Robust signal detection with classifiers decorrelated via optimal transport

Purvasha Chakravarti

Department of Statistical Science, University College London

Lucas Kania

Olaf Behnke

Mikael Kuusela

Larry Wasserman

PHYSTAT - Statistics meets ML, Imperial College London September 11, 2024

Purvasha Chakravarti (UCL)

Signal Detection via CDOT

Events from the experiments

Experimental data

Experimental data are generated from one of the two processes: **Background** - refers to the known physics (SM). **Signal** - represents an interesting event with a known/unknown possible particle.

Experimental data

Experimental data are generated from one of the two processes:

Background - refers to the known physics (SM).

Signal - represents an interesting event with a known/unknown possible particle.

 $q = (1 - \lambda)p_b + \lambda p_s$, No signal: $\lambda = 0$

Experimental data

Experimental data are generated from one of the two processes: **Background** - refers to the known physics (SM).

Signal - represents an interesting event with a known/unknown possible particle.

Model-dependent methods

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

Model-dependent methods

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

• Background + possible signal (experimental) sample - unlabelled observations

Experimental:
$$W_1, \ldots, W_n \sim q = (1 - \lambda)p_b + \lambda p_s$$

Model-dependent methods

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

Background:
$$X_1, \ldots, X_{m_b} \sim p_b$$
Signal: $Y_1, \ldots, Y_{m_s} \sim p_s$

• Background + possible signal (experimental) sample - unlabelled observations

Experimental:
$$W_1, \ldots, W_n \sim q = (1 - \lambda)p_b + \lambda p_s$$

Testing for signal can be formulated as:

$$H_0: \lambda = 0$$
 versus $H_1: \lambda > 0.$

Train a classifier (h) to separate signal from background.

Purvasha Chakravarti (UCL)

Problem

- Methods assume that the background samples X_1, \ldots, X_{m_b} come from the "true" background distribution p_b .
- But X's are MC simulations which are likely to be systematically misspecified.

Problem

Methods assume that the background samples X_1, \ldots, X_{m_b} come from the "true" background distribution p_b .

But X's are MC simulations which are likely to be systematically misspecified.

Important question: Are the "signals" found true signals or differences between the true background and a misspecified background?

Towards background-agnostic. Signal is localized in some resonant features

$$q=(1-\lambda) p_b + \lambda p_s$$
, No signal: $\lambda=0$ or equivalently $q=p_b$

Localization in resonant feature M.

Purvasha Chakravarti (UCL)

Towards background-agnostic. Signal is localized in some resonant features

$$q=(1-\lambda)p_b+\lambda p_s,$$
 No signal: $\lambda=0$ or equivalently $q=p_b$

Signal detection is performed on resonant feature of only the experimental data.

Localization in resonant feature M.

Bump hunting

See details: [Chakravarti et al. (2409.06399)]

Bump hunting

See details: [Chakravarti et al. (2409.06399)]

Problem: λ is usually very small.

Signal enrichment using auxiliary variables

• Access to MC simulations from assumed Background and Signal models.

Signal enrichment using auxiliary variables

- Access to MC simulations from assumed Background and Signal models.
- Signal enrichment is performed using a classifier trained on auxiliary variables of simulated data before signal detection.

Data

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

Used to train the supervised classifier h.

Data

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

Used to train the supervised classifier h.

• Background + possible signal (real, experimental) sample - unlabelled observations

Data

Two sources of data are at hand:

• Background + signal (Monte Carlo) sample - labelled observations

Used to train the supervised classifier h.

• Background + possible signal (real, experimental) sample - unlabelled observations

Use h to perform signal enrichment and $M'_i s$ to perform signal detection using bump hunting.

Signal detection process

Problem with BG estimation: sculpting

When we cut on the classifier scores the distribution of M'_is changes!

Problem with BG estimation: sculpting

When we cut on the classifier scores the distribution of M'_is changes!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Problem with BG estimation: sculpting

When we cut on the classifier scores the distribution of M'_is changes!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Idea: Can the protected variable have the same background distribution after cuts as before cuts? Yes, if h(X) is independent of M.

Purvasha Chakravarti (UCL)

Signal Detection via CDOT

What is decorrelation?

To avoid sculpting need h(X) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

What is decorrelation?

To avoid sculpting need h(X) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Discussion on existing decorrelation methods

- Make classifier inputs decorrelated of the protected variable.
 - Designing Decorrelated Taggers (DDT) [Dolen et al.(1603.00027)]
 - Convolved SubStructure (CSS) [Moult et al. (1710.06859)]
- Enforce decorrelation of classifier during training using regularization.
 - DisCo Fever [Kasieczka, Shih (2001.05310)]
 - ► MoDe [Kitouni et al. (2010.09745)]
 - Adversarial Neural Networks (ANN) [Louppe et al. (1611.01046)] [Shimmin et al. (1703.03507)]
- Find a transformation of pre-trained classifier to be decorrelated of the protected variable.
 - CDOT (our method) [Chakravarti et al. (2409.06399)]
 - CNOTS [Algren et al. (2307.05187)]
 - Conditional normalizing flows [Klein et al. (2211.02486)]
 - ► Cuts derived from quantile regression [Moreno et al. (PhysRevD.102.012010)]

Solution: Make cuts on transformed classifier output $T_M(h(X))$ instead, where $T_M(h(X))$ is independent of the protected variable M for background data.

• Objective: Minimize $(T_M(h(X)) - h(X))^2$ subject to $T_M(h(X))$ independent of M, given $X \sim B$ and marginal of h(X) and $T_M(h(X))$ are the same.

Solution: Make cuts on transformed classifier output $T_M(h(X))$ instead, where $T_M(h(X))$ is independent of the protected variable M for background data.

- Objective: Minimize $(T_M(h(X)) h(X))^2$ subject to $T_M(h(X))$ independent of M, given $X \sim B$ and marginal of h(X) and $T_M(h(X))$ are the same.
- The optimal transport map T_m from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the solution.

Solution: Make cuts on transformed classifier output $T_M(h(X))$ instead, where $T_M(h(X))$ is independent of the protected variable M for background data.

- Objective: Minimize $(T_M(h(X)) h(X))^2$ subject to $T_M(h(X))$ independent of M, given $X \sim B$ and marginal of h(X) and $T_M(h(X))$ are the same.
- The optimal transport map T_m from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the solution.
- When h(X) is univariate, closed form solution:

$$T_m(h(X)) = G^{-1}(F_{h|M}(h(X)|M=m))$$

where G is the marginal cdf of h(X) and $F_{h|M}$ is the conditional distribution of h(X) given M = m and X is from the background distribution.

The optimal transport map T_m from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the solution.

Sculpting problem

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Sculpting problem solved!

Example: Protected variable: Mass, Cut: Classifier output $T_M(h) > 0.5$.

Signal detection process

Geodesic path of Optimal Transport Solutions can span from h(X) to T(h(X)).

$$\beta h(X) + (1 - \beta)T(h(X)), \quad \beta \in [0, 1].$$

Purvasha Chakravarti (UCL)

Signal Detection via CDOT

Detection of decaying high-pT W-boson events: WTagging dataset

- Boosted hadronic W tagging dataset: benchmark for studying decorrelation methods.
- Bump hunt is performed on the mass of one W candidate jet and another (possibly W candidate) jet, mJJ.
- Classification is performed on ten representative jet substructure features.
- Details can be found in DDT [Dolen et al. (JHEP 2016)], DisCo Fever [Kasieczka, Shih (2001.05310)], and MoDe [Kitouni et al. (2010.09745)] papers.

WTagging dataset: before OT transformation

WTagging dataset: after OT transformation

WTagging dataset: comparison

JSD: Jensen–Shannon divergence, *R*50: the background rejection power (inverse false positive rate) at 50% signal efficiency.

CDOT achieves superior signal-to-background ratio for strongly decorrelated classifiers.

Original figure without CDOT taken from the MoDe [Kitouni et al. (2010.09745)] paper.

Purvasha Chakravarti (UCL)

Signal Detection via CDOT

WTagging dataset: Power

Detection of high-mass resonance events

- Data was generated using the MadGraph particle physics software.
- 4b represents events that were identified as having four b-jets.
- 3b represents events which were identified as having four jets, of which exactly three are b-jets.
- \bullet Signal sample (X \rightarrow HH \rightarrow 4b) produced at 400 GeV.
- We train the supervised classifier h on the pT, energy, η and ϕ variables of the four jets.
- More details: [Manole et al. (2208.02807)]

MC Background: 3b (50,000) MC Signal: 400 signal (44,196) Experimental: 4b + 400 signal (60,000)

Simulated Data: robust on 4b data with signal

CDOT trained on the 3b data and signal shows robustness on 4b data.

3b: Power

4b: Power

Comments and discussion

- CDOT can make any pre-trained classifier independent of given protected variables.
- CDOT can handle multiple or multivariate protected variables.
- Can be extended to multiple or multivariate classifiers but computationally expensive.
- Gives a range of transformed classifier using geodesic morphing.
- CDOT is robust to some background model misspecification.
- Overall, showed that both signal enrichment and decorrelation help increase power of detection.

Thank you! Questions?

arXiv: 2409.06399

Email: p.chakravarti@ucl.ac.uk