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Events from the experiments
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Experimental data

Experimental data are generated from one of the two processes:
Background - refers to the known physics (SM).
Signal - represents an interesting event with a known/unknown possible particle.

q = (1− λ)pb + λps , No signal: λ = 0

Two-dimensional toy example.
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Model-dependent methods
Two sources of data are at hand:

Background + signal (Monte Carlo) sample - labelled observations

Background: X1, . . . ,Xmb
∼ pb

Signal: Y1, . . . ,Yms ∼ ps

Background + possible signal (experimental) sample - unlabelled observations

Experimental: W1, . . . ,Wn ∼ q = (1− λ)pb + λps

Testing for signal can be formulated as:

H0 : λ = 0 versus H1 : λ > 0.

Train a classifier (h) to separate signal from background.
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Problem

Methods assume that the background samples X1, . . . ,Xmb
come from the “true” background

distribution pb.

But X ’s are MC simulations which are likely to be systematically misspecified.

Important question: Are the “signals” found true signals or differences between the true
background and a misspecified background?
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Towards background-agnostic. Signal is localized in some resonant
features

q = (1− λ)pb + λps , No signal: λ = 0 or equivalently q = pb

Localization in resonant feature M.

Signal detection is performed on resonant
feature of only the experimental data.
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Bump hunting
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See details: [Chakravarti et al. (2409.06399)]

Problem: λ is usually very small.
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Signal enrichment using auxiliary variables

Two-dimensional toy example.

Access to MC simulations from assumed
Background and Signal models.

Signal enrichment is performed using a
classifier trained on auxiliary variables of
simulated data before signal detection.
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Data

Two sources of data are at hand:

Background + signal (Monte Carlo) sample - labelled observations

Background: X1, . . . ,Xmb
∼ pb

Signal: Y1, . . . ,Yms ∼ ps

Used to train the supervised classifier h.

Background + possible signal (real, experimental) sample - unlabelled observations

Auxiliary Variables: W1, . . . ,Wn ∼ q = (1− λ)pb + λps

Resonant/Protected Variable: M1, . . . ,Mn

Use h to perform signal enrichment and M ′
i s to perform signal detection using bump

hunting.
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Signal detection process
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Problem with BG estimation: sculpting
When we cut on the classifier scores the distribution of M ′

i s changes!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass Distribution of Mass after Cut

Idea: Can the protected variable have the same background distribution after cuts as before
cuts? Yes, if h(X ) is independent of M.
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What is decorrelation?

To avoid sculpting need h(X ) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass Distribution of Mass after Cut

Purvasha Chakravarti (UCL) Signal Detection via CDOT September 11, 2024 12 / 30



What is decorrelation?

To avoid sculpting need h(X ) decorrelated (independent) of M!

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass Distribution of Mass after Cut

Purvasha Chakravarti (UCL) Signal Detection via CDOT September 11, 2024 12 / 30



Discussion on existing decorrelation methods

Make classifier inputs decorrelated of the protected variable.
▶ Designing Decorrelated Taggers (DDT) [Dolen et al.(1603.00027)]
▶ Convolved SubStructure (CSS) [Moult et al. (1710.06859)]

Enforce decorrelation of classifier during training using regularization.
▶ DisCo Fever [Kasieczka, Shih (2001.05310)]
▶ MoDe [Kitouni et al. (2010.09745)]
▶ Adversarial Neural Networks (ANN) [Louppe et al. (1611.01046)] [Shimmin et al.

(1703.03507)]

Find a transformation of pre-trained classifier to be decorrelated of the protected variable.
▶ CDOT (our method) [Chakravarti et al. (2409.06399)]
▶ CNOTS [Algren et al. (2307.05187)]
▶ Conditional normalizing flows [Klein et al. (2211.02486)]
▶ Cuts derived from quantile regression [Moreno et al. (PhysRevD.102.012010)]

Purvasha Chakravarti (UCL) Signal Detection via CDOT September 11, 2024 13 / 30

https://arxiv.org/pdf/1603.00027.pdf
https://arxiv.org/pdf/1710.06859.pdf
https://arxiv.org/pdf/2001.05310.pdf
https://arxiv.org/pdf/2010.09745.pdf
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1703.03507.pdf
https://arxiv.org/pdf/1703.03507.pdf
https://arxiv.org/pdf/2409.06399.pdf
https://arxiv.org/pdf/2307.05187.pdf
https://arxiv.org/pdf/2211.02486.pdf
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.102.012010


Classifier Decorrelated through Optimal Transport (CDOT)

Solution: Make cuts on transformed classifier output TM(h(X )) instead, where TM(h(X )) is
independent of the protected variable M for background data.

Objective: Minimize (TM(h(X ))− h(X ))2 subject to TM(h(X )) independent of M, given
X ∼ B and marginal of h(X ) and TM(h(X )) are the same.

The optimal transport map Tm from p(h(x)|M = m,B) to the marginal p(h(x)|B) is the
solution.

When h(X ) is univariate, closed form solution:

Tm(h(X )) = G−1(Fh|M(h(X )|M = m))

where G is the marginal cdf of h(X ) and Fh|M is the conditional distribution of h(X )
given M = m and X is from the background distribution.
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Sculpting problem

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass Distribution of Mass after Cut
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Sculpting problem solved!

Example: Protected variable: Mass, Cut: Classifier output TM(h) > 0.5.

Distribution of Mass Distribution of Mass after Cut
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Signal detection process
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Geodesic path of Optimal Transport
Solutions can span from h(X ) to T (h(X )).

βh(X ) + (1− β)T (h(X )), β ∈ [0, 1].
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Detection of decaying high-pT W-boson events: WTagging dataset

Boosted hadronic W tagging dataset: benchmark for studying decorrelation methods.

Bump hunt is performed on the mass of one W candidate jet and another (possibly W
candidate) jet, mJJ.

Classification is performed on ten representative jet substructure features.

Details can be found in DDT [Dolen et al. (JHEP 2016)], DisCo Fever [Kasieczka, Shih
(2001.05310)], and MoDe [Kitouni et al. (2010.09745)] papers.
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WTagging dataset: before OT transformation
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WTagging dataset: after OT transformation
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WTagging dataset: comparison
JSD: Jensen–Shannon divergence, R50: the background rejection power (inverse false positive
rate) at 50% signal efficiency.

CDOT achieves superior signal-to-background ratio for strongly decorrelated classifiers.
Original figure without CDOT taken from the MoDe [Kitouni et al. (2010.09745)] paper.
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WTagging dataset: Power
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Detection of high-mass resonance events

Data was generated using the MadGraph particle physics software.

4b represents events that were identified as having four b-jets.

3b represents events which were identified as having four jets, of which exactly three are
b-jets.

Signal sample (X → HH → 4b) produced at 400 GeV.

We train the supervised classifier h on the pT, energy, η and ϕ variables of the four jets.

More details: [Manole et al. (2208.02807)]

MC Background: 3b (50, 000)

MC Signal: 400 signal (44, 196)

Experimental: 4b + 400 signal (60, 000)
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Simulated Data: robust on 4b data with signal
CDOT trained on the 3b data and signal shows robustness on 4b data.
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3b: Power
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4b: Power
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Comments and discussion

CDOT can make any pre-trained classifier independent of given protected variables.

CDOT can handle multiple or multivariate protected variables.

Can be extended to multiple or multivariate classifiers but computationally expensive.

Gives a range of transformed classifier using geodesic morphing.

CDOT is robust to some background model misspecification.

Overall, showed that both signal enrichment and decorrelation help increase power of
detection.
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Thank you! Questions?

arXiv: 2409.06399

Email: p.chakravarti@ucl.ac.uk
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