PhyStat: Statistics meets ML

Systematics: mystery or muse?
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My charge

Theme of workshop: Statistics meets Machine Learning
e This describes a lot of my research - I'm sad | can’t be there

e Purest expression is probably simulation-based Inference

Louis specifically asked me to talk about systematic uncertainties




A personal note on “systematics”

Thinking about systematics in ML is what inspired my work in simulation-based inference
e Slack channel | created in 2015 for my ML work with collaborators is called “systematics”

e Now has 125 members and ~200,000 messages!
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Inspirational message / initial theme of talk

Systematic uncertainties usually have a negative connotation since they reduce
the sensitivity of an experiment.

However, the practical and conceptual challenges posed by various types ot
systematic uncertainty also have a long track record of motivating new ideas.

Original Plan for Talk: outline some examples from my own career where
systematics were my muse for innovation

e That theme is still there, but | pivoted



The struggle is real

| want to make several points that isolate / highlight different issues
* |nitial organization seemed very scattered

e Difficult to convert into a linear story
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Figure source: A Design Experience for Interactive Narrative Based on The User Behavior, Yuan Yao, Hailing Mi



Organization: 5-D "Outline”

| want to make several points that isolate / highlight different issues

* An organizational principle emerged that helps isolate individual points

: : : Low-level x,
x Choice Low-dim summary stat Low-Dim summary stat

licit tat
(Summary Stat) designed by expert learned / optimized no explicit summary sta

(learned implicitly)

Model target Density / Likelihood Likelihood Ratio

Low-dim x

NN T
Histogram, Kernel (O e,

x-dependence

JAN ti
Fixed Parametrization / JNOSEIE /

-d d
6-dependence Interpolation / Morphing

"non-parametric”
(e.g. NN, GP)

Scope of optimization N/A
objective (constructive)

Per-Event Experiment-wide




x Choice
(Summary Stat)

Model target

x-dependence

O-dependence

Scope of optimization
objective

Classical histogram-based SBI in HEP

Low-dim summary stat
designed by expert

Density / Likelihood

Low-dim x
Histogram, Kernel

Fixed Parametrization /
Interpolation / Morphing

N/A
(constructive)




Improved treatment of systematics in traditional approach

x Choice Low-dim summary stat
(Summary Stat) designed by expert

Model target Density / Likelihood

Low-dim x

x-dependence ,
P Histogram, Kernel

Agnostic /
O-dependence “non-parametric”
(e.g. NN, GP)

Scope of optimization N/A
objective (constructive)




Traditional use of

x Choice
(Summary Stat)

Model target

x-dependence

O-dependence

Scope of optimization
objective

ML for searches

Density / Likelihood

Low-dim x
Histogram, Kernel

Fixed Parametrization /
Interpolation / Morphing

Low-Dim summary stat
learned / optimized

Per-Event



Genetic Programming, INFERNO, Neon

x Choice Low-Dim summary stat
(Summary Stat) learned / optimized

Model target Density / Likelihood

Low-dim x

x-dependence ,
P Histogram, Kernel

Fixed Parametrization /

-d d
6-dependence Interpolation / Morphing

Scope of optimization
objective

Experiment-wide




(Locally) Sufficient statistics for measurements

x Choice Low-Dim summary stat
(Summary Stat) learned / optimized

Model target Density / Likelihood

Low-dim x

x-dependence ,
. Histogram, Kernel

Fixed Parametrization /

-d d
6-dependence Interpolation / Morphing

Scope of optimization
objective

Per-Event




Learning to Pivot

x Choice Low-Dim summary stat
(Summary Stat) learned / optimized

Model target Density / Likelihood

Low-dim x

x-dependence ,
. Histogram, Kernel

Fixed Parametrization /

-d d
6-dependence Interpolation / Morphing

Experiment-wide

Scope of optimization Per-Event
objective




SBl: Neural Likelihood Ratio Estimation

Low-level x,
x Choice

no explicit summary stat
(Summary Stat) i d

(learned implicitly)

Model target Likelihood Ratio

x-dependence NN (or Tree)

JAN ti
Fixed Parametrization / SJNESIAE

O-dependence “non-parametric”

Interpolation / Morphing (e.g. NN, GP)

Scope of optimization
objective

Per-Event




Learning to Profile

Low-level x,
x Choice

no explicit summary stat
(Summary Stat) i d

(learned implicitly)

Model target Likelihood Ratio

x-dependence NN (or Tree)

Agnostic /

1

O-dependence ‘non-parametric”

(e.g. NN, GP)

Scope of optimization
objective

Experiment-wide




Traditional binned-template analysis




High-level overview of traditional binned-template analysis

Inhomogeneous Poisson Process
e Continuous summary statistic is binned.

e Poisson for total number X multinomial over bins
(equivalently product ot Poisson distributions for each bin)

e Expected bin counts (Poisson rate) often comes from simulation
Usually modeled as a mixture of signal + multiple background processes
e Mixture coefticient on signal often parameter of interest

e Mixture coefficients for background components often uncertain and
oromoted to nuisance parameters

Nuisance parameters are introduced to parametrize uncertain aspects of
simulation (e.g. calibration constants or parameters of underlying physics model)

e |arge simulated samples are produced for systematic variations
e Fill corresponding histograms for those systematic variations

e Interpolate between these to create continuously parametrized model
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Current approach to histogram-based modeling

Input to the interpolation algorithms take

piecewise linear

piecewise exponential
qguadratic-interp, linear extrap
poly-interp, expo extrap

* Nominal sample

e +]0 one-at-a-time Systematic variations
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The most widely used approach to
modeling systematics assumes that the
effects of different systematics factorize

Poisson mean

Recognized as a weak point for ~10 years
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Using ML to improve the treatment of systematics
in traditional binned template analysis

(new, unpublished work)




Going beyond 1o one-at-a-time variations
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Going beyond 1o one-at-a-time variations
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Going beyond 1o one-at-a-time variations

We want a way to interpolate with arbitrary
samples (in arbitrary dimensions) that

e Will be smooth

®
e Sample efficient (few inputs) @
®
e Trustworthy (no worries about training - +
that doesn’t converge) ? o
® o ?

Gaussian Processes are a natural choice

e They also provide a notion of
uncertainty on the interpolation

We still face the curse of dimensionality!



GPs on a 2D example that doesn’t factorize

Here are some examples of a GP fitting samples of a target efficiency function
that doesn't factorize

e Physics: efficiency of cut on MET. Systematics are jet energy scale uncertainties for low-pT and high-pT jets

arget .
0.50 GP Interpolation from samples
1.00
0.9 1.0
0.75 )
O ) 75 ~ 1.0 0.5
A .
~ 1.00
N .
A 0.50 1.5 0.0
. . . 0.0 1.0 1.5 05 1.0 1.5
1.25 0.25 V1 V1 V1
Efficient Estimation of Unfactorizable Systematic Uncertainties
1 . 50 O . OO Alexis Romero,’ Kyle Cranmer,? and Daniel Whiteson!
O . 5 1 . O 1 . 5 Department of Physics and A%tgxnﬁ&dgzgemzty of California, Irvine CA

Paper in preparation




o o o . Efficient Estimation of Unfactorizable Systematic Uncertainties
G P S W I t h D e r I V a t I V e O b S e r V a t I O n S Alexis Romero, 1 Kyle Cranmer,? and Daniel Whiteson'

! Department of Physics and Astronomy, University of California, Irvine CA

) ) 2UW Madison
Paper in preparation

Gaussian processes produce a smooth interpolation between data points and provide a notion of
uncertainty on the interpolation

e |f we in addition to y(x) pairs, we also have derivative observations dy(x)/dx, then the GP will
converge more quickly (best fit interpolation changes and uncertainty of interpolation reduced)

output, y(x)
output, y(x)

4 2 0 2 4
iInput, x

Figure from Rasmussen & Williams, Gaussian Processes for Machine Learning,




Derivative GPs on a 2D example that doesn’t factorize

Even with the nominal and £ 16 one-at-a-time variations, the derivative GP is able
to capture the effect of simultaneous variation of the two nuisance parameters
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Figures from paper in preparation (b) Derivative GP



Active learning / Bayesian Experimental Design (BED)

We can also be smart about where we
sample in nuisance parameter space

e Sample in places where uncertainty is
large. Iterate.

Active learning (BED) more efficient

— BED Random e Grid
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Figures from paper in preparation
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Traditional use of ML for searches




Traditional use of ML for searches

SSSSSSSSSSSSSSS

Most searches for new particles are cast into a

hypothesis testing framework Bttt s dartuiopoiiild
o Likelihood ratio is well motivated, but the likelihood 7~
for high dimensional, low-level observations from " (a)
simulation is intractable 0] T
° ° ° ° 70 jr‘
Instead of designing a summary statistic by hand, can i
60 :
|
use a neural network to learn a more powerful . “f
summary statistic (that approximates likelihood ratio) +

/
e From that point on, the NN output is treated like N H ;
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lncorporating Systematics

We want to take advantage of the power of machine learning, but we need to
INncorporate systematic uncertainties.

Two notions of “incorporate”:

* Don’t be wrong: view analysis chain as fixed and propagate systematic
uncertainty through it.

* e.g. control rate of type-| error in the presence of nuisance parameters

e Try to be “optimal”: adjust the training of ML components so that the analysis
s sensitive after accounting for systematics

* e.g. minimize rate of type-Il error / maximize power

27



Fixed classifier is not optimal

Imagine a simple example of bump on flat background
* train on nominal samples with v = 1y to obtain fixed classifier f(x)
e uncertainty in ¥ modifies location and width of peak

e the classitier not optimal for v # 1, but we can propagate uncertainty

o) | 0

28
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Propagation of uncertainty

One might form a statistical model for the number of events n that have f(x) > ¢

Eig(V) = J p(fly = Ly)df Epke(V) = J p(fly = 0p)df

p(na d ‘/’ta U) — POiS(I’l ‘/’tesig(y)s + €bkg(y)b)p(a ‘ V)

p(X\v)A

29
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An alternate idea: Data augmentation

An intuitive approach to incorporate systematics into training is to train on “smeared data”, or data
generated from a marginal model

i, yi ~ p(r,y) = | dvp(z,y|v)p(v)
e Note: this requires a prior / proposal distribution p(v)

A A

PKie) fx)
p(x) = J p(x|v)p(v)dy fsmeared(X)




Fixed classifier is not optimal

Training on smeared samples with v ~ p(v) still results in a fixed classifier £, .areg(X)

e classitier not optimal for any v

e we can still propagate uncertainty through the fixed classifier as before

pxy )A | f(x
P(X) — Jp(x ‘ I/)p(l/)dlj fsmeared(X)
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Learning to Pivot




Learning to pivot with adversarial networks

Typically classitier f(x) trained to minimize loss L.

e want classitier output to be insensitive to systematics

(nuisance parameter v)

* introduce an adversary r that tries to predict v baseo

on f.

* setup as a minimax game:

AN A

6)]0, (97~ — argminmaxE(é’f, QT).

Ex(0f,0:) = L§(0f) — ALy (0f,07)
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G. Louppe, M. Kagan, K. Cranmer,
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G. Louppe, M. Kagan, K. Cranmer,

An example of learning to pivot arXiv:1611.01046

Technique allows us to tune A, the tradeoff between classification power and
robustness to systematic uncertainty

An example: :
background: 1000 QCD jets

signal: 100 boosted W's

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count
analysis with background
uncertainty.

Expected significance of search

0.0 0.2 0.4 0.6 0.8 1.0
threshold on f(X)



Learned adversary — explicit regularization

One way of interpreting the mini-max game 6,6, = arg min max E(6;,6,).
0 0,

is to minimize a regularized loss term Z(Hf) = arg max E;(6,, 0,) where the

r

optimization with respect to . is not exposed

This motivates another approach in which the regularization is not achieved
through a learned adversary, but some other measure of discrepancy

DisCo Fever: Robust Networks Through Distance Correlation

Gregor Kasieczkal’ and David Shih2’3’4>E

, dCov?(X,Y) = (| X — X'||Y = Y'|)
L = Lclassz’fier (ya ytrue) + A dcorryt,,.ue:() (m? g) + (| X — X,|><|Y - Y,|>
—2(|X - X'|[Y = Y"|)

Phys.Rev.Lett. 125 (2020) 12, 122001



Learned adversary — explicit regularization

One way of interpreting tf
is to minimize a regularize

optimization with respect

This motivates another ap
through a learned adversz

DisCo Fe

L = Lclassif’ier (g; thrue) + A

Phys.Rev.Lett. 125 (2020) 12, 122001

Discussion on existing decorrelation methods

@ Make classifier inputs decorrelated of the protected variable.

» Designing Decorrelated Taggers (DDT) [Dolen et al.(1603.00027)]
» Convolved SubStructure (CSS) [Moult et al. (1710.06859)]

@ Enforce decorrelation of classifier during training using regularization.

» DisCo Fever [Kasieczka, Shih (2001.05310)]
» MoDe [Kitouni et al. (2010.09745)]
» Adversarial Neural Networks (ANN) [Louppe et al. (1611.01046)| [Shimmin et al.

(1703.03507)]

@ Find a transformation of pre-trained classifier to be decorrelated of the protected variable.

» CDOT (our method) [Chakravarti et al. (2409.06399)]

» CNOTS [Algren et al. (2307.05187)]

» Conditional normalizing flows [Klein et al. (2211.02486)]

» Cuts derived from quantile regression [Moreno et al. (PhysRevD.102.012010)]

Purvasha Chakravarti (UCL) Signal Detection via CDOT September 11, 2024

Classifier Decorrelated through Optimal Transport (CDOT)

Solution: Make cuts on transformed classifier output Ty (h(X)) instead, where Ty (h(X)) is
independent of the protected variable M for background data.




Parametrized Classifier &
Parametrized Likelihood Ratio Trick




ldea: what about a parameterized classier?

We want a classifier that depends on / is parametrized by v

e augment training data (x,y) = (x,r,y) to obtain f(x;v)

p(x|v) t(x;v)

e Confusing: how do we evaluate on real data when v is unknown?

37
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[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

REE VM e binary classifier: find function s(x) that minimizes loss:

sid. | |
TR Lis| = Ep(a|a,)[—log 5(2)] + Ep(z|mo)[— log(1 — s(z))]
t ':t‘ 2
S A | | | .
R S e j.e. approximate the optimal classitier
: H
o) — il
g o [E S T p(x|Ho) + p(x|H;)
. e which is 1-to-1 with the likelihood ratio
" i x|H 1
o, L} r(x) = plz|f) _ 1
e S(X) = p(z|Ho) s(x)




[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

— o e binary classifier: find function s(x) that minimizes loss:

.::.:‘... - <
g Lis| = Ep )|~ log s(x)] + Epmy) [~ log(1 — s(x))]
‘ o.::"::::’.:oo 1 N
*°¢ ~ ~ Z —y; log s(xz;) — (1 — y;) log(1 — s(x;))
i=1

t "‘t‘ 2l
Lef 00 Lo
" {.'.""‘:": e j.e. approximate the optimal classitier
s 7
s(x) = p(x|H)

R ru] L p(x|Ho) + p(x|Hy)
o:; * which is 1-to-1 with the likelihood ratio
O.GE— _;% x H 1
Z:: Lﬁg 7“(,513) _ p( 1) — 1
"0 5' p(z|Ho) s(x)

s(x) 1




Parametrizing the Likelihood Ratio Trick

Can do the same thing for any two points 8, & 8, in parameter space O.

p(z | 6p) 1
p(z | 61) s(x;0p,601)

T($7 (907 (91) —

Or train to classity data from p(x| @) versus some tixed reference p,.¢(x)

p(zlf) _ 1

pref(x) S(QZ; 9)

r(x;0) =

| call this a parametrized classifier.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

Thumbnail of the LHC statistical procedures
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SB‘ & PrOfI‘e lee‘|hOOd Rat|o 3 Generalized likelihood ratio tests

Thus far we have shown that the target likelihood ratio r(x; 6y, 61) with high dimensional
features x can be reproduced via the univariate densities p(s(x)|6y) and p(s(x)|f;) if the
Th e O ri 9 i n a ‘ a rXiV° /‘ 506 02/‘ 69 pa pe r ‘ays O u_t reduction s(x) is monotonic with r(x;6y,6;). We now generalize from the ratio of two

simple hypotheses specified by 6y and 6, to the case of composite hypothesis testing where

6 are continuous model parameters.

and demonstrates how the parametrized

3.1 Composite hypothesis testing

C‘ aSS .-ﬂ e r a p p rOa Ch Ca n be used tO m Od e‘ th e In the case of composite hypotheses 6 € Oy against an alternative § € ©; (such that

. . . . ©pNO; =0 and Oy U O; = O), the generalized likelihood ratio test, also known as the
p rOfI e ‘ I ke ‘ I h O O d ratl O profile likelihood ratio test, is commonly used

’ supgee P(D]0)

¢ Th e b a S i S -FO r ‘ ate r WO rk I n M a d M i n e r This generalized likelihood ratio can be used both for hypothesis tests in the presence of

nuisance parameters or to create confidence intervals with or without nuisance parame-

(3.1)

ters. Often, the parameter vector is broken into two components § = (u, ), where the u

¢ ‘ n m y m I n d / C‘ e a n eSt CO n Ce pt U a ‘ ‘y components are considered parameters of interest while the v components are considered

nuisance parameters. In that case ©y corresponds to all values of v with u fixed.

70 2.0

* Also called “uncertainty-aware” in review by Ghosh, - Y -
Nachman, and Whiteson [arXiv:2105.08742] opo |

50

40 b -

30

Approximating Likelihood Ratios with - =] mﬂ ﬂﬂL -

Calibrated Discriminative Classifiers
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Kyle Cranmer!, Juan Pavez?, and Gilles Louppe! (a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) [y = 0.05)

1N . .
ew York University

i , ) i Figure 2: Using approximated likelihood ratios for parameter inference vields an unbi-
Federico Santa Maria University & & app p y

ased maximum likelihood estimator 4, as empirically estimated from an ensemble of 1000

March 21, 2016

artificial datasets.



https://arxiv.org/abs/2105.08742%5D

Some parameterized classifier history

2015 NeurlPS ML & Physics workshop:

ALEPH Workshop @ NIPS 2015

Applying (machine) Learning to Experimental Physics (ALEPH) and «Flavours of Physics»
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Diagnostics with classitfiers

This paper also introduced two diagnostics

e classifier tests with data reweighed

Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers

Kyle Cranmer!, Juan Pavez?, and Gilles Louppe!
'New York University
?Federico Santa Marfa University

3.5 Diagnostics

The second diagnostic procedure leverages the connection of this technique to direct
density ratio estimation and its application to covariate shift and importance sampling.
The idea is simple: we test the relationship p(x|6y) = p(x|01)r(s(x; 60y, 601)) with the ap-
proximate ratio 7(5(x; 0y, #1)) and samples drawn from the generative model. More specif-

ically, we can train a classifier to distinguish between unweighted samples from p(x|6,)
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and samples from p(x|0;) weighted by 7(5(x;6y,61)). If the classifier can distinguish be-

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

tween the distributions, then 7(5(x; 6y, 61)) is not a good approximation of r(s(x; 6y, 60)).

I trast, if the classifier i ble to distinguish bet the two distributi th . : . . .
RS, B S SRS T SRR 1D RGN Beiuian GRS Bi® SECEDIEES, vRer Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

either 7(5(x; 6y, 61)) is a good approximation or the discriminator is not effective. The two . o . ‘ ‘ o
quality of the training and calibration of the classifier. The lett plots probe the sensitivity

situations can be disentangled to some degree by training another classifier to distinguish
, L to 01, while the right plots show the ROC curve for a calibrator trained to discriminate
between an unweighted distribution of samples from p(x|6;).

samples from p(x|fy) and samples from p(x|0;) weighted as indicated in the legend.
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Parameter dependence in

Neural Likelihood Ratio Estimation




Parameter dependence

p(x|0)
pref(x) |

A few approaches that change structure of the model

Say we want to model either p(x|8) or r(x|0) =

e Point-by-Point: model p(x|6,) for a set of points {6}
e Not explicitly parametrized in 8, no structure

e Parametrized Network: NN models both x-dependence
and @-dependence

e Most flexible, but doesn’t exploit any physics knowledge

e Fixed Interpolation: multiple NNs model x-dependence,
but form of 8-dependence is fixed & defined by physicist

e e.g.this is possible for EFT coefficients (exact)

e This is what HistFactory etc. do for nuisance parameters
but this makes assumptions
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Figure 8: Schematic neural network architectures for point-by-point (top), agnostic parameterized
(middle), and morphing-aware parameterized (bottom) estimators. Solid lines denote dependencies
with learnable weights, dashed lines show fixed functional dependencies.

Fig from: https://arxiv.org/abs/1805.00020
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Curse of dimensionality for nuisance parameters

The traditional binned-template analysis approach uses a fixed interpolation / "template
morphing” strategy

e Dependence on the parameters of interest are usually very well motivatea

e makes assumptions about factorization of systematics that might not be true

o ... either way, fixed parametric form makes it VERY sample efficient

In contrast, parametrized NN is physics-agnostic and the interpolation is non-parametric
e Flexible, but requires many samples for a high-dimensional nuisance parameter space
e Curse of dimensionality

s there a way to apply similar assumptions as template-based morphing strategy in
neural SBI context?
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Neural SBI
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Learning Optimal Test Statistics in the Presence of

In the fully-parametrized neural SBl approach, one must learn o

uisance Parameters
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as a function of the parameters of interest and the nuisance

p a ra m ete rS Published in Transactions on Machine Learning Research (02/2024)
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e This is conceptually clean, but computationally difficult Chris Pollard
University of Warwick
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Learning Summary Statistics

In the Presence of Systematics




Tradition meets differentiable programming

Recent efforts in particle physics to maintain traditional
approaches to likelihood estimation with summaries, but
optimize summary statistics with automatic differentiation

e Connects to differentiable programming paradigm

e Optimization objective is power of full statistical analysis,
which involves backproping through statistical procedure

e Does not exploit i.i.d. property, optimization is “global”

compute via automatic differentiation
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Gé Nathan Simpson @ CERN

‘ﬁ\, @phi_nate
I'm *very* excited to share with you what |'ve been
working on recently in collaboration with
@lukasheinrich_!

We've developed a module that performs end-to-end
learning with respect to statistical inference in particle

physics.

try it yourself at github.com/pyhf/neos! :)

10:58 AM - Mar 5, 2020 - Twitter Web App

https://qgithub.com/pyhf/neos
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A similar point (2006)

Stochastic Optimization for Collision Selection in High Energy Physics

S. Whiteson' and D. Whiteson?

'Dept. of Computer Science, Unverisity of Texas, Austin, Texas
‘Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania

The underlying structure of matter can be deeply probed via precision measurements of the mass of the top
quark, the most massive observed fundamental particle. Top quarks can be produced and studied only 1n colli-
sions at high energy particle accelerators. Most collisions, however, do not produce top quarks; making precise
measurements requires culling these collisions into a sample that 1s rich in collisions producing top quarks (sig-
nal) and spare in collisions producing other particles (background). Collision selection is typically performed
with heuristics or supervised learning methods. However, such approaches are suboptimal because they assume
that the selector with the highest classification accuracy will yield a mass measurement with the smallest statisti-
cal uncertainty. In practice, however, the mass measurement 1s more sensitive to some backgrounds than others.
Hence, this paper presents a new approach that uses stochastic optimization techniques to directly search for
selectors that minimize statistical uncertainty in the top quark mass measurement. Empirical results confirm that
stochastically optimized selectors have much smaller uncertainty. This new approach contributes substantially
to our knowledge of the top quark’s mass, as the new selectors are currently in use selecting real collisions.

* Shimon Whiteson (Daniel Whiteson’s brother) is now Professor of
Computer Science at Oxford and the Head of Research at Waymo UK.



PhyStat 2003 & PhysicsGP

Discussed high-level strategies:

* Indirect: Optimize an objective that yields a well-motivated
function (e.qg. approximate likelihood ratio)

* Argue that the resulting classifier should be close to optimal
* Direct: optimize expected discovery significance
* Obijective includes systematic uncertainty!
Genetic Programming / Symbolic Regression:

e Search through space of cuts / summary statistics expressed symbolically
using genetic programming

* Interpretable. Less prone to overfitting (low VC dimension)
Hypothesis Testing & Statistical Learning Theory:
* Expressed Neyman-Pearson in terms of Risk

* Discussion of VC dimension for NNs, SVMs, symbolic cuts

https://arxiv.org/abs/physics/0310110
https://arxiv.org/abs/physics/0402030

PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

Multivariate Analysis from a Statistical Point of View

K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

Multivariate Analysis is an increasingly common tool in experimental high energy physics; however, many of the
common approaches were borrowed from other fields. We clarify what the goal of a multivariate algorithm should
be for the search for a new particle and compare different approaches. We also translate the Neyman-Pearson
theory into the language of statistical learning theory.

PhysicsGP: A Genetic Programming Approach
to Event Selection

Kyle Cranmer * R. Sean Bowman "

aCERN, CH-1211 Geveva, Switzerland
b Open Software Services, LLC, Little Rock, Arkansas, USA
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Comment

Learning a function ot experiment-level data {x;, ..., x,} objective is much difficult that learning a function of for

an individual event x;

e Function is more complicated & the optimization itself is more expensive than for an event-level objective

Intuition and confusion:

e Final sensitivity (including systematics) is a function of all the events in the dataset

e Nuisance parameters affect all the events, introduces “correlation”

e Profiling / ability to constrain nuisance parameters is a function of all of the events

e Makes it seem like this event-level optimization is required to be “optimal”

Resolution:

e The data is assumed to be i.i.d., so event-level modeling should be sufficient

e |fyou can learn the per-event likeli
ikelihood for the full dataset, whic

nood 1

unction p(x;| 8, v), then it is possible to profile or marginalize the

N is eff

ectively “optimal”.

e So event-level optimization isn't required conceptually. Practical question, which approach is easier.



Summary



Four approaches to incorporating systematics

propagation of errors: one works with a model f(x) and simply characterizes how un-

certainty in the data distribution propagate through the function to the down-stream task
irrespective of how it was trained.

data augmentation: one trains a model f(x) in the usual way using training data from

multiple domains by sampling from some distribution over v.

domain adaptation: one incorporates knowledge ot the distribution for domains (or the
parameterized family of distributions p(x |y, v)) into the training procedure so that the

performance of f(x) for the down-stream task is robust or insensitive to the uncertainty in v.

parameterized models: instead of learning a single function of the data f(x), one learns a

family of functions f(x; v) that is explicitly parameterized in terms of nuisance parameters
and then accounts for the dependence on the nuisance parameters in the down-stream
task.



review with other approaches

Dealing with Nuisance Parameters using Machine See a‘SO thiS paper 'th at

Learning in High Energy Physics: a Review
compares the approaches |

mentioned and advocates
T. Dorigo and P. de Castro Manzano paramete rized approach

Istituto Nazionale di Fisica Nucleare - Sezione di Padova,
Via Marzolo 8, 35131 Padova - Italy,

tommaso.dorigo@cern.ch® pablo.de.castro@cern.ch

Uncertainty Aware Learning for High Energy Physics

Aishik Ghosh,!’? Benjamin Nachman,? 3 and Daniel Whiteson'

In this work we discuss the impact of nuisance parameters on the ef-
fectiveness of machine learning in high-energy physics problems, and
provide a review of techniques that allow to include their effect and re-
duce their impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates
the supervised learning task and its correspondence with the data anal-
ysis goal, due to their contribution degrading the model performances
in real data, and the necessary addition of uncertainties in the result-
ing statistical inference. The approaches discussed include nuisance-
parameterized models, modified or adversary losses, semi-supervised
learning approaches, and inference-aware techniques.




Conclusion
Systematic uncertainties usually have a negative connotation since they reduce

the sensitivity of an experiment.

However, the practical and conceptual challenges posed by various types ot
systematic uncertainty also have a long track record of motivating new ideas.

Thank you / Questions?
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Learning to Pivot




Learning to pivot with adversarial networks

Typically classitier f(x) trained to minimize loss L.

e want classitier output to be insensitive to systematics

(nuisance parameter v)

* introduce an adversary r that tries to predict v baseo

on f.

* setup as a minimax game:
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An example of learning to pivot arXiv:1611.01046

Technique allows us to tune A, the tradeoff between classification power and
robustness to systematic uncertainty

An example: . .
background: 1000 QCD jets 1= NI
signal: 100 boosted W's — A=l

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count

Expected significance of search

analysis with background ob e U SOTIUTPORROR S _
uncertainty. 1 | ; | |
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



: : https://arxiv.org/abs/1505.07818
Domain adaptation

GANIN, USTINOVA, AJAKAN, GERMAIN, LAROCHELLE, LAVIOLETTE, MARCHAND AND LEMPITSKY
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In machine learning literature, the setting where training data doesn’t match real world data is referrea
to as “domain shift” and techniques to mitigate the loss in performance are called “domain
adaptation”

A similar adversarial technique was introduced in arxiv:1505.0/818 where adversary tries to get
distribution of hidden state features to be invariant. This works for discrete domains, but doesn't
generalize well to continuous nuisance parameters.

e adversary works on some low-level features (not just the class prediction )


https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1505.07818

Learned adversary — explicit regularization

One way of interpreting the mini-max game 6,6, = arg min max E(6;,6,).
0 0,

is to minimize a regularized loss term Z(Hf) = arg max E;(6,, 0,) where the

r

optimization with respect to . is not exposed

This motivates another approach in which the regularization is not achieved
through a learned adversary, but some other measure of discrepancy

DisCo Fever: Robust Networks Through Distance Correlation

Gregor Kasieczkal’ and David Shih2’3’4>E

, dCov?(X,Y) = (| X — X'||Y = Y'|)
L = Lclassz’fier (ya ytrue) + A dcorryt,,.ue:() (m? g) + (| X — X,|><|Y - Y,|>
—2(|X - X'|[Y = Y"|)

Phys.Rev.Lett. 125 (2020) 12, 122001



Ancient History



MC Stat Uncertainties = Kernel Density Estimation

Back in ~1999, the four experiments LEP experiments were performing the first
ikelihood-based combinations

e |nput to the combinations were histograms, but limited Monte Carlo sample size

led to unphysical fluctuations

e Now we explicitly treat these as MC stat uncertainty with nuisance parameters,
but at the time the desire was to smooth the distributions

My -I:I rSt paper Was tO IntrOduce - https://arxiv.org/abs/hep-ex/0011057
kernel density estimation for this (KEYS)

e An example of density estimation ] |

Probability Density

e Non-parametric. ML-adjacent

- - aaPb o ] g Ml nﬂunmamﬂ#m
[ | | | | |Lf'] TIILU_II—ULIIJL”TUI ILU—I,— IU-H| | | | | | | | | | |

¢ Regu‘arizatiOﬂ IS Important 0.94 0.95 0.96 0.97 0.98 090

Neural Network Output



https://arxiv.org/abs/hep-ex/0011057

Nice work, but be
careful about specializing

in statistics and

«

software.

-

e

Fred James
Author of MINUIT / MINOS

Editor of Computer Physics Communications for many years




The first PhyStat

30Nhy2mmsucéooozu;
't was 24 years ago!
. . ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
e | was | ust startin gasag rad uate stu dent CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Louis suggested | think about frequentist
statistical procedures with systematics

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000

| [ - PROCEEDINGS
P00037096 Editors: F. James, L. Lyons, Y. Perrin

GENEVA
2000

Louis Lyons of Oxford, co-convenor of the workshop on confidence limits.

https://cds.cern.ch/record/4115377In=en



https://arxiv.org/abs/physics/0310108

Neyman construction with systematics & protiling

PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

At PhyStat 2003, ‘ presented my -I:l I'St WO I'|< Oﬂ Frequentist Hypothesis Testing with Background Uncertainty
frequents hypothesis testing & Neyman

K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

We consider the standard Neyman-Pearson hypothesis test of a signal-plus-background hypothesis and
. o . background-only hypothesis in the presence of uncertainty on the background-only prediction. Surprisingly,
< this problem has not been addressed in the recent conferences on statistical techniques in high-energy physics —
O n St r u Ct I O n W I t h n u I S a n C e a r a I I I e t e rS although the its confidence-interval equivalent has been. We discuss the issues of power, similar tests, coverage,
and ordering rules. The method presented is compared to the Cousins-Highland technique, the ratio of Poisson
means, and “profile” method.

e Mainly translating Kendall and Stuart i conruction

e Early days of HEP understanding the

orofile likelihood ratio

“Now consider the Likelihood Ratio
] — L(w‘HZ“Oa?S)

L(z|6,,6s)
Variable Meaning

0, physics parameters Figure 1: The Neyman construction for a test statistic x,
0. nuisance parameters an auxi.liary measurement M, and a nuisar.lce parameter

Ao L o AoA b. Vertical planes represent acceptance regions W3 for Hy
QT’ 0 unconditionally maximize L (33|97~A, 0s) given b. The condition for discovery corresponds to data

0. conditionally maximize L(x|0,0,0s) (zo, Mop) that do not intersect any acceptance region.

The contours of L(x, M|Hop,b) are in color.


https://arxiv.org/abs/physics/0310108

Historical Context

In late 1990s and early 2000s, HEP was using neural networks (mainly shallow MLPs).

e Decision trees were growing in popularity (a topic at PhyStat 2003)

e Support Vector Machines and Vapnik's Statistical Learning Theory were becoming
N
SR

e VC Dimension captured intuitive notion that very tlexible models can overtit

e John Koza introduced Genetic Programming ©
e Discrete optimization / search over expressions R )
Comparing these for HEP was one of my first ML projects @ @ €
W O
) +( )

very popular

e Provided formal guarantees, unique solutions, etc.

e ... and we still called it “multivairate analysis” & (22 - (X)) 4 (75 cos(¥)
' 11



PhyStat 2003 & PhysicsGP

Discussed high-level strategies:

* Indirect: Optimize an objective that yields a well-motivated
function (e.qg. approximate likelihood ratio)

* Argue that the resulting classifier should be close to optimal
* Direct: optimize expected discovery significance
* Objective can include systematic uncertainty!
Genetic Programming / Symbolic Regression:

e Search through space of cuts / summary statistics expressed symbolically
using genetic programming

* Interpretable. Less prone to overfitting (low VC dimension)
Hypothesis Testing & Statistical Learning Theory:
* Expressed Neyman-Pearson in terms of Risk

* Discussion of VC dimension for NNs, SVMs, symbolic cuts

https://arxiv.org/abs/physics/0310110
https://arxiv.org/abs/physics/0402030

PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

Multivariate Analysis from a Statistical Point of View

K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

Multivariate Analysis is an increasingly common tool in experimental high energy physics; however, many of the
common approaches were borrowed from other fields. We clarify what the goal of a multivariate algorithm should
be for the search for a new particle and compare different approaches. We also translate the Neyman-Pearson
theory into the language of statistical learning theory.

PhysicsGP: A Genetic Programming Approach
to Event Selection

Kyle Cranmer * R. Sean Bowman "

aCERN, CH-1211 Geveva, Switzerland
b Open Software Services, LLC, Little Rock, Arkansas, USA



https://arxiv.org/abs/physics/0310110
https://arxiv.org/abs/physics/0402030

For PhyStat 2005 and 2007, my focus was mainly on statistical procedures ano
software for the LHC (RooFit, RooStats, profile likelihood ratio, asymptotics,
HistFactory, workspaces, etc.)

THUMBNAIL OF THE STATISTICAL PROCEDURE

L, 0(1)) Follow LHC-HCG Combination Procedures
(k) = —
L(f,0)
\ Chs = TE?:

otb CL; to test

3 signal hypothesis )
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b Po to test
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