divergence between both densities. An auroc =
0.5 suggests an approximation that is indistinguishable from the true posterior, while auroc = 1.0 implies
that both distributions do not overlap. Although both the overconfident and the conservative approximations
are of equal quality according to the auroc metric (auroc = 0.7), credible regions that are biased or smaller
than they should be could result in the wrong exclusion of actually plausible parameter values for a given
significance level, and hence to erroneous scientific conclusions. By contrast, conservative approximations,
which leads to credible regions that are larger than they should be, are more scientifically reliable since they
would not wrongly reject plausible parameters values but only fail to reject actually implausible parameter
values. For this reason, we take the position that posterior approximations should produce overdispersed
credible regions for any simulation budget. Posterior approximations do not have to closely match the true
posterior to draw meaningful inferences, but they should however be conservative.

Instead of measuring the exactness of an approximation, this work directly assesses the quality of credible
regions through the notion of expected coverage which probes the consistency of the posterior approximations
and can be used to diagnose conservative and overconfident approximations. Similar usages of coverage

3

Hermans et al: arXiv:2110.06581

https://arxiv.org/abs/2110.06581
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Validate quality of LR estimation with re-weighting task
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Reweighting: Calculate weights  for events  in green sample to match blue samplewi xi



Validate quality of LR estimation with re-weighting task

23

Reweighting: Calculate weights  for events  in green sample to match blue samplewi xi

wi =
P(xi |θ1)
P(xi |θ0)

Already estimated using classifiers
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wi =
P(xi |θ1)
P(xi |θ0)

Re-weight diagnostics

ROC Curve

High-dimensional classifier testOne-dimensional visualisations

Independent classifier trained to separate re-
weighted vs target
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Figure 3: Analysis of coverage between ensemble and individual models w.r.t the various simulation budgets.
The blue line represents the mean expected coverage of individual models over 5 runs, the shaded area
represents its standard deviation. The black line represents the expected coverage of a single ensemble
composed of 5 models. We observe that deep ensembles consistently have a higher expected coverage
probability compared to the average individual model. A similar e�ect is not always observed with bagging,
indicated by the red line. Ensembles are only evaluated for amortized approaches such as npe and nre.

9

Similar tests possibly for many NSBI 
methods, see Hermans et al
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NSBI also provides new tools to inspect my data & analysis

Particle mass

Avg LR 
(  vs )H1 H2

1
Which events favour my hypothesis, 
which don’t ? 

Can go down to inspecting the 
contribution of each individual event!
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Parameterising networks and validating them

Network can learn a function parameterised in: 
• parameter of interest  (eg. W Mass) 
• nuisance parameters  (eg. Jet energy scale) 

Questions: 
• How do we validate it for the full space of  ?

θ
z

{θ, z}

2

x1
x2

fa(x1,x2)

θ=θa

x1
x2

f(x1,x2,θ)

θ

x1
x2

fb(x1,x2)

θ=θb

FIG. 1: Left, individual networks with input features
(x1, x2), each trained with examples with a single value of
some parameter ✓ = ✓a, ✓b. The individual networks are
purely functions of the input features. Performance for in-
termediate values of ✓ is not optimal nor does it necessarily
vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input pa-
rameter ✓; such a network is trained with examples at several
values of the parameter ✓.

that the resulting inference is Bayesian. In the studies

presented below, we simply use equal sized samples for

a few discrete values of ✓̄. Another issue is that some or

all of the components of ✓̄ may not be meaningful for a

particular target class. For instance, the mass of a new

particle is not meaningful for the background training

examples. In what follows, we randomly assign values to

those components of ✓̄ according to the same distribu-

tion used for the signal class. In the examples studied

below the networks have enough generalization capacity

and the training sets are large enough that the resulting

parameterized classifier performs well without any tuning

of the training procedure. However, the robustness of the

resulting parameterized classifier to the implicit distribu-

tion of ✓̄ in the training sample will in general depend on

the generalization capacity of the classifier, the number

of training examples, the physics encoded in the distribu-

tions p(x̄|✓̄, y), and how much those distributions change

with ✓̄.

TOY EXAMPLE

As a demonstration for a simple toy problem, we con-

struct a parameterized network, which has a single in-

put feature x and a single parameter ✓. The network

is trained using labeled examples where examples with

label 0 are drawn from a uniform background and exam-

ples with label 1 are drawn from a Gaussian with mean

✓ and width � = 0.25. Training samples are generated

with ✓ = �2,�1, 0, 1, 2; see Fig. 2a.

As shown in Fig. 2, this network generalizes the so-

lution and provides reasonable output even for values
of the parameter where it was given no examples. Note

that the response function has the same shape for these

values (✓ = �1.5,�0.5, 0.5, 1.5) as for values where train-

ing data was provided, indicating that the network has

FIG. 2: Top, training samples in which the signal is drawn
from a Gaussian and the background is uniform. Bottom,
neural network response as a function of the value of the input
feature x, for various choices of the input parameter ✓; note
that the single parameterized network has seen no training
examples for ✓ = �1.5,�0.5, 0.5, 1.5.

successfully parameterized the solution. The signal-

background classification accuracy is as good for values

where training data exist as it is for values where training

data does not.

1D PHYSICAL EXAMPLE

A natural physical case is the application to the search

for new particle of unknown mass. As an example, we

consider the search for a new particle X which decays

to tt̄. We treat the most powerful decay mode, in which

tt̄ ! W+bW�b̄ ! qq0b`⌫ b̄. The dominant background

is standard model tt̄ production, which is identical in

final state but distinct in kinematics due to the lack of

an intermediate resonance. Figure 3 shows diagrams for

both the signal and background processes.

We first explore the performance in a one-dimensional

case. The single event-level feature of the network is

mWWbb, the reconstructed resonance mass, calculated

using standard techniques identical to those described

in Ref. [14]. Specifically, we assume resolved top quarks

in each case, for simplicity. Events are are simulated at

parton level with madgraph5 [15], using pythia [16]

for showering and hadronization and delphes [17] with

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

Figure: Ghosh et al

Figure: Baldi et al

Cranmer et al
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termediate values of ✓ is not optimal nor does it necessarily
vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input pa-
rameter ✓; such a network is trained with examples at several
values of the parameter ✓.

that the resulting inference is Bayesian. In the studies

presented below, we simply use equal sized samples for

a few discrete values of ✓̄. Another issue is that some or

all of the components of ✓̄ may not be meaningful for a

particular target class. For instance, the mass of a new

particle is not meaningful for the background training

examples. In what follows, we randomly assign values to

those components of ✓̄ according to the same distribu-

tion used for the signal class. In the examples studied

below the networks have enough generalization capacity

and the training sets are large enough that the resulting

parameterized classifier performs well without any tuning

of the training procedure. However, the robustness of the

resulting parameterized classifier to the implicit distribu-

tion of ✓̄ in the training sample will in general depend on

the generalization capacity of the classifier, the number

of training examples, the physics encoded in the distribu-

tions p(x̄|✓̄, y), and how much those distributions change

with ✓̄.

TOY EXAMPLE

As a demonstration for a simple toy problem, we con-

struct a parameterized network, which has a single in-

put feature x and a single parameter ✓. The network

is trained using labeled examples where examples with

label 0 are drawn from a uniform background and exam-

ples with label 1 are drawn from a Gaussian with mean

✓ and width � = 0.25. Training samples are generated

with ✓ = �2,�1, 0, 1, 2; see Fig. 2a.

As shown in Fig. 2, this network generalizes the so-

lution and provides reasonable output even for values
of the parameter where it was given no examples. Note

that the response function has the same shape for these

values (✓ = �1.5,�0.5, 0.5, 1.5) as for values where train-

ing data was provided, indicating that the network has

FIG. 2: Top, training samples in which the signal is drawn
from a Gaussian and the background is uniform. Bottom,
neural network response as a function of the value of the input
feature x, for various choices of the input parameter ✓; note
that the single parameterized network has seen no training
examples for ✓ = �1.5,�0.5, 0.5, 1.5.

successfully parameterized the solution. The signal-

background classification accuracy is as good for values

where training data exist as it is for values where training

data does not.

1D PHYSICAL EXAMPLE

A natural physical case is the application to the search

for new particle of unknown mass. As an example, we

consider the search for a new particle X which decays

to tt̄. We treat the most powerful decay mode, in which

tt̄ ! W+bW�b̄ ! qq0b`⌫ b̄. The dominant background

is standard model tt̄ production, which is identical in

final state but distinct in kinematics due to the lack of

an intermediate resonance. Figure 3 shows diagrams for

both the signal and background processes.

We first explore the performance in a one-dimensional

case. The single event-level feature of the network is

mWWbb, the reconstructed resonance mass, calculated

using standard techniques identical to those described

in Ref. [14]. Specifically, we assume resolved top quarks

in each case, for simplicity. Events are are simulated at

parton level with madgraph5 [15], using pythia [16]

for showering and hadronization and delphes [17] with

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.
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FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

Figure: Ghosh et al

Figure: Baldi et al

Cranmer et al

z1

z2

• How to parameterise on nuisance parameters 
for which we only have 3 examples ?

https://arxiv.org/abs/2105.08742
https://arxiv.org/abs/1601.07913
https://arxiv.org/abs/
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Parameterising networks and validating them

Network can learn a function parameterised in: 
• parameter of interest  (eg. W Mass) 
• nuisance parameters  (eg. Jet energy scale) 

Questions: 
• How do we validate it for the full space of  ?

θ
z

{θ, z}

2

x1
x2

fa(x1,x2)

θ=θa

x1
x2

f(x1,x2,θ)

θ

x1
x2

fb(x1,x2)

θ=θb

FIG. 1: Left, individual networks with input features
(x1, x2), each trained with examples with a single value of
some parameter ✓ = ✓a, ✓b. The individual networks are
purely functions of the input features. Performance for in-
termediate values of ✓ is not optimal nor does it necessarily
vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input pa-
rameter ✓; such a network is trained with examples at several
values of the parameter ✓.

that the resulting inference is Bayesian. In the studies

presented below, we simply use equal sized samples for

a few discrete values of ✓̄. Another issue is that some or

all of the components of ✓̄ may not be meaningful for a

particular target class. For instance, the mass of a new

particle is not meaningful for the background training

examples. In what follows, we randomly assign values to

those components of ✓̄ according to the same distribu-

tion used for the signal class. In the examples studied

below the networks have enough generalization capacity

and the training sets are large enough that the resulting

parameterized classifier performs well without any tuning

of the training procedure. However, the robustness of the

resulting parameterized classifier to the implicit distribu-

tion of ✓̄ in the training sample will in general depend on

the generalization capacity of the classifier, the number

of training examples, the physics encoded in the distribu-

tions p(x̄|✓̄, y), and how much those distributions change

with ✓̄.

TOY EXAMPLE

As a demonstration for a simple toy problem, we con-

struct a parameterized network, which has a single in-

put feature x and a single parameter ✓. The network

is trained using labeled examples where examples with

label 0 are drawn from a uniform background and exam-

ples with label 1 are drawn from a Gaussian with mean

✓ and width � = 0.25. Training samples are generated

with ✓ = �2,�1, 0, 1, 2; see Fig. 2a.

As shown in Fig. 2, this network generalizes the so-

lution and provides reasonable output even for values
of the parameter where it was given no examples. Note

that the response function has the same shape for these

values (✓ = �1.5,�0.5, 0.5, 1.5) as for values where train-

ing data was provided, indicating that the network has

FIG. 2: Top, training samples in which the signal is drawn
from a Gaussian and the background is uniform. Bottom,
neural network response as a function of the value of the input
feature x, for various choices of the input parameter ✓; note
that the single parameterized network has seen no training
examples for ✓ = �1.5,�0.5, 0.5, 1.5.

successfully parameterized the solution. The signal-

background classification accuracy is as good for values

where training data exist as it is for values where training

data does not.

1D PHYSICAL EXAMPLE

A natural physical case is the application to the search

for new particle of unknown mass. As an example, we

consider the search for a new particle X which decays

to tt̄. We treat the most powerful decay mode, in which

tt̄ ! W+bW�b̄ ! qq0b`⌫ b̄. The dominant background

is standard model tt̄ production, which is identical in

final state but distinct in kinematics due to the lack of

an intermediate resonance. Figure 3 shows diagrams for

both the signal and background processes.

We first explore the performance in a one-dimensional

case. The single event-level feature of the network is

mWWbb, the reconstructed resonance mass, calculated

using standard techniques identical to those described

in Ref. [14]. Specifically, we assume resolved top quarks

in each case, for simplicity. Events are are simulated at

parton level with madgraph5 [15], using pythia [16]

for showering and hadronization and delphes [17] with
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output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.
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FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

Figure: Ghosh et al

Figure: Baldi et al

Cranmer et al
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If these questions interest you, come chat with me!

• How to parameterise on nuisance parameters 
for which we only have 3 examples ?

https://arxiv.org/abs/2105.08742
https://arxiv.org/abs/1601.07913
https://arxiv.org/abs/
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Uncertainties in the likelihood estimation: Training statistics & random initialisation
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Want to estimate mean of population
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with 

replacement

Image: Source

Estimating the variance on mean: Bootstrapping

https://www.lancaster.ac.uk/stor-i-student-sites/jack-trainer/bootstrapping-in-statistics/
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Image: Source

Estimating the variance on mean: Bootstrapping
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Quantifying uncertainty on estimated likelihood..

• Train an ensemble of networks, each on a bootstrapped 
version of the training dataset

• Or Bayesian networks ? [Delaunoy et al, arXiv2408.15136]

• The spread in their prediction provides the uncertainty due to 
limited training statistics, and random network initialisation 

• Ensemble average used as final prediction, so what’s the 
uncertainty on that ? 

• Too expensive to train thousands of ensembles 
• Create bootstrapped ensembles ? 

• Each network trained on bootstrapped training 
dataset ?

Image: Source

https://arxiv.org/abs/2408.15136
https://medium.com/@alexppppp/how-to-train-an-ensemble-of-convolutional-neural-networks-for-image-classification-8fc69b087d3
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• Does this trivially extend to pre-trained / foundation models? 
• If your simulator is itself a generative model, how to efficiently 

propagate statistical uncertainties through?
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• Does this trivially extend to pre-trained / foundation models? 
• If your simulator is itself a generative model, how to efficiently 

propagate statistical uncertainties through?
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Propagating statistical uncertainty to final result

• In histogram analysis we assign 1 nuisance parameter per bin for 
statistical uncertainty in template histograms built from simulations

• NSBI: 1 nuisance parameter per event?

• Brute force: check impact on final result and ‘profile’ ? 
• Use methods from traditional unbinned analyses ? 
• Maybe all of this is overkill if we perform the Neyman construction? 

These are not completely unanswered questions, but more thought 
here would be valuable
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Propagating statistical uncertainty to final result

• In histogram analysis we assign 1 nuisance parameter per bin for 
statistical uncertainty in template histograms built from simulations

• NSBI: 1 nuisance parameter per event?

• Brute force: check impact on final result and ‘profile’ ? 
• Use methods from traditional unbinned analyses ? 
• Maybe all of this is overkill if we perform the Neyman construction? 

These are not completely unanswered questions, but more thought 
here would be valuable

If these questions interest you, come chat with me!
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Neyman construction: Constructing confidence belts
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• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ



Neyman Construction

37

• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ



Neyman Construction

37

• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ



Neyman Construction

37

• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ



Neyman Construction

37

• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ



Neyman Construction

37

• To build confidence intervals for , we need to ‘invert the hypothesis test’  
• Generate pseudo-experiments (‘toys’) and determine  &  CI as a function of 

θ
1σ 2σ θ

Estimated with pseudo-experiments 
Can look wavy when away from asymptotic regime
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NSBI?

• More simulated samples? 
• Amplify simulated statistics with 

generative models
SciPost Physics Submission

Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5

See backup slide 
Butter, Diefenbacher et al, arXiv:2008.06545

https://arxiv.org/abs/2008.06545
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(‘Unweighted’ events, i.e. integer weights)

• Negative weighted samples? 
• Don’t want negative weighted events in 

toys  
• NN positive resampler (Nachman & Thaler, 

arXiv:2007.11586) too expensive to 
perform+validate for each  

• Using any ML method provokes the 
question: “Use NSBI to validate NSBI ?” 

• Can we have a definitive statistical method 
to throw high-dimensional toys?

θ

https://arxiv.org/abs/2007.11586
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(‘Unweighted’ events, i.e. integer weights)

• Negative weighted samples? 
• Don’t want negative weighted events in 

toys  
• NN positive resampler (Nachman & Thaler, 

arXiv:2007.11586) too expensive to 
perform+validate for each  

• Using any ML method provokes the 
question: “Use NSBI to validate NSBI ?” 

• Can we have a definitive statistical method 
to throw high-dimensional toys?

θ

If you think you have a non-ML solution, come chat with me!

https://arxiv.org/abs/2007.11586
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Automating network evaluation: Issue for NSBI and generative models



Evaluating Fast Calo Simulators
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.

26

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [r
ad

ia
ns

]
θ

Δ
D

ef
le

ct
io

n 
An

gl
e 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

yATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(a)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [r
ad

ia
ns

]
φ

Δ
D

ef
le

ct
io

n 
An

gl
e 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

yATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(b)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 [r
ad

ia
ns

]
θ

Δ
M

om
en

tu
m

 D
ef

le
ct

io
n 

An
gl

e 
  

0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ilit

y

0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ilit

y

ATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(c)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 [r
ad

ia
ns

]
φ

Δ
M

om
en

tu
m

 D
ef

le
ct

io
n 

An
gl

e 
  

0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

ATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(d)

Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.

29

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [r
ad

ia
ns

]
θ

Δ
D

ef
le

ct
io

n 
An

gl
e 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

yATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(a)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [r
ad

ia
ns

]
φ

Δ
D

ef
le

ct
io

n 
An

gl
e 

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

yATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(b)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 [r
ad

ia
ns

]
θ

Δ
M

om
en

tu
m

 D
ef

le
ct

io
n 

An
gl

e 
  

0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ilit

y

0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ilit

y

ATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(c)

0 0.5 1 1.5 2 2.5 3
Secondary Pion Energy [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 [r
ad

ia
ns

]
φ

Δ
M

om
en

tu
m

 D
ef

le
ct

io
n 

An
gl

e 
  

0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

ATLAS Simulation
 0.40≤| η, |±π524 GeV,  

(d)

Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 20: Distribution of the number of constituents in the jets in a 1.8 < ?T < 2.5 TeV dÚet sample in G����4
(black triangles) and the combination of FastCaloSim V2 and FastCaloGAN with transitions in the range 4–8 GeV
(blue stars), 8–16 GeV (red diamonds) and 16–32 GeV (green crosses). Here ‘hybrid’ refers to the combination of
FastCaloSim V2 and FastCaloGAN. The statistical uncertainties are shown but may be smaller than the markers.

7.2.5 Muon punch-through

The muon punch-through parameterization described in Section 6 is used to simulate particles punching
through the calorimeter. After the multiplicity and properties of the secondaries are determined using the
punch-through parameterization, their path through the muon spectrometer is simulated using G����4.

7.3 Energy interpolation

The FastCaloSim V2 and FastCaloGAN parameterizations are derived using samples with logarithmically
spaced discrete energies, which need to be extrapolated to particles of all energies. In FastCaloSim V2, a
piece-wise third order polynomial spline function is fitted to the total energy response in order to interpolate
to intermediate energies. Furthermore, linear extrapolation is used to reach energies beyond those of
the simulated input samples. The spline interpolations are generated for each particle and each [ slice
and are used to rescale the total energy response from the parameterization points. An example of the
energy response and fitted splines for photons and pions in the barrel region is shown in Figure 22. The
energy response for high-energy photons is slightly reduced due to leakage into the Tile calorimeter. In
FastCaloGAN, the conditioning on the particle momentum creates a model that can produce particles of
any energy.

In addition to the interpolation of the total energy response, the other longitudinal and lateral shower
shape properties also need to be interpolated. In FastCaloGAN the shape properties are interpolated
automatically by the GANs, while in FastCaloSim V2 the shape interpolation is done by randomly selecting
the parameterization from the nearest energy point with a probability linear in log(⇢kin) and fitted such
that unit probability is reached for the grid energy points.

In the two transition regions between FastCaloSim V2 and FastCaloGAN (for hadrons in the ranges
8–16 GeV and 256–512 GeV), a spline is used to interpolate between the two models. A smooth energy-
response transition between the two models is obtained since the simulated energies are always scaled to
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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Figure 10: Sum of the energy in all voxels for photons with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) compared with FastCaloGAN (dashed red line).

number of cells because the voxels in FastCaloGAN can be larger than the ATLAS cells. To assign the
correct amount of energy to each cell, the voxel surface defined in Eq. (2) is sampled uniformly, generating
a grid of hits. Layers that are not binned along the angular direction have their energy uniformly distributed
across the whole annulus surface. The granularity used to sample the voxel is 1 mm in the high-granularity
EMB1 and EME1 layers, while 5 mm is used in the other layers. A maximum of 10 hits are created in
either direction to limit the number of hits that are generated; this is required to have a small simulation
time. The energy generated by the GAN in the voxel is divided uniformly between the hits. The hits are
then assigned to the calorimeter cells using the simplified geometry. The longitudinal mid-position in each
layer is used for the calculation of the hit position.
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Figure 11: Sum of the energy in all voxels for pions with 0.2 < |[ | < 0.25. The calorimeter response for G����4
(solid black line) is compared with FastCaloGAN (dashed red line).
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Figure 12: Sum and RMS of the energy in all voxels normalized to the true momentum for (a) photons, (b) electrons
and (c) pions with 0.2 < |[ | < 0.25 as a function of the true momentum. The calorimeter response for G����4 (solid
black line) is compared with FastCaloGAN (dashed red line), which is also abbreviated to FGAN. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS values is shown in the bottom panel. The error
bars in the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the
markers.
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Figure 13: Sum and RMS of the energy in all voxels as a function of |[ | for (a) photons, (b) electrons and (c) pions
of momentum 65 GeV. The calorimeter response for G����4 (solid black line) is compared with FastCaloGAN
(dashed red line), which is also abbreviated to FGAN, while their ratio is shown in the ratio plots. The uncertainty
bars in the top panel indicate the RMS of the total energy distribution. The ratio of the means of the two energy
distributions is shown in the middle panel, and the ratio of the RMS is shown in the bottom panel. The error bars in
the ratio indicate its statistical uncertainty. For most points, this uncertainty is smaller than the size of the markers.
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6 Simulation of muon punch-through

Secondary particles created in hadronic showers inside the calorimeter can escape through the back of the
calorimeter and generate hits in the muon spectrometer. This e�ect is referred to as muon punch through.
These particles are reconstructed in the muon spectrometer and need to be well modelled to accurately
describe the backgrounds of reconstructed muons. A dedicated treatment of these particles is required
because the information about the path of the particles is lost due to the parameterization of the calorimeter
response in AtlFast3. Figure 14 shows the probability of a single pion entering the calorimeter to create
at least one secondary particle which escapes the calorimeter volume with an energy of at least 50 MeV
determined using the G����4 simulation. The probability increases with increasing momentum ? and
varies as a function of [. Particles with energies below 50 MeV are not simulated in the muon spectrometer
because they would have negligible impact.
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Figure 14: The probability of a single-pion event to produce at least one punch-through particle with an energy of at
least 50 MeV as a function of the [ and ? of the incoming pion determined from G����4.

The AtlFast3 punch-through parameterization is derived separately for the five types of secondary particles
that can emerge from the back of the calorimeter: photons, electrons, pions, muons, and protons. These
account for 92% of the total punch through. The parameterizations of their multiplicity and kinematics
are determined from single-pion samples simulated using G����4. As the properties of the secondary
particles depend significantly on the [ direction and energy of the incoming pion, the reference samples
within the acceptance of the muon spectrometer |[ |  2.7 and with momenta between 65 GeV and 4.2 TeV
are used to determine the parameterization. The small number of secondary particles in lower-energy
samples did not allow a parametrization of primary particles with an energy lower than 65 GeV.

The properties of the secondaries described by the parameterization include their energy, and their position
and momentum relative to that of the incoming pion. The position and momentum of the secondaries are
determined via deflection angles, �\ and �q, relative to the direction of propagation of the incoming pion.
As an example, Figures 15 and 16 show the histograms extracted from the G����4 simulation and used
to parameterize the secondaries produced by primary pions with an energy of 524 GeV and |[ |  0.4.
The peak at 1 GeV is the most probable value of the energy of the secondary pions emerging form the
calorimeter.
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Figure 15: The punch-through probability as a function of the punch-through pion (a) multiplicity and (b) energy.
The error bars indicate the statistical uncertainty and the overflow is not included in the final bins.

During the simulation of AtlFast3, the muon punch-through parameterization is invoked whenever particles
that have some probability of punching through enter the calorimeter. For each incoming particle, the
number of secondaries and their energy, position and momentum are selected randomly from the punch-
through parameterization histograms (see Figures 15 and 16), using them as probability density functions.
The parameterization is interpolated linearly for [ and logarithmically for ?T to values between the discrete
points used to determine the parameterization. Two sets of correlations are accounted for in the modelling
of the secondaries: the correlations between the relative position and energy and correlations between the
relative momentum and energy. After the multiplicity and properties of the punch-through secondaries
have been determined, their propagation through the muon spectrometer is simulated using G����4.

7 The combination of FastCaloSim V2 and FastCaloGAN: AtlFast3

7.1 Configuration of AtlFast3

The new fast simulation tool, AtlFast3, is defined by combining the fast simulation tools described above in
a way that balances modelling performance needs with CPU requirements. AtlFast3 uses the Integrated
Simulation Framework (ISF), which allows di�erent simulation tools to be combined in a flexible way [64].
AtlFast3 uses the following configuration as illustrated in Figure 17:

• G����4 is used to simulate all particles in the inner detector and muons in all detectors. Hadrons
with kinetic energies below 400 MeV (200 MeV for pions) in the calorimeter are also simulated in
G����4.
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Figure 16: The punch-through probability as a function of (a) deflection angle in \ and energy, (b) deflection angle in
q and energy, (c) relative momentum deflection in \ and energy, and (d) relative momentum deflection in q and
energy. Secondary pions with an energy of 524 GeV in the region |[ |  0.4 from the G����4 reference samples
were used.
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Figure 19: Ratio of the average energy response to the generated energy for c± for (a) 0.20 < |[ | < 0.25 and (b)
as a function of |[ | and ⇢kin. The error bars indicate the statistical uncertainty of the mean. For most points, this
uncertainty is smaller than the size of the markers.

7.2.3 Medium-energy hadrons

For hadronic showers, the number of clusters in a jet plays an important role in modeling the jet substructure
and is therefore used as a metric to compare the performance of FastCaloSim V2 and FastCaloGAN.
Di�erences in the modelling of the number of clusters between FastCaloSim V2 and FastCaloGAN are
expected because FastCaloGAN can model the correlations within a single event, while FastCaloSim V2
cannot. Figure 20 compares the modelling of the number of clusters in a jet for three di�erent combinations
of FastCaloSim V2 and FastCaloGAN. The hybrid models di�er in the energy range over which the
transition between FastCaloSim V2 and FastCaloGAN occurs; for example in the Hybrid 4–8 GeV model,
FastCaloSim V2 is used up to 4 GeV and FastCaloGAN is used above 8 GeV. Between 4 and 8 GeV, the
response is interpolated linearly between the two models as described in Section 7.3. The Hybrid 4–8 GeV
model underestimates the number of constituents, while the Hybrid 16–32 GeV model overestimates the
number of constituents. Therefore, the Hybrid 8-16 GeV model is chosen as the configuration for AtlFast3.
Other key jet variables, including the number of jets, the ?T and [ distributions and variables used for
substructure, are also checked for these di�erent configurations, which provides additional support for
choosing the Hybrid 8–16 GeV model. Section 8.1.2 discusses the performance of AtlFast3 in modelling
jet variables.

7.2.4 High-energy hadrons

At higher energies the modelling of the properties of individual clusters becomes important. Figure 21
compares the number of cells in the calorimeter clusters in G����4 with FastCaloSim V2 and FastCaloGAN
for pion energies ranging from 65 GeV to 524 GeV. Although FastCaloSim V2 slightly overestimates the
number of cells for all energies, FastCaloGAN significantly underestimates the number of cells and this
becomes more pronounced at higher energy. Studies of additional jet variables, many of which are shown
in Section 8.1.2, confirmed that FastCaloSim V2 has better modelling for higher-energy hadrons. Therefore,
FastCaloSim V2 is used to simulate hadrons with ⇢kin > 256–512 GeV. As shown in Section 8.1.2, despite
these discrepancies, the modelling of higher-level objects such as jets is su�cient for physics analysis.
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Figure 20: Distribution of the number of constituents in the jets in a 1.8 < ?T < 2.5 TeV dÚet sample in G����4
(black triangles) and the combination of FastCaloSim V2 and FastCaloGAN with transitions in the range 4–8 GeV
(blue stars), 8–16 GeV (red diamonds) and 16–32 GeV (green crosses). Here ‘hybrid’ refers to the combination of
FastCaloSim V2 and FastCaloGAN. The statistical uncertainties are shown but may be smaller than the markers.

7.2.5 Muon punch-through

The muon punch-through parameterization described in Section 6 is used to simulate particles punching
through the calorimeter. After the multiplicity and properties of the secondaries are determined using the
punch-through parameterization, their path through the muon spectrometer is simulated using G����4.

7.3 Energy interpolation

The FastCaloSim V2 and FastCaloGAN parameterizations are derived using samples with logarithmically
spaced discrete energies, which need to be extrapolated to particles of all energies. In FastCaloSim V2, a
piece-wise third order polynomial spline function is fitted to the total energy response in order to interpolate
to intermediate energies. Furthermore, linear extrapolation is used to reach energies beyond those of
the simulated input samples. The spline interpolations are generated for each particle and each [ slice
and are used to rescale the total energy response from the parameterization points. An example of the
energy response and fitted splines for photons and pions in the barrel region is shown in Figure 22. The
energy response for high-energy photons is slightly reduced due to leakage into the Tile calorimeter. In
FastCaloGAN, the conditioning on the particle momentum creates a model that can produce particles of
any energy.

In addition to the interpolation of the total energy response, the other longitudinal and lateral shower
shape properties also need to be interpolated. In FastCaloGAN the shape properties are interpolated
automatically by the GANs, while in FastCaloSim V2 the shape interpolation is done by randomly selecting
the parameterization from the nearest energy point with a probability linear in log(⇢kin) and fitted such
that unit probability is reached for the grid energy points.

In the two transition regions between FastCaloSim V2 and FastCaloGAN (for hadrons in the ranges
8–16 GeV and 256–512 GeV), a spline is used to interpolate between the two models. A smooth energy-
response transition between the two models is obtained since the simulated energies are always scaled to
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Figure 21: Number of cells in the leading cluster for pions in the barrel at di�erent energies in G����4 (black
triangles), FastCaloSim V2 (red diamonds) and FastCaloGAN (blue stars). The statistical uncertainties are shown but
may be smaller than the markers.

the energy from G����4. For electrons and photons the spline for the energy response is fitted down to
16 MeV, below which a linear extrapolation is used. For hadrons the energy response is fitted down to a
kinetic energy of 200 MeV, below which G����4 is used for the simulation.

7.4 Corrections

Four di�erent corrections are applied to the calorimeter parameterization in AtlFast3. However, the energy
resolution correction discussed in Section 7.4.1 and the energy q-modulation correction discussed in
Section 7.4.2 are only applied to FastCaloSim V2.

7.4.1 Energy resolution correction

The simulation of the resolution of the total energy in FastCaloSim V2 is improved by reweighting the
distribution of simulated energies produced by FastCaloSim V2 to the distribution from G����4. The ratio
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7.2.2 Low-energy hadrons

At low energies, the distribution of the average hadron energy response becomes complex and has a
significant dependence on both ⇢kin and |[ | as shown in Figure 19(b). This is because the measured energy
depends strongly on the extent to which these shorter showers develop within the active liquid argon
of the electromagnetic calorimeter or within the inactive lead absorbers. As an example, Figure 19(a)
shows the ratio of the average energy response to ⇢kin as a function of ⇢kin for charged pions in the range
0.20 < |[ | < 0.25. For pions with a kinetic energy of 100 MeV the largest amount of deposited energy is
typically within the liquid argon of the Presampler, which leads to a spike in the energy response. On the
other hand, pions with a kinetic energy of 10 MeV deposit far less energy in the active liquid-argon regions
and more in the inactive regions. In addition, the energy calibration of the Presampler is derived using
high-energy particles, which deposit much less energy in the Presampler, which means that the measured
fraction of shower energy in the Presampler increases further for ⇢kin ⇡ 100 MeV.

The dependence of the energy response to low-energy charged pions on [ is due to the di�erent amount
of material that the charged pion passes through, which shifts the values of the kinetic energy at which
the spike in the response occurs. Deriving a parameterization for such low-energy hadrons would require
a significantly more complex method for deriving parameterizations in order to achieve high accuracy.
Therefore, in AtlFast3 pions below 200 MeV and all other hadrons below 400 MeV (as shown in Table 6)
are instead simulated by G����4. Above these energy thresholds their total energy response is modelled
using AtlFast3. This choice does not significantly a�ect the speed of AtlFast3 because the simulation of
low-energy hadrons requires only a comparatively small amount of CPU time.

Table 6: Hadron energies below which AtlFast3 relies on G����4 for their simulation

Particle ⇢kin [MeV]
c
± 200

 
±,  L, ?/?̄, =/=̄ 400
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There has been a recent explosion in research into machine-learning-based generative modeling
to tackle computational challenges for simulations in high energy physics (HEP). In order to use
such alternative simulators in practice, we need well defined metrics to compare di↵erent generative
models and evaluate their discrepancy from the true distributions. We present the first systematic
review and investigation into evaluation metrics and their sensitivity to failure modes of generative
models, using the framework of two-sample goodness-of-fit testing, and their relevance and viabil-
ity for HEP. Inspired by previous work in both physics and computer vision, we propose two new
metrics, the Fréchet and kernel physics distances (FPD and KPD), and perform a variety of exper-
iments measuring their performance on simple Gaussian-distributed, and simulated high energy jet
datasets. We find FPD, in particular, to be the most sensitive metric to all alternative jet distribu-
tions tested and recommend its adoption, along with the KPD and Wasserstein distances between
individual feature distributions, for evaluating generative models in HEP. We finally demonstrate
the e�cacy of these proposed metrics in evaluating and comparing a novel attention-based gener-
ative adversarial particle transfomer to the state-of-the-art message-passing generative adversarial
network jet simulation model.

I. INTRODUCTION

In high energy physics (HEP), accurate simulations are
critical for precision measurements and searches such as
those performed at the CERN Large Hadron Collider
(LHC). These are traditionally performed using Monte
Carlo (MC) event generators, detailed modeling of parti-
cles’ propagation and interaction through detectors (typ-
ically with the GEANT4 [1] package), and reconstruction
algorithms to unfold detector measurements back to par-
ticles and high-level objects such as jets. While these
methods have been highly successful for the physics goals
of the LHC, scaling up to the simulation challenges of
the upcoming high-luminosity phase of the LHC (HL-
LHC) [2] necessitates significant advancements in speed
and resource requirements [3–5], while maintaining the
quality of current simulations.

To tackle this problem, a plethora of techniques for
fast simulation of calorimeter showers and jets have been
developed and explored in the last few years, particularly
using generative modeling techniques in machine learn-
ing (ML) [6–22]. Reviews of these approaches can be
found in Refs. [23, 24]. For an experimental collabora-
tion to apply one of these techniques in real data anal-
yses, however, they require methods to objectively com-
pare the performance of di↵erent simulation techniques
and extensively validate the produced simulations. This

⇤
Also at Fermilab; rkansal@ucsd.edu

calls for the study and adoption of standard quantitative
evaluation metrics for generative modeling in HEP.

Recently, several metrics have been proposed to ad-
dress this challenge. However, to our knowledge, there
has been no systematic investigation of their sensitivity
to expected failure modes of generative models, and their
relevance to validation and feasibility for broad adoption
in HEP. To this end, we study the performance of pro-
posed metrics from HEP and computer vision. Inspired
by both domains, we develop two novel metrics we call
the Frèchet and kernel physics distances (FPD and KPD,
respectively), and find them to collectively have excellent
sensitivity to all tested data mismodeling, and to satisfy
practical requirements for evaluation and comparison of
generative models in HEP. We conclude our experiments
by recommending the adoption of FPD and KPD, along
with quantifying di↵erences in individual feature distri-
butions using the Wasserstein 1-Distance, and demon-
strate their use in evaluating a novel attention-based gen-
erative model we call the generative adversarial particle
transformer, or GAPT.

This paper is structured as follows. In Section II we
define our criteria for evaluation metrics in HEP and re-
view existing metrics. We present results on the perfor-
mance of these metrics on Gaussian-distributed synthetic
toy data and simulated high energy jets in Sections III
and IV respectively. Based on these experiments, we pro-
vide our recommendations and concretely illustrate their
application by evaluating and comparing GAPT to the
current state-of-the-art (SOTA) MPGAN [17] model in
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FIG. 1. Samples of (mixtures of) Gaussian distributions used for testing evaluation metrics.

B. Distributions

We use a 2D Gaussian with 0 means and covariance
matrix ⌃ = ( 1.00 0.25

0.25 1.00 ) as the true distribution. We test
the sensitivity of the above metrics to the following dis-
tortions, shown in Figure 1.

1. A large shift in x (1 standard deviation �);

2. A small shift in x (0.1�);

3. Removing the covariance between the parameters
— this tests the sensitivity of each metric to corre-
lations;

4. Multiplying the (co)variances by 10 — tests sensi-
tivity to quality;

5. Dividing (co)variances by 10 — tests sensitivity to
diversity; and, finally,

6 & 7. Two mixtures of two Gaussian distributions with
the same combined means, variances, and covari-
ances as the truth — this tests sensitivity to the
shape of the distribution.

C. Results

1. Bias

We first discuss the performance of each metric in dis-
tinguishing between two sets of samples from the truth
distribution in Figure 2, e↵ectively estimating the null

distributions of each test statistic. A fourth-order poly-
nomial kernel for MMD is shown as it proved most sensi-
tive. We see that indeed FGD1 and MMD are e↵ectively
unbiased, while the values of others depend on the sam-
ple size. This is a significant drawback; even if the same
number of samples are specified for each metric to mit-
igate the e↵ect of the bias, as discussed in Ref. [48], in
general there is no guarantee that the level of bias for
a given sample size is the same across di↵erent distribu-
tions. One possible solution is to use a su�ciently large
number of samples to ensure convergence within a cer-
tain percentage of the true value. However, from a prac-
tical standpoint, the Wasserstein distance quickly be-
comes computationally intractable beyond O(1000) sam-
ples, before which, as we see in Figure 2, it does not con-
verge even for a two-dimensional distribution. Similarly,
density and coverage require a large number of samples
for convergence, which is impractical given their O(n2)
scaling, while precision and recall su↵er from the same
scaling but converge faster.

2. Sensitivity

Table I lists the means and errors of each metric per
dataset for the largest sample size tested for each. A sim-
ilar plot to Figure 2 for each alternative distribution can
be found in Appendix A. The scores most discrepant per
distribution with the truth values of the respective metric
are highlighted in bold. This is conceptually equivalent to
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There has been a recent explosion in research into machine-learning-based generative modeling
to tackle computational challenges for simulations in high energy physics (HEP). In order to use
such alternative simulators in practice, we need well defined metrics to compare di↵erent generative
models and evaluate their discrepancy from the true distributions. We present the first systematic
review and investigation into evaluation metrics and their sensitivity to failure modes of generative
models, using the framework of two-sample goodness-of-fit testing, and their relevance and viabil-
ity for HEP. Inspired by previous work in both physics and computer vision, we propose two new
metrics, the Fréchet and kernel physics distances (FPD and KPD), and perform a variety of exper-
iments measuring their performance on simple Gaussian-distributed, and simulated high energy jet
datasets. We find FPD, in particular, to be the most sensitive metric to all alternative jet distribu-
tions tested and recommend its adoption, along with the KPD and Wasserstein distances between
individual feature distributions, for evaluating generative models in HEP. We finally demonstrate
the e�cacy of these proposed metrics in evaluating and comparing a novel attention-based gener-
ative adversarial particle transfomer to the state-of-the-art message-passing generative adversarial
network jet simulation model.

I. INTRODUCTION

In high energy physics (HEP), accurate simulations are
critical for precision measurements and searches such as
those performed at the CERN Large Hadron Collider
(LHC). These are traditionally performed using Monte
Carlo (MC) event generators, detailed modeling of parti-
cles’ propagation and interaction through detectors (typ-
ically with the GEANT4 [1] package), and reconstruction
algorithms to unfold detector measurements back to par-
ticles and high-level objects such as jets. While these
methods have been highly successful for the physics goals
of the LHC, scaling up to the simulation challenges of
the upcoming high-luminosity phase of the LHC (HL-
LHC) [2] necessitates significant advancements in speed
and resource requirements [3–5], while maintaining the
quality of current simulations.

To tackle this problem, a plethora of techniques for
fast simulation of calorimeter showers and jets have been
developed and explored in the last few years, particularly
using generative modeling techniques in machine learn-
ing (ML) [6–22]. Reviews of these approaches can be
found in Refs. [23, 24]. For an experimental collabora-
tion to apply one of these techniques in real data anal-
yses, however, they require methods to objectively com-
pare the performance of di↵erent simulation techniques
and extensively validate the produced simulations. This
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calls for the study and adoption of standard quantitative
evaluation metrics for generative modeling in HEP.

Recently, several metrics have been proposed to ad-
dress this challenge. However, to our knowledge, there
has been no systematic investigation of their sensitivity
to expected failure modes of generative models, and their
relevance to validation and feasibility for broad adoption
in HEP. To this end, we study the performance of pro-
posed metrics from HEP and computer vision. Inspired
by both domains, we develop two novel metrics we call
the Frèchet and kernel physics distances (FPD and KPD,
respectively), and find them to collectively have excellent
sensitivity to all tested data mismodeling, and to satisfy
practical requirements for evaluation and comparison of
generative models in HEP. We conclude our experiments
by recommending the adoption of FPD and KPD, along
with quantifying di↵erences in individual feature distri-
butions using the Wasserstein 1-Distance, and demon-
strate their use in evaluating a novel attention-based gen-
erative model we call the generative adversarial particle
transformer, or GAPT.

This paper is structured as follows. In Section II we
define our criteria for evaluation metrics in HEP and re-
view existing metrics. We present results on the perfor-
mance of these metrics on Gaussian-distributed synthetic
toy data and simulated high energy jets in Sections III
and IV respectively. Based on these experiments, we pro-
vide our recommendations and concretely illustrate their
application by evaluating and comparing GAPT to the
current state-of-the-art (SOTA) MPGAN [17] model in
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FIG. 1. Samples of (mixtures of) Gaussian distributions used for testing evaluation metrics.

B. Distributions

We use a 2D Gaussian with 0 means and covariance
matrix ⌃ = ( 1.00 0.25

0.25 1.00 ) as the true distribution. We test
the sensitivity of the above metrics to the following dis-
tortions, shown in Figure 1.

1. A large shift in x (1 standard deviation �);

2. A small shift in x (0.1�);

3. Removing the covariance between the parameters
— this tests the sensitivity of each metric to corre-
lations;

4. Multiplying the (co)variances by 10 — tests sensi-
tivity to quality;

5. Dividing (co)variances by 10 — tests sensitivity to
diversity; and, finally,

6 & 7. Two mixtures of two Gaussian distributions with
the same combined means, variances, and covari-
ances as the truth — this tests sensitivity to the
shape of the distribution.

C. Results

1. Bias

We first discuss the performance of each metric in dis-
tinguishing between two sets of samples from the truth
distribution in Figure 2, e↵ectively estimating the null

distributions of each test statistic. A fourth-order poly-
nomial kernel for MMD is shown as it proved most sensi-
tive. We see that indeed FGD1 and MMD are e↵ectively
unbiased, while the values of others depend on the sam-
ple size. This is a significant drawback; even if the same
number of samples are specified for each metric to mit-
igate the e↵ect of the bias, as discussed in Ref. [48], in
general there is no guarantee that the level of bias for
a given sample size is the same across di↵erent distribu-
tions. One possible solution is to use a su�ciently large
number of samples to ensure convergence within a cer-
tain percentage of the true value. However, from a prac-
tical standpoint, the Wasserstein distance quickly be-
comes computationally intractable beyond O(1000) sam-
ples, before which, as we see in Figure 2, it does not con-
verge even for a two-dimensional distribution. Similarly,
density and coverage require a large number of samples
for convergence, which is impractical given their O(n2)
scaling, while precision and recall su↵er from the same
scaling but converge faster.

2. Sensitivity

Table I lists the means and errors of each metric per
dataset for the largest sample size tested for each. A sim-
ilar plot to Figure 2 for each alternative distribution can
be found in Appendix A. The scores most discrepant per
distribution with the truth values of the respective metric
are highlighted in bold. This is conceptually equivalent to
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Figure 5: Illustration of some key concepts with a one-dimensional Gaussian toy example. Left:
classifiers trained to distinguish two sets of events generated from different hypotheses (green dots)
converge to an optimal decision function s(x|✓0, ✓1) (in red) given in Eq. (17). This lets us extract
the likelihood ratio. Right: regression on the joint likelihood ratios r(xe, ze|✓0, ✓1) of the simulated

events (green dots) converges to the likelihood ratio r(x|✓0, ✓1) (red line).

2. Particle-physics structure

As we have argued in Sec. II C, particle physics processes have a specific structure that allow
us to extract additional information. Most processes satisfy the factorization of Eq. (2) with a
tractable parton-level likelihood p(z|✓). The generators do not only provide samples {xe}, but
also the corresponding parton-level momenta (latent variables) {ze} with (xe, ze) ⇠ p(x, z|✓0). By
evaluating the matrix elements at the generated momenta ze for different hypotheses ✓0 and ✓1,
we can extract the parton-level likelihood ratio p(ze|✓0)/p(ze|✓1). Since the distribution of x is
conditionally independent of the theory parameters, this is the same as the joint likelihood ratio

r(xe, zall e|✓0, ✓1) ⌘
p(xe, zdetector e, zshower e, ze|✓0)

p(xe, zdetector e, zshower e, ze|✓1)

=
p(xe|zdetector e)

p(xe|zdetector e)

p(zdetector e|zshower e)

p(zdetector e|zshower e)

p(zshower e|ze)

p(zshower e|ze)

p(ze|✓0)

p(ze|✓1)

=
p(ze|✓0)

p(ze|✓1)
. (19)

So while we cannot directly evaluate the likelihood ratio at the level of measured observables
r(x|✓0, ✓1), we can calculate the likelihood ratio for a generated event conditional on the latent
parton-level momenta.

The same is true for the score, i. e. the tangent vectors or relative change of the (log) likelihood
under infinitesimal changes of the parameters of interest. While the score t(xe|✓0) = r✓ log p(x|✓)|✓0
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us to extract additional information. Most processes satisfy the factorization of Eq. (2) with a
tractable parton-level likelihood p(z|✓). The generators do not only provide samples {xe}, but
also the corresponding parton-level momenta (latent variables) {ze} with (xe, ze) ⇠ p(x, z|✓0). By
evaluating the matrix elements at the generated momenta ze for different hypotheses ✓0 and ✓1,
we can extract the parton-level likelihood ratio p(ze|✓0)/p(ze|✓1). Since the distribution of x is
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So while we cannot directly evaluate the likelihood ratio at the level of measured observables
r(x|✓0, ✓1), we can calculate the likelihood ratio for a generated event conditional on the latent
parton-level momenta.

The same is true for the score, i. e. the tangent vectors or relative change of the (log) likelihood
under infinitesimal changes of the parameters of interest. While the score t(xe|✓0) = r✓ log p(x|✓)|✓0
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Figure 6: Illustration of some key concepts with a one-dimensional Gaussian toy example. Left:
probability density functions for different values of ✓ and the scores t(xe, ze|✓) at generated events

(xe, ze). These tangent vectors measure the relative change of the density under infinitesimal
changes of ✓. Right: dependence of log p(x|✓) on ✓ for fixed x = 4. The arrows again show the

(tractable) scores t(xe, ze|✓).

is intractable, we can extract the joint score

t(xe, zall e|✓0) ⌘ r✓ log p(xe, zdetector e, zshower e, ze|✓0)

=
p(xe|zdetector e)

p(xe|zdetector e)

p(zdetector e|zshower e)

p(zdetector e|zshower e)

p(zshower e|ze)

p(zshower e|ze)

r✓p(ze|✓)

p(ze|✓)

����
✓0

=
r✓p(ze|✓)

p(ze|✓)

����
✓0

(20)

from the simulator. Again, all intractable parts of the likelihood cancel. We visualize the score
in Fig. 6 and all available information on the generated samples in Fig. 7. It is worth repeating
that we are not making any simplifying approximations about the process here, these statements
are valid with reducible backgrounds, for state-of-the-art generators including higher-order matrix
elements, matching of matrix element and parton shower, and with full detector simulations.

But how does the availability of the joint likelihood ratio r(x, z|✓) and score t(x, z|✓) (which
depend on the latent parton-level momenta z) help us to estimate the likelihood ratio r(x|✓), which
is the one we are interested in?

Consider the L2 squared loss functional for functions ĝ(x) that only depend on x, but which are
trying to approximate a function g(x, z),

L[ĝ(x)] =

Z
dx dz p(x, z|✓) |g(x, z)� ĝ(x)|2

=

Z
dx


ĝ2(x)

Z
dz p(x, z|✓)� 2ĝ(x)

Z
dz p(x, z|✓) g(x, z) +

Z
dz p(x, z|✓) g2(x, z)

�

| {z }
F (x)

.

(21)

Easier target labels:
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Figure 5: Illustration of some key concepts with a one-dimensional Gaussian toy example. Left:
classifiers trained to distinguish two sets of events generated from different hypotheses (green dots)
converge to an optimal decision function s(x|✓0, ✓1) (in red) given in Eq. (17). This lets us extract
the likelihood ratio. Right: regression on the joint likelihood ratios r(xe, ze|✓0, ✓1) of the simulated

events (green dots) converges to the likelihood ratio r(x|✓0, ✓1) (red line).

2. Particle-physics structure

As we have argued in Sec. II C, particle physics processes have a specific structure that allow
us to extract additional information. Most processes satisfy the factorization of Eq. (2) with a
tractable parton-level likelihood p(z|✓). The generators do not only provide samples {xe}, but
also the corresponding parton-level momenta (latent variables) {ze} with (xe, ze) ⇠ p(x, z|✓0). By
evaluating the matrix elements at the generated momenta ze for different hypotheses ✓0 and ✓1,
we can extract the parton-level likelihood ratio p(ze|✓0)/p(ze|✓1). Since the distribution of x is
conditionally independent of the theory parameters, this is the same as the joint likelihood ratio

r(xe, zall e|✓0, ✓1) ⌘
p(xe, zdetector e, zshower e, ze|✓0)

p(xe, zdetector e, zshower e, ze|✓1)

=
p(xe|zdetector e)

p(xe|zdetector e)

p(zdetector e|zshower e)

p(zdetector e|zshower e)

p(zshower e|ze)

p(zshower e|ze)

p(ze|✓0)

p(ze|✓1)

=
p(ze|✓0)

p(ze|✓1)
. (19)

So while we cannot directly evaluate the likelihood ratio at the level of measured observables
r(x|✓0, ✓1), we can calculate the likelihood ratio for a generated event conditional on the latent
parton-level momenta.

The same is true for the score, i. e. the tangent vectors or relative change of the (log) likelihood
under infinitesimal changes of the parameters of interest. While the score t(xe|✓0) = r✓ log p(x|✓)|✓0
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Figure 13: Performance of the techniques as a function of the training sample size. As a metric, we
show the mean squared error (left) and trimmed mean squared error on log r(r|✓0, ✓1) weighted with
a Gaussian prior, as discussed in the text. Note that we do not vary the size of the calibration data
samples. The number of epochs are increased such that the number of epochs times the training
sample size is constant, all other hyperparameters are kept constant. The Sally method works
well even with very little data, but plateaus eventually due to the limitations of the local model

approximation. The other algorithms learn faster the more information from the simulator is used.

Algorithm Evaluation time [µs]

per xe per xe and ✓0

Histogram 0.2
Carl 19.7
Sally 25.4 0.1
Rolr 19.7
Cascal 25.1
Rascal 21.7

Table V: Computation times of evaluating r̂(x|✓0, ✓1) in the different algorithms. We distinguish
between steps that have to be calculated once per x and and those which have to be repeated for

every evaluated value of ✓0. These numbers are from one run of our algorithms with default
settings on the NYU HPC cluster on machines equipped with Intel Xeon E5-2690v4 2.6GHz CPUs
and NVIDIA P40 GPUs with 24 GB RAM, using a batch of 50 000 events {xe}, and taking the
mean over 1 017 values of ✓0. The local score regression method and the traditional histogram

method are particularly fast. But all techniques are many orders of magnitude faster to evaluate
than the matrix element method or optimal observables.

Advanced methods require 
less training samples than 
standard classifier for NSBI
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Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5
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parameters and compute statistics with the functional form than to estimate the statistics
directly from the data.

In the machine learning literature this kind of question is known for example as data
amplification [43], but not extensively discussed. An interesting application is computer
games, where the network tra�c limits the available information and a powerful computer
still generates realistic images or videos. This practical question leads to more formal question
of sampling correctors [44]. Alternatively, it can be linked to a classification problem to derive
scaling laws for networks fooling a given hypothesis test [43, 45]. Unfortunately, we are not
aware of any quantitaive analysis describing the gain in statistical power from a generative
network. To fill this gap, we will use a much simpler approach, close to typical particle
theory applications. If we know the smooth truth distribution, we can bin our space to define
quantiles — intervals containing equal probability mass — and compute the �2-values for
sampled and GANned approximations. Our toy example will be a camel back function or a
shell of a multi-dimensional hypersphere, because it defines a typical resolution as we know
it for example from the Breit-Wigner propagators of intermediate particles [19].

This paper is organized as follows: We introduce the network architecture as well as the
framework and study a one-dimensional example in Sec. 2. In Sec. 3 we extend these results a
two-dimensional ring, and in Sec. 4 to the shell of a 5-dimensional hypersphere. We conclude
in Sec. 5.

Figure 1: Camel back function as a 1D test case. We show the true distribution (black), a
histogram with 100 sample points (blue), a fit to the samples data (green), and a high-statistics
GAN sample (orange). Ten quantiles include 10% of the truth integral each.

3

Generative models appear to produce more meaningful samples than training dataset 
Smooths over the statistical fluctuations

Butter, Diefenbacher et al, arXiv:2008.06545

https://arxiv.org/abs/2008.06545
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Density estimation in higher dimensions, the curse (of dimensionality)
C

ou
nt

x
1-D histogram with 6 bins: few 
events enough to populate it

y 

x

How many events to populate 
 2-D histogram with  bins ?62

How many events for 50-D histogram 
with  bins ?650
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High-dimensional data

• Detector has O(100 million) sensors 
• Can’t build 100M dimensional histogram 

‣ Reconstruction pipeline, event selection 
‣ Design sensitive one-dimensional observable 
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Core idea: Neural networks for inference

• Fully leverage detailed physics knowledge stored 
in simulators 

• Perform high-dimensional inference

Core	Core	Core	Neural	
Networks

Likelihood	 		

or	

	Likelihood	Ratio	 			

or	
		

Posterior	

p(xi | theory)

p(xi | theory)
p(xi |ref )

p(theory |x)

High-dim	
data
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Bayesian Networks

• Each weight replaced by a distribution of weights 
• Eg. Sampled from learnt {mean, std} 

• The distribution in NN prediction for each event gives you 
an uncertainty estimate 

• Open question: How to interpret this uncertainty? What is 
the coverage? 

• Calibrate the uncertainties arXiv:2408.00838: Bringer et al 
(incl. Diefenbacher) 

• … more work needed here before if they are to 
become standard tools in frequentist frameworks

https://arxiv.org/abs/2408.00838
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From W. Verkerke:

Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 

•  Written prescription often not clear on number of nuisance 
parameters: 

•  Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT

i.e. JES miscalibration is not coherent across pT "
but still has 5% uncertainty for each pT bin
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Dealing with over-constraining – introducing more NPs

•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 

•  Written prescription often not clear on number of nuisance 
parameters: 

•  If you assume one NP – chances are that your physics Likelihood "
                                      will exploit this oversimplified JES model "
                                      to overconstrain JES for high pT jets!

Je
t 

E
n
e
rg

y 
S

c
a
le

 m
is

c
a
lib

ra
tio

n
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αJES 

i.e. JES miscalibration is coherent for all jets "
à You can calibrate high pT jets with a low pT jet sample

5% 

Our modelling of NPs might be over-simplified

https://indico.nikhef.nl/event/1399/contributions/1907/attachments/828/998/nikhef_stats2018_lectures_day3.pdf
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FIG. 2. Scores of each metric on samples from the true distribution for varying sample sizes.

TABLE I. Values and errors of metrics, as defined in Section IIIA, for each (mixture of) Gaussian distribution(s), for the
largest sample size tested. The scores most discrepant with the truth per distribution are highlighted in bold.

Metric Truth
Shift µx by

1�
Shift µx by

0.1�
Zero

covariance

Multiply
(co)variances

by 10

Divide
(co)variances

by 10

Mixture of
Two

Gaussians 1

Mixture of
Two

Gaussians 2

Wasserstein 0.016± 0.004 1.14± 0.02 0.043± 0.008 0.077± 0.006 9.8± 0.1 0.97± 0.01 0.036± 0.003 0.191± 0.005

FGD1 ⇥103 0.08± 0.03 1011± 1 11.0± 0.1 32.3± 0.2 9400± 8 935.1± 0.7 0.07± 0.03 0.03± 0.03

MMD 0.01± 0.02 16.4± 0.9 0.07± 0.04 0.40± 0.08 19k± 1k 4.3± 0.1 0.06± 0.02 0.35± 0.03

Precision 0.972± 0.005 0.91± 0.01 0.976± 0.004 0.969± 0.006 0.34± 0.01 1.0± 0.0 0.975± 0.003
0.9976±
0.0007

Recall 0.997± 0.001 0.992± 0.003 0.997± 0.001
0.9976±
0.0006 0.998± 0.001 0.58± 0.02 0.996± 0.001

0.9970±
0.0009

Density 3.23± 0.06 2.48± 0.08 3.19± 0.07 3.1± 0.1 0.60± 0.02 5.7± 0.3 2.99± 0.09 0.989± 0.009

Coverage 0.876± 0.002 0.780± 0.006 0.872± 0.005 0.872± 0.004 0.60± 0.01 0.406± 0.008 0.871± 0.002 0.956± 0.006

assuming a Gaussian null (truth) distribution3, and high-
lighting the test statistic producing a central value with
the highest p-value per alternative distribution. We can
infer several properties of each metric from these mea-
surements.

Focusing first on the holistic metrics (Wasserstein,
FGD1, and MMD), we find that each converges to ⇡0

3
We note that this is not necessarily the case, particularly for the

Wasserstein distance, which has a biased estimator. However,

this is not a significant limitation because, as can be seen in

Table I, there is rarely a significant overlap between the null and

alternative distributions which would require an understanding

of the shape of the former.

on the truth distribution, indicating their estimators are
consistent. We can evaluate the sensitivity to each alter-
native distribution by considering the di↵erence in scores
versus the truth scores. With the notable exception of
FGD1 on the mixtures of two Gaussian distributions, we
observe that all three metrics find the alternatives to be
significantly discrepant from the true distribution, where
significant is defined as the central value of the distri-
bution score being two standard deviations away from
the truth score. This is equivalent to again assuming a
Gaussian null distribution and requiring a p-value on the
alternative distribution to be  0.05.

As expected, despite the clear di↵erence in the shapes
of the mixtures compared to the truth, since FGD1 only
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on the truth distribution, indicating their estimators are
consistent. We can evaluate the sensitivity to each alter-
native distribution by considering the di↵erence in scores
versus the truth scores. With the notable exception of
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• , MMD unbiased 
• W too expensive for large N

FGD∞

 most promising  
(with caveats)
FGD∞



Physics study with jets

Kansal et al, 2022 
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FIG. 3. The probability, in arbitrary units (A.U.), of the relative jet mass for truth and distorted gluon jet distributions. On
the left are distribution-level distortions, and right particle-level.

TABLE II. Values and errors of metrics, as defined in Sections III A and IVB, for each jet distribution, for the largest sample
size tested. EFP and PN refer to metrics using EFPs and ParticleNet activations as their input features, respectively. The
scores most discrepant with the truth per distribution are highlighted in bold.

Metric Truth Smeared Shifted Removing tail

Particle Particle Particle Particle

features ⌘rel prelT prelT

smeared smeared smeared shifted

WM
1 ⇥ 103 0.28± 0.05 2.1± 0.2 6.0± 0.3 0.6± 0.2 1.7± 0.2 0.9± 0.3 0.5± 0.2 5.8± 0.2

Wasserstein EFP 0.02± 0.01 0.09± 0.05 0.10± 0.02 0.016± 0.007 0.19± 0.08 0.03± 0.01 0.03± 0.02 0.06± 0.02

FGD1 EFP ⇥103 0.01± 0.02 21.5± 0.3 26.8± 0.3 2.31± 0.07 23.4± 0.3 3.59± 0.09 2.29± 0.05 28.9± 0.2

MMD EFP ⇥103 �0.006± 0.005 0.17± 0.06 0.9± 0.1 0.03± 0.02 0.35± 0.09 0.08± 0.05 0.01± 0.02 1.8± 0.1

Precision EFP 0.9± 0.1 0.94± 0.04 0.978± 0.005 0.88± 0.08 0.7± 0.1 0.94± 0.06 0.7± 0.1 0.79± 0.09

Recall EFP 0.9± 0.1 0.88± 0.07 0.97± 0.01 0.92± 0.06 0.83± 0.05 0.92± 0.07 0.8± 0.1 0.8± 0.1

Wasserstein PN 1.65± 0.06 1.7± 0.1 2.4± 0.4 1.71± 0.08 4.5± 0.1 1.79± 0.05 4.0± 0.4 7.6± 0.2

FGD1 PN ⇥103 0.8± 0.7 40± 2 193± 9 5.0± 0.9 1250± 10 20± 1 1230± 10 3640± 10

MMD PN ⇥103 �2± 2 4± 8 80± 10 �1± 4 500± 100 3± 2 560± 60 1100± 40

Precision PN 0.68± 0.07 0.64± 0.04 0.71± 0.06 0.73± 0.03 0.09± 0.04 0.75± 0.08 0.08± 0.04 0.39± 0.08

Recall PN 0.70± 0.05 0.61± 0.04 0.61± 0.08 0.73± 0.06 0.014± 0.009 0.7± 0.1 0.01± 0.01 0.57± 0.09

Classifier LLF AUC 0.50 0.52 0.54 0.50 0.97 0.81 0.93 0.99

Classifier HLF AUC 0.50 0.53 0.55 0.50 0.84 0.64 0.74 0.92

distortions.
In conclusion, we find from these experiments that

FGD1 is in fact the most sensitive metric to all dis-
tortions tested. Additionally, applying it on hand-
engineered physical features — Fréchet physics distance
(FPD) in short — is not only practically beneficial, in
terms of ease of standardisation and interpretability, but

also results in similar, if not better, performance to using
ParticleNet activations. Despite the Gaussian assump-
tion, it is clear that access to the first order moments
of the distribution is su�cient for it to have high power
against the relevant alternative distributions we expect
from generative models. Hence, we propose FPD as a
novel e�cient, interpretable, and highly sensitive met-

•  on EFPs does quite well 
in these tests 

• Would be interesting to see it 
used and stress tested !

FGD∞

https://arxiv.org/abs/2211.10295
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Estimating the variance on mean: Ideal Scenario
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Uncertainty on estimated mean?
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Estimating the variance on mean: Ideal Scenario
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SBI for Neutron Stars:
Beats all previous methods in sensitivity and interpretability

11

TABLE III: Average accuracy for the prediction of neutron star EoS parameters �1 and �2. Shown are the means
(µ) and standard deviations (�) of the distributions in Fig. 6, i.e., of the di↵erences between the predicted

maximum-a-posteriori and ground-truth values. Both standard deviations are combined to �tot according to Eq. (8).
The neural likelihood estimation (NLE) approach is compared to three previous approaches; neural networks that

regress the EoS parameters from the spectra (NN(Spectra)) and from M,R estimates by xspec (NN(M,R via
xspec)), both from Ref. [71], as well as an approach using an approximate likelihood that incorporates two neural

networks, ML-LikelihoodEOS, from [72]. In the true scenario, the nuisance parameters are fixed to their exact values;
in the tight and loose cases, they are drawn from the narrow or wide priors in Tab. II.

�1,pred � �1,truth �2,pred � �2,truth Combined

p(⌫) Method µ � µ � �tot

true ML-LikelihoodEOS -0.02 0.066 0.01 0.070 0.096

NN(Spectra) -0.02 0.066 0.01 0.075 0.099

NN(M,R via xspec) -0.03 0.065 0.01 0.055 0.085

NLE 0.00 0.056 -0.01 0.070 0.090

tight ML-LikelihoodEOS -0.02 0.078 0.03 0.081 0.112

NN(Spectra) 0.02 0.085 -0.02 0.077 0.115

NN(M,R via xspec) -0.03 0.081 0.01 0.056 0.098

NLE 0.00 0.066 -0.02 0.071 0.097

loose ML-LikelihoodEOS -0.04 0.089 0.03 0.081 0.120

NN(Spectra) -0.03 0.131 -0.01 0.078 0.152

NN(M,R via xspec) -0.03 0.123 0.01 0.058 0.136

NLE 0.00 0.085 -0.01 0.074 0.113

true

tight

loose

ML-LikelihoodEOS
NN(Spectra)
NN(M, R via xspec)
NLE

ML-LikelihoodEOS
NN(Spectra)
NN(M, R via xspec)
NLE

ML-LikelihoodEOS
NN(Spectra)
NN(M, R via xspec)
NLE

�1,pred � �1,truth �2,pred � �2,truth �tot

0.096
0.099
0.085
0.090

0.112
0.115
0.098
0.097

0.120
0.152
0.136
0.113

FIG. 7: Illustrated mean and standard deviation of the di↵erence between the predicted maximum-a-posteriori
values to the ground-truth values for the three di↵erent scenarios from Tab. III.

(ii) Neural likelihood estimation allows for amortization; after training the neural density estimators once, the
inclusion of additional observations is straightforward, see Sec. V B. In addition, extending to additional stars
is inexpensive relative to other methods, which require integrating over estimated mass-radius posteriors to
construct likelihoods [39, 50], such as with Kernel Density Estimation techniques.

(iii) Learning the likelihood instead of the posterior allows combination with likelihoods from other data [110], e.g.,
constraints from low-energy nuclear theory at small densities [111, 112], perturbative QCD at high densities
[113, 114], mass measurements from Shapiro time delays [28–30], mass-radius constraints from analyses of the
NICER telescope [31–33] or gravitational wave signals from binary neutron star mergers [34, 35].
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FIG. 2: Corner plot depicting the posterior distribution of the parameters �1 and �2 of one example EoS as well as

the first 3 (of 30) nuisance parameters N
(1)

H
, d(1) and log(Te↵)(1). The posterior is computed based on the simulated

spectra of 10 stars with the nuisance parameters known exactly in the true scenario (green), and known with the
uncertainties in Tab. II in the tight (orange) and loose (blue) scenarios. The ground-truth parameter values are

depicted as black crosses/lines. The marginal posterior distributions of the nuisance parameters are compared to the
respective priors (dotted) of the tight and loose scenarios.

As expected, in the true scenario where the nuisance parameters are exactly known, the marginal posterior distri-
butions are sharply centered around the ground-truth values. In the tight scenario, the uncertainty in the nuisance
parameters distributions leads to wider distributions for the EoS parameters. This is further pronounced for the loose
case, where less prior information on the nuisance parameters is available. Fig. 2 illustrates that the hydrogen column
NH as well as the logarithm of the e↵ective surface temperature log(Te↵) can be significantly constrained from the
spectrum data compared to their prior ranges. In the tight scenario, the marginal posterior for the distance d is
almost indistinguishable from the prior, indicating that the telescope spectra do not contribute any more information
for this parameter over the tight priors. However, in the loose case, the marginal posterior distribution of d becomes
tighter than the loose prior, which implies that we can indeed extract information about the distance of a neutron
star from its X-ray spectrum.

We can transform the posterior distribution for the EoS parameters �1 and �2 into 95% (highest density) posterior
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