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ATLAS

EXPERIMENT

Candidate Event:
PP~ H(—bb) + W(—>pv)
Run: 338712 Event: 335908183
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Experimental data

Experimental data are generated from one of the two processes:
Background - refers to the known physics (SM).

Signal - represents an interesting event with a known/unknown possible particle.
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g=(1—X)pp+ Aps, Nosignal: A=0
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Experimental data

Experimental data are generated from one of the two processes:
Background - refers to the known physics (SM).
Signal - represents an interesting event with a known/unknown possible particle.

g=(1—X)pp+ Aps, Nosignal: A=0
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Two-dimensional toy example.
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Model-dependent methods
Two sources of data are at hand:

@ Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Yi,..., Ym. ~ ps
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Model-dependent methods
Two sources of data are at hand:

@ Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Yi,..., Ym. ~ ps

@ Background + possible signal (experimental) sample - unlabelled observations

Experimental:  Wy,..., W, ~qg=(1—\)pp+ Aps
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Model-dependent methods
Two sources of data are at hand:

@ Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Yi,..., Ym. ~ ps

@ Background + possible signal (experimental) sample - unlabelled observations
Experimental: W4, ..., W, ~qg=(1— A)pp+ Aps
Testing for signal can be formulated as:
Ho:A=0 wversus H;:A>0.

Train a classifier (h) to separate signal from background.

Purvasha Chakravarti (UCL) Signal Detection via CDOT September 11, 2024 4/30



Problem

Methods assume that the background samples X, .

..y Xm, come from the “true” background
distribution pp,.

But X's are MC simulations which are likely to be systematically misspecified.
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Problem

Methods assume that the background samples Xi, ..., X, come from the “true” background
distribution pp.

But X's are MC simulations which are likely to be systematically misspecified.

Important question: Are the “signals” found true signals or differences between the true
background and a misspecified background?
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Towards background-agnostic. Signal is localized in some resonant
features

g=(1L—X)pp+ Aps, Nosignal: X\ =0 or equivalently g = pp

Localization in resonant feature M.
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Towards background-agnostic. Signal is localized in some resonant

features

g=(1—A)pp+ Aps, Nosignal: A =0 or equivalently g = pp

~
§ Signal detection is performed on resonant
‘3 feature of only the experimental data.
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Localization in resonant feature M.
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Bump hunting

Normalized counts
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See details: [Chakravarti et

Purvasha Chakravarti (

B Signal region

Il Background + Signal
B Est. background

i i

Mass

al. (2409.06399)]

Signal Detection via C

Normalized counts

Bl Signal region
B Background + Signal
B Est. background

Mass

Normalized counts

m Signal region
M Background + Signal
mm Est. background

Mass

September 11, 2024

7/30


https://arxiv.org/pdf/2409.06399.pdf

Bump hunting

B Signal region

Normalized counts

Mass

See details: [Chakravarti et

M Background + Signal

Normalized counts

B Signal region

Il Background + Signal
B Est. background

i i

Mass

al. (2409.06399)]

Problem: A is usually very small.
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Signal enrichment using auxiliary variables
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Signal enrichment using auxiliary variables
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Data

Two sources of data are at hand:

@ Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Y1,..., Ym. ~ ps

Used to train the supervised classifier h.

Purvasha Chakravarti (UCL) Signal Detection via CDOT

September 11, 2024

9/30



Data

Two sources of data are at hand:

e Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Y1,..., Ym. ~ ps

Used to train the supervised classifier h.

@ Background + possible signal (real, experimental) sample - unlabelled observations

Auxiliary Variables: Wi, ..., W, ~q=(1— A)pp + Aps
Resonant/Protected Variable: My, ..., M,
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Data

Two sources of data are at hand:

e Background + signal (Monte Carlo) sample - labelled observations

Background:  Xi,..., Xm, ~ pp
Signal:  Y1,..., Ym. ~ ps

Used to train the supervised classifier h.

@ Background + possible signal (real, experimental) sample - unlabelled observations

Auxiliary Variables: Wi, ..., W, ~q=(1— A)pp + Aps
Resonant/Protected Variable: My, ..., M,

Use h to perform signal enrichment and M/s to perform signal detection using bump
hunting.
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Signal detection process
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Problem with BG estimation: sculpting
When we cut on the classifier scores the distribution of M’s changes!
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Problem with BG estimation: sculpting
When we cut on the classifier scores the distribution of M’s changes!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.
Distribution of Mass after Cut
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Problem with BG estimation: sculpting
When we cut on the classifier scores the distribution of M’s changes!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.
Distribution of Mass after Cut
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Idea: Can the protected variable have the same background distribution after cuts as before

September 11, 2024

cuts? Yes, if h(X) is independent of M.
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What is decorrelation?

To avoid sculpting need h(X) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass
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What is decorrelation?

To avoid sculpting need h(X) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.
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Discussion on existing decorrelation methods

@ Make classifier inputs decorrelated of the protected variable.

» Designing Decorrelated Taggers (DDT) [Dolen et al.(1603.00027)]
» Convolved SubStructure (CSS) [Moult et al. (1710.06859)]

o Enforce decorrelation of classifier during training using regularization.
» DisCo Fever [Kasieczka, Shih (2001.05310)]
» MoDe [Kitouni et al. (2010.09745)]
» Adversarial Neural Networks (ANN) [Louppe et al. (1611.01046)] [Shimmin et al.
(1703.03507)]

o Find a transformation of pre-trained classifier to be decorrelated of the protected variable.
CDOT (our method) [Chakravarti et al. (2409.06399)]

CNOTS [Algren et al. (2307.05187)]

Conditional normalizing flows [Klein et al. (2211.02486)]

Cuts derived from quantile regression [Moreno et al. (PhysRevD.102.012010)]

v

v vy
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Classifier Decorrelated through Optimal Transport (CDOT)

Solution: Make cuts on transformed classifier output Tps(h(X)) instead, where Tps(h(X)) is
independent of the protected variable M for background data.

o Objective: Minimize (T (h(X)) — h(X))? subject to Ty(h(X)) independent of M, given
X ~ B and marginal of h(X) and Tp(h(X)) are the same.
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Classifier Decorrelated through Optimal Transport (CDOT)

Solution: Make cuts on transformed classifier output Tps(h(X)) instead, where Ty(h(X)) is
independent of the protected variable M for background data.

o Objective: Minimize (T (h(X)) — h(X))? subject to Ty(h(X)) independent of M, given
X ~ B and marginal of h(X) and Tp(h(X)) are the same.

@ The optimal transport map T, from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the
solution.
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Classifier Decorrelated through Optimal Transport (CDOT)

Solution: Make cuts on transformed classifier output Tps(h(X)) instead, where Ty(h(X)) is
independent of the protected variable M for background data.

o Objective: Minimize (T (h(X)) — h(X))? subject to Ty(h(X)) independent of M, given
X ~ B and marginal of h(X) and Tp(h(X)) are the same.

@ The optimal transport map T, from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the
solution.

e When h(X) is univariate, closed form solution:

Tin(h(X)) = G~ (Fpm(h(X)|M = m))

where G is the marginal cdf of h(X) and Fy is the conditional distribution of h(X)
given M = m and X is from the background distribution.
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Classifier Decorrelated through Optimal Transport (CDOT)

The optimal transport map T, from p(h(x)|M = m, B) to the marginal p(h(x)|B) is the
solution.
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Sculpting problem
Example: Protected variable: Mass, Cut: Classifier output h > 0.5.
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Sculpting problem solved!

Example: Protected variable: Mass, Cut: Classifier output Ty (h) > 0.5.
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Signal detection process
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Geodesic path of Optimal Transport
Solutions can span from h(X) to T(h(X)).

N

A

Bh(X) + (1 = B)T(h(X)), £ <[01].
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Detection of decaying high-pT W-boson events: WTagging dataset

@ Boosted hadronic W tagging dataset: benchmark for studying decorrelation methods.

@ Bump hunt is performed on the mass of one W candidate jet and another (possibly W
candidate) jet, mJJ.

o Classification is performed on ten representative jet substructure features.

@ Details can be found in DDT [Dolen et al. (JHEP 2016)], DisCo Fever [Kasieczka, Shih
(2001.05310)], and MoDe [Kitouni et al. (2010.09745)] papers.
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WTagging dataset: before OT transformation
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WTagging dataset: after OT transformation
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W Tagging dataset: comparison

JSD: Jensen—Shannon divergence, R50: the background rejection power (inverse false positive
rate) at 50% signal efficiency.
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CDOT achieves superior signal-to-background ratio for strongly decorrelated classifiers.
Original figure without CDOT taken from the MoDe [Kitouni et al. (2010.09745)] paper.
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W Tagging dataset: Power

Without Decorrelation With Decorrelation
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Detection of high-mass resonance events

Data was generated using the MadGraph particle physics software.

4b represents events that were identified as having four b-jets.

3b represents events which were identified as having four jets, of which exactly three are
b-jets.

Signal sample (X — HH — 4b) produced at 400 GeV.

We train the supervised classifier h on the pT, energy, 17 and ¢ variables of the four jets.
More details: [Manole et al. (2208.02807)]

MC Background: 3b (50, 000)
MC Signal: 400 signal (44,196)
Experimental:  4b + 400 signal (60, 000)
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Simulated Data: robust on 4b data with signal
CDOT trained on the 3b data and signal shows robustness on 4b data.
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3b: Power
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4b: Power
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Comments and discussion

@ CDOT can make any pre-trained classifier independent of given protected variables.
@ CDOT can handle multiple or multivariate protected variables.

@ Can be extended to multiple or multivariate classifiers but computationally expensive.
@ Gives a range of transformed classifier using geodesic morphing.

o CDOT is robust to some background model misspecification.

Overall, showed that both signal enrichment and decorrelation help increase power of
detection.
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Thank you! Questions?

Email: p.chakravartiQucl.ac.uk

[=]

arXiv: 2409.06399
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