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Context from phystat

§ From Jesse Thaler’s talk on Interpretable Machine Learning:
“If asked what is the most under-used Machine Learning technique in physics. . .

. . . my answer is only half-jokingly linear regression.”

§ sbi mentioned in (so far)
§ Monday

Ben Wandelt Cosmology and machine learning¶
Maximilian Dax Simulation-based machine learning for gravitational-wave analysis
Andre Scaffidi Anomaly aware machine learning for dark matter direct detection at the DARWIN

experiment
Joshua Villarrea Feldman-Cousins’ ML Cousin

§ Tuesday

Aishik Ghosh Simulation-based Inference (SBI)
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Who?

Idea I’ve been working on/talking about for the better part of 18 months,

§ Nicolas Mediato Diaz (MSci project)

§ David Yallup (Postdoc)

§ Thomas Gessey Jones (Postdoc)

Many others have also presented this idea independently

§ SELFI incorporates much of this idea: Leclercq [1902.10149]

§ some of these ideas are in MOPED: Heavens [astro-ph/9911102]

§ Also appears in Häggström [2403.07454]
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SBI: Simulation-based inference

§ What do you do if you don’t know LpD|θq?

§ If you have a simulator/forward model
θ Ñ D defines an implicit likelihood L.

§ Simulator generates samples from Lp¨|θq.

§ With a prior πpθq can generate samples from
joint distribution J pθ,Dq “ LpD|θqπpθq

the “probability of everything”.

§ Task of SBI is take joint J samples and
learn posterior Ppθ|Dq, and evidence ZpDq

or even likelihood LpD|θq or joint J pθ,Dq.

§ Present state of the art achieves this using
machine learning (neural networks).

D
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Why linear SBI?

If neural networks are all that, why should we consider the regressive step of going back to
linear versions of this problem?
§ It is pedagogically helpful

§ separates general principles of SBI from the details of neural networks
§ (particularly for ML skeptics)

§ It is practically useful
§ for producing expressive examples with known ground truths.

§ It is pragmatically useful
§ competitive with neural approaches in terms of accuracy,
§ faster and more interpretable.
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Linear Simulation Based Inference
Mathematical setup

§ Linear generative model pm,M,C q

D “ m ` Mθ ˘
?
C

where:

θ : n dimensional parameters
D : d dimensional data
M : d ˆ n transfer matrix
m : d-dimensional shift
C : d ˆ d data covariance

§ k Simulations

S “ tpθi ,Di q : i “ 1, . . . , ku

§ Define simulation statistics1:

θ̄ “ 1
k

ř

k θi
D̄ “ 1

k

ř

k Di

Θ “ 1
k´1

ř

i pθi ´ θ̄qpθi ´ θ̄q1

∆ “ 1
k´1

ř

i pDi ´ D̄qpDi ´ D̄q1

Ψ “ 1
k´1

ř

i pDi ´ D̄qpθi ´ θ̄q1

1N.B. using matrix variate notation where primes denote transposes M 1
“ MT
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Linear Simulation Based Inference: gory mathematical details

§ We now wish to infer the parameters of the linear model
pm,M,C q from simulations S (which define θ̄, D̄,Θ,∆,Ψ)

§ The likelihood for this problem is:

PptDiu|tθiu|m,M,C q “
ź

i

N pDi |m ` Mθi ,C q

§ It can be shown the posterior P is. . .

m|M,C , S „ N p k
k`1pD̄ ´ M θ̄q, C

k`1q,

M|C ,S „ MN pΨΘ´1
˚ , C

k´1 ,Θ
´1
˚ q,

C |S „ W´1
ν pC0 ` pk ´ 1qp∆ ´ ΨΘ´1Ψ1qq,

where Θ˚ “ 1
k´1Θ0 ` Θ, ν “ ν0 ` k , and C0 define conjugate

prior π on m,M,C
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Sequential LSBI

§ As we shall see, for non-linear problems, a linear approximation is unlikely to be a good one.
§ Sequential methods iteratively improve by focussing effort around observed data Dobs.

§ This is orthogonal to amortised approaches
§ More appropriate to cosmology, where there is only one dataset
§ Less appropriate to particle physics/GW

§ We are free to choose where to place simulation parameters tθiu, so it makes sense to
choose these so that they generate simulations close to the observed data

§ Our current approximation to the posterior is a natural choice.
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Example of this on our toy model

§ Same model as before

§ Mark the observed data Dobs

§ Fit a model using lsbi

§ Evaluate the posterior (cheap as linear)

§ Now use this posterior to pick tθiu

§ Generate tDiu from original simulator

§ Fit lsbi to these

§ Evaluate the new posterior

§ Iterate

D
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Example of this on the CMB

§ Now apply this to a “real” cosmology
example, inferring ΛCDM from the CMB

§ Unfortunately generative planck likelihoods do
not exist yet

§ Consider a cosmic-variance limited,
temperature-only, full sky CMB experiment
with no foregrounds

§ This is a n “ 6, d “ 2500 non-linear problem
§ No compression needed

§ Apply the above procedure

§ Slight bias these results, but this can be fixed
by marginalising over m,M,C , rather than
taking point estimates. 0.0
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lsbi: linear simulation based inference
Code details

§ lsbi is a pip-installable python package
§ it extends scipy.stats.multivariate normal

§ vectorised distributions with (broadcastable) arrays of mean and cov
§ .marginalise(...) and .condition(...) methods
§ Plotting functionality

§ Implements LinearModel class with .prior(), .likelihood(theta), .posterior(D) &
.evidence() methods which return distributions

§ Also implement MixtureModel
§ Under active develpoment

§ Open source
§ Continuous integration

§ github.com/handley-lab/lsbi
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Where next?

§ Paper being written up
§ soft deadline for Nicolas’ MPhil start in October
§ hard deadline for PhD applications

§ Include realistic CMB simulation effects (foregrounds)

§ Extend to more examples (BAO, SNe)

§ How does LSBI contribute to the question of compression

§ Explore limits of d and n

§ Explore mixture modelling for real nonlinear effects

§ If the posterior is the answer, what is the question?

§ Importance sampling?

§ Model comparison?
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Conclusions
github.com/handley-lab

§ Introduction to lsbi: A linear simulation-based inference method developed over 18
months by the speaker and collaborators.

§ Benefits of Linear SBI: Pedagogical value, practical examples with known ground truths,
competitive accuracy, speed, and interpretability compared to neural networks.

§ Mathematical Setup: Uses a linear generative model to fit simulation data and iteratively
refine posterior estimations, demonstrated through toy and cosmology examples.

§ lsbi Python Package: Extends scipy.stats.multivariate normal with functionalities
for marginalization, conditioning, and plotting; under active development and open source.

§ Future Directions: Include realistic CMB simulations, extend to other examples (BAO,
SNe), explore parameter limits, mixture modeling, and integrate importance sampling and
model comparison.
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