
@KyleCranmer 
University of Wisconsin-Madison 
Data Science Institute 
Physics, Computer Science, Statistics

S y s t e m a t i c s :  m y s t e r y  o r  m u s e ?

P h y S t a t :  S t a t i s t i c s  m e e t s  M L



M y  c h a r g e

•Theme of workshop: Statistics meets Machine Learning 

• This describes a lot of my research - I’m sad I can’t be there 

• Purest expression is probably simulation-based Inference  

•Louis specifically asked me to talk about systematic uncertainties
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🤔



A  p e r s o n a l  n o t e  o n  “ s y s t e m a t i c s ”

•Thinking about systematics in ML is what inspired my work in simulation-based inference 

• Slack channel I created in 2015 for my ML work with collaborators is called “systematics”  

• Now has 125 members and ~200,000 messages!
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Location of personal eureka moment at UC Irvine



I n s p i r a t i o n a l  m e s s a g e  /  i n i t i a l  t h e m e  o f  t a l k

•Systematic uncertainties usually have a negative connotation since they reduce 
the sensitivity of an experiment.  

•However, the practical and conceptual challenges posed by various types of 
systematic uncertainty also have a long track record of motivating new ideas.  

•Original Plan for Talk: outline some examples from my own career where 
systematics were my muse for innovation 

• That theme is still there, but I pivoted 
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T h e  s t r u g g l e  i s  r e a l

•I want to make several points that isolate / highlight different issues 

• Initial organization seemed very scattered 

• Difficult to convert into a linear story 

•

5Figure source: A Design Experience for Interactive Narrative Based on The User Behavior, Yuan Yao, Hailing Mi



O r g a n i z a t i o n :  5 - D  “ O u t l i n e ”

•I want to make several points that isolate / highlight different issues  

• An organizational principle emerged that helps isolate individual points
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Tr a d i t i o n a l  u s e  o f  M L  f o r  s e a r c h e s

9

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t E x p e r i m e n t - w i d e



G e n e t i c  P r o g r a m m i n g ,  I N F E R N O ,  N e o n

10

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t E x p e r i m e n t - w i d e



( L o c a l l y )  S u f f i c i e n t  s t a t i s t i c s  f o r  m e a s u r e m e n t s

11

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t E x p e r i m e n t - w i d e



L e a r n i n g  t o  P i v o t

12

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t  
( C l a s s i f i e r )

E x p e r i m e n t - w i d e  
( A d v e r s a r y  &  H y p e r  

p a r a m e t e r  o p t . )
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Traditional binned-template analysis
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H i g h - l e v e l  o v e r v i e w  o f  t r a d i t i o n a l  b i n n e d - t e m p l a t e  a n a l y s i s  
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#
·
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p2S
fp(ap|↵p)

HistFactory specification defines model exactly 
[CERN-OPEN-2012-016] 

•Inhomogeneous Poisson Process 

• Continuous summary statistic is binned.  

• Poisson for total number X multinomial over bins  
(equivalently product of Poisson distributions for each bin) 

• Expected bin counts (Poisson rate) often comes from simulation 

•Usually modeled as a mixture of signal + multiple background processes 

• Mixture coefficient on signal often parameter of interest 

• Mixture coefficients for background components often uncertain and 
promoted to nuisance parameters 

•Nuisance parameters are introduced to parametrize uncertain aspects of 
simulation (e.g. calibration constants or parameters of underlying physics model)  

• Large simulated samples are produced for systematic variations 

• Fill corresponding histograms for those systematic variations 

• Interpolate between these to create continuously parametrized model 



C u r r e n t  a p p r o a c h  t o  h i s t o g r a m - b a s e d  m o d e l i n g
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•Input to the interpolation algorithms take 

• Nominal sample 

•  one-at-a-time Systematic variations 

•The most widely used approach to 
modeling systematics assumes that the 
effects of different systematics factorize 

•Recognized as a weak point for ~10 years

±1σ

α1

α2

PROS: This approach avoids the kink (discontinuous first and second derivatives) at ↵ = 0 (see
Fig 6(b-d)), which can cause some difficulties for numerical minimization packages such as Minuit.
This approach ensures that ⌘(↵) � 0 (see Fig 6(c)).

Note: This option is not available in ROOT 5.32.00, but is available for normalization uncertainties
(OverallSys) in the subsequent patch releases. In future releases, this may become the default.
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Fig. 6: Comparison of the three interpolation options for different ⌘
±. (a) ⌘

� = 0.8, ⌘
+ = 1.2, (b) ⌘

� = 1.1,
⌘
+ = 1.5, (c) ⌘

� = 0.2, ⌘
+ = 1.8, and (d) ⌘

� = 0.95, ⌘
+ = 1.5

4.1.6 Consistent Bayesian and Frequentist modeling
The variational estimates ⌘

± and �
± typically correspond to so called “±1� variations” in the source of

the uncertainty. Here we are focusing on the source of the uncertainty, not its affect on rates and shapes.
For instance, we might say that the jet energy scale has a 10% uncertainty. 17 This is common jargon,
but what does it mean? The most common interpretation of this statement is that the uncertain parameter
↵p (eg. the jet energy scale) has a Gaussian distribution. However, this way of thinking is manifestly
Bayesian. If the parameter was estimated from an auxiliary measurement, then it is the PDF for that

17Without loss of generality, we choose to parametrize ↵p such that ↵p = 0 is the nominal value of this parameter, ↵p = ±1
are the “±1� variations”.

21

Po
is

so
n 

m
ea

n 
(

) /
 n

o
m

in
al

α



C u r r e n t  a p p r o a c h  t o  h i s t o g r a m - b a s e d  m o d e l i n g

17

•Input to the interpolation algorithms take 

• Nominal sample 

•  one-at-a-time Systematic variations 

•The most widely used approach to 
modeling systematics assumes that the 
effects of different systematics factorize 

•Recognized as a weak point for ~10 years
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•Input to the interpolation algorithms take 

• Nominal sample 

•  one-at-a-time Systematic variations 

•The most widely used approach to 
modeling systematics assumes that the 
effects of different systematics factorize 

•Recognized as a weak point for ~10 years
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Using ML to improve the treatment of systematics 
in traditional binned template analysis 

(new, unpublished work)
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•Nominal 

•  one-at-a-time±1σ
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•Nominal 

•  one-at-a-time±1σ

•  one-at-a-time±2σ
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•Nominal 

•  one-at-a-time±1σ

•  one-at-a-time±2σ

• ½   one-at-a-time± σ
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•Nominal 

•  one-at-a-time±1σ
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•  simultaneously variation±1σ

•Arbitrary
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•We want a way to interpolate with arbitrary 
samples (in arbitrary dimensions) that  

• Will be smooth 

• Sample efficient (few inputs) 

• Trustworthy (no worries about training 
that doesn’t converge)  

•Gaussian Processes are a natural choice 

• They also provide a notion of 
uncertainty on the interpolation 

•We still face the curse of dimensionality!
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•Here are some examples of a GP fitting samples of a target efficiency function 
that doesn’t factorize 

• Physics: efficiency of cut on MET. Systematics are jet energy scale uncertainties for low-pT and high-pT jets
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j2 and j3. The pT distribution of the two leading jets is
shown in Fig. 5.

FIG. 5: Distribution of the pT of the two leading jets.

We estimate the efficiency as a function of the following
nuisance parameters:

• ⌫1: The jet energy scale of the leading jet, j1.

• ⌫2,3: The jet energy scale of the two softer jets, j2
and j3.

And the following pT-based selection criteria:
pT1

⌫1
> 200 GeV,

pT2

⌫2,3
< 200 GeV,

(19)

where pT1 and pT2 are the nominal transverse momenta
of j1 and j2, respectively. Once the events have been
selected according to the selection criteria, we calculate
the efficiency of events with missing transverse energy
(Emiss

T
) of less than 50 GeV. The calculations of Emiss

T

and ✏ can be summarized as
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(20)

✏(⌫1, ⌫2,3) =
NEmiss

T <50GeV

Npass(⌫1, ⌫2,3)
, (21)

where ⌫2,3 = ⌫2 = ⌫3. Npass(⌫1, ⌫2,3) is the number
of events that satisfy the selection criteria in Eq. 19,
and NEmiss

T <50GeV is the number of such events with
Emiss

T
(⌫1, ⌫2,3) < 50 GeV. For reference, Fig. 6 shows the

efficiency for ⌫1, ⌫2,3 2 [0.5, 1.5], which has been normal-
ized by the central value, ✏(1, 1). The values shown in
Fig. 6 are used as the ground truth to test the models
employed throughout this section.

Directly evaluating the efficiency can be an expensive
task, particularly when it involves datasets that are large
in size and dimensionality. In such cases, simple regres-
sion techniques are often employed. These techniques
often assume that efficiency can be factorized in terms

FIG. 6: Normalized efficiency as a function of the jet
energy scales. The image is composed of 25⇥ 25

"pixels" of size 0.4⇥ 0.4 in (⌫1, ⌫2,3).

of the individual nuisance parameters. As an example
of such techniques, we consider the following regression,
which we call the on-axis regression (OAR):

✏(⌫1, ⌫2,3)OAR
⇠= ✏(⌫1, 1)⇥ ✏(1, ⌫2,3). (22)

The idea behind this simple technique is to sample the
efficiency along the central axes of the input space, which
in this case correspond to ⌫1, ⌫2,3 = 1. These samples
are then used to estimate the rest of the efficiency by
assuming that the off-axis values can be approximated
by the product of the corresponding on-axis values.

To implement the on-axis regression, we sample 49 on-
axis observations (24 along each axis plus the central
value), which are used to estimate the off-axis efficiency
according to Eq. 22. The results are shown in Fig. 7. The
on-axis regression is significantly cheaper than evaluat-
ing the efficiency at every input location, but the perfor-
mance is poor as it fails to capture correlations between
the off-axis variables. For example, Fig. 6 shows that
the highest efficiency values are concentrated near the
diagonal starting from the top left corner. The on-axis
regression fails to predict this diagonal correctly. Instead,
it predicts the center of the input space to be the area
with the highest efficiency.

FIG. 7: Prediction (left) of the normalized efficiency by
on-axis regression, and absolute difference (right)

between ground truth and prediction. The red dots
represent the samples used in the on-axis regression.

Target
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A. Gaussian Process Regression

As an alternative, we approximate the efficiency by
GP regression. Like in the on-axis regression, we begin
by sampling the efficiency along the ⌫1, ⌫2,3 = 1 axes. To
test the predictive power of the GPs, we only sample five
observations (two along each axis plus the central value):

(⌫1, ⌫2,3) =(0.7, 1.0), (1.0, 1.0), (1.3, 1.0),

(1.0, 0.7), (1.0, 1.3).

These five samples are used to condition a regular GP
model with hyperparameters ↵ =

p
0.1, ` = 0.25, and

� = 1e�2. These hyperparameters are selected by grid
search. The results are shown in Fig. 8a. The prediction
is similar to that of the on-axis regression. Both predict
higher efficiencies near the center of the grid and have
the highest error along the diagonal.

We also condition a derivative GP model using the
same five training samples plus their gradients. To ob-
tain the gradients, we replace the inequalities in eqs. (19)
and (21) with sigmoid functions, which are shifted to
match the 200 GeV threshold (c = 200) and scaled by
| a |= 1/10 to smooth out the gradients. The sign of a is
determined by the sign of the inequality; see eq. 14.

For consistency, the derivative GP model uses the same
hyperparameters as the regular GP model, in addition to
the gradient noise parameter �der = 1e�1. The results are
shown in Fig. 8b. The derivative GP does surprisingly
well; with only five samples, it is able to capture the
general trend along the diagonal.

(a) Regular GP

(b) Derivative GP

FIG. 8: Prediction (left), standard deviation (middle),
and absolute difference (right) between ground truth

and prediction by the specified GP model. The red dots
represent the samples used to train the GP models.

B. Bayesian Experimental Design

We use the BED strategy to obtain 44 additional ob-
servations for a total of 49 training samples, the same
number used in the on-axis regression. A crucial decision
is the choice of utility input, Xu. We recall how the util-
ity input is used by the BED strategy to estimate the net
loss in the variance of a GP model with new training sam-
ples, and thus, one can expect uniform grids (n⇥n) to be
good choices for Xu. However, evaluating a GP model at
every point in a grid, at every BED iteration can quickly
become expensive. We also recall how we introduce a
regularization parameter, �2, which adds Gaussian noise
with variance �2 to the utility input after every BED it-
eration. With this in mind, we examine the performance
of the BED strategy with the following choices of utility
input, with and without regularization: 25 ⇥ 25 (with
�2 = 1/125 and �2 = 0), 10 ⇥ 10 (with �2 = 1/50 and
�2 = 0), and 5 ⇥ 5 (with �2 = 1/10 and �2 = 0). As an
example, Fig. 9 illustrates two such grid choices.

(a) Xu : 5⇥ 5 grid with �2 = 1/10

(b) Xu : 10⇥ 10 grid with �2 = 1/50

FIG. 9: The top panel shows samples of the choice of
5⇥ 5 utility input before (left) and after adding

Gaussian noise with variance �2 = 1/10 (two right-most
images). Similarly, the bottom panel shows samples of
the choice of 10⇥ 10 utility input with added Gaussian
noise with variance �2 = 1/50. The color scale of the jet
efficiency shown in the background is dimmed down for

clarity.

A total of 44 sequential BED iterations are performed.
After every iteration, the models are evaluated on the
test set, a fine 25 ⇥ 25 grid uniformly distributed in the
⌫1, ⌫2,3 2 [0.5, 1.5] range, to obtain the updated predic-
tive mean (µtest) and covariance matrix (⌃test). Figs. 10a
and 10b show the MSE and Tr(⌃test) values of the reg-
ular and derivative models using the BED strategy with
the various grid choices of utility input.

GP Interpolation from samples
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Accurate assessment of systematic uncertainties is an increasingly vital task in physics studies,
where large, high-dimensional datasets, like those collected at the Large Hadron Collider, hold the
key to new discoveries. Common approaches to assessing systematic uncertainties rely on simplifi-
cations, such as assuming that the impact of the various sources of uncertainty factorizes. In this
paper, we provide realistic example scenarios in which this assumption fails. We introduce an al-
gorithm that uses Gaussian process regression to estimate the impact of systematic uncertainties
without assuming factorization. The Gaussian process models are enhanced with derivative infor-
mation, which increases the accuracy of the regression without increasing the number of samples.
In addition, we present a novel sampling strategy based on Bayesian experimental design, which, in
our example scenarios, is shown to be more efficient than random and grid sampling.

Experiments like those conducted at the Large Hadron
Collider play a crucial role in precision tests of the Stan-
dard Model, where vast, high-dimensional datasets are
collected for the precise measurement of particle prop-
erties. In many cases, the significance of a discrepancy
between measurements and theoretical predictions relies
crucially on the accurate estimation of systematic uncer-
tainties. For example, recent measurements of the W
boson mass [1] and the muon anomalous magnetic mo-
ment [2] indicate discrepancies between measurements
and predictions. These results are meaningful because
they claim to be larger than their margins of system-
atic uncertainties. However, a full, rigorous assessment
of the systematic uncertainties is often computationally
intractable due to a generally large number of sources
of uncertainty, which create a complex, high-dimensional
space that must be characterized.

Several procedures have been established to deal with
multiple sources of uncertainty in experiments. Most of
them rely on simplifying assumptions, like the factoriza-
tion of their underlying correlations. Examples of such
procedures include orthogonalization[3–5] and treatment
of residual correlations [6, 7]. These assumptions are of-
ten extended to treat the impact of individual sources of
uncertainty on the detector response as also factorizable
variables. For example, if an observable depends on var-
ious sources of uncertainty, it is often assumed that the
impact of multiple sources (off-axis) can be extrapolated
by estimating the impact of individual sources (on-axis).
While simple, this approach requires that the on-axis es-
timates fully characterize the experimental response and
that they can be linearly combined to obtain the off-
axis estimates. Such assumptions may be appropriate
for smaller datasets, but they may fail in the context of
more complex datasets with a larger number of sources of
uncertainty, which deserve careful examination lest they
mimic or obscure discoveries.

In the following sections, we describe a strategy for
characterizing the impact of systematic uncertainties
without assuming factorization. Our strategy uses Gaus-
sian processes (GPs) to regress observables of the detec-
tor response. Gaussian processes are flexible, nonpara-

metric machine learning models that have been used in
high-energy physics studies involving background selec-
tion and signal extraction [8–10]. While GPs have been
less widely applied to the estimation of systematic un-
certainties, we show that they have the potential to out-
perform more traditional approaches. In addition, we
leverage the fact that the functional forms of observables
are often known to calculate their gradients and use them
to enhance the GP models. We show that GPs enhanced
with derivative information are a powerful tool for esti-
mating systematic uncertainties.

In the example scenarios presented in this paper, the
GP approach outperforms the traditional approach with
significantly fewer samples. In more complex scenarios,
however, a few samples may not be sufficient to train
a GP model to satisfaction. In such cases, having an
efficient strategy to sample the space of the detector re-
sponse and obtain new training data is essential.

Ideally, GP models should be accurate, with low pre-
dictive error, and be precise, with low predictive un-
certainty. We introduce a sampling strategy based on
Bayesian Experimental Design (BED), designed to lower
the predictive uncertainty of a GP model as it selects
new training data. In our example scenarios, we show
that the BED sampling strategy is more efficient than
random and grid sampling in reducing the variance of
the models, resulting in lower predictive uncertainty.

The rest of the paper is organized as follows: Sec. I
describes the role of systematic uncertainties in statis-
tical inference and discusses typical assumptions in the
assessment of systematic uncertainties. Sec. II describes
the elements of GP regression, and sec. III introduces the
BED strategy. In Sec. IV, we demonstrate our method
on a one-dimensional toy example, followed by Sections V
and VI, where we respectively demonstrate our approach
in two-dimensional and four-dimensional realistic high-
energy physics scenarios. Sec. VII contains our conclu-
sions and future work.

Paper in preparation



G P s  w i t h  D e r i v a t i v e  o b s e r v a t i o n s

•Gaussian processes produce a smooth interpolation between data points and provide a notion of 
uncertainty on the interpolation  

• If we in addition to y(x) pairs, we also have derivative observations dy(x)/dx, then the GP will 
converge more quickly (best fit interpolation changes and uncertainty of interpolation reduced)
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Figure 9.1: In panel (a) we show four data points in a one dimensional noise-free

regression problem, together with three functions sampled from the posterior and the

95% confidence region in light grey. In panel (b) the same observations have been

augmented by noise-free derivative information, indicated by small tangent segments

at the data points. The covariance function is the squared exponential with unit

process variance and unit length-scale.

9.5 Prediction with Uncertain Inputs

It can happen that the input values to a prediction problem can be uncer-
tain. For example, for a discrete time series one can perform multi-step-ahead
predictions by iterating one-step-ahead predictions. However, if the one-step-
ahead predictions include uncertainty, then it is necessary to propagate this
uncertainty forward to get the proper multi-step-ahead predictions. One sim-
ple approach is to use sampling methods. Alternatively, it may be possible to
use analytical approaches. Girard et al. [2003] showed that it is possible to
compute the mean and variance of the output analytically when using the SE
covariance function and Gaussian input noise.

More generally, the problem of regression with uncertain inputs has been
studied in the statistics literature under the name of errors-in-variables regres-
sion. See Dellaportas and Stephens [1995] for a Bayesian treatment of the
problem and pointers to the literature.

9.6 Mixtures of Gaussian Processes

In chapter 4 we have seen many ideas for making the covariance functions
more flexible. Another route is to use a mixture of di↵erent Gaussian process
models, each one used in some local region of input space. This kind of model
is generally known as a mixture of experts model and is due to Jacobs et al.
[1991]. In addition to the local expert models, the model has a manager that
(probabilistically) assigns points to the experts. Rasmussen and Ghahramani
[2002] used Gaussian process models as local experts, and based their manager
on another type of stochastic process: the Dirichlet process. Inference in this
model required MCMC methods.

Figure from Rasmussen & Williams, Gaussian Processes for Machine Learning,
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gorithm that uses Gaussian process regression to estimate the impact of systematic uncertainties
without assuming factorization. The Gaussian process models are enhanced with derivative infor-
mation, which increases the accuracy of the regression without increasing the number of samples.
In addition, we present a novel sampling strategy based on Bayesian experimental design, which, in
our example scenarios, is shown to be more efficient than random and grid sampling.

Experiments like those conducted at the Large Hadron
Collider play a crucial role in precision tests of the Stan-
dard Model, where vast, high-dimensional datasets are
collected for the precise measurement of particle prop-
erties. In many cases, the significance of a discrepancy
between measurements and theoretical predictions relies
crucially on the accurate estimation of systematic uncer-
tainties. For example, recent measurements of the W
boson mass [1] and the muon anomalous magnetic mo-
ment [2] indicate discrepancies between measurements
and predictions. These results are meaningful because
they claim to be larger than their margins of system-
atic uncertainties. However, a full, rigorous assessment
of the systematic uncertainties is often computationally
intractable due to a generally large number of sources
of uncertainty, which create a complex, high-dimensional
space that must be characterized.

Several procedures have been established to deal with
multiple sources of uncertainty in experiments. Most of
them rely on simplifying assumptions, like the factoriza-
tion of their underlying correlations. Examples of such
procedures include orthogonalization[3–5] and treatment
of residual correlations [6, 7]. These assumptions are of-
ten extended to treat the impact of individual sources of
uncertainty on the detector response as also factorizable
variables. For example, if an observable depends on var-
ious sources of uncertainty, it is often assumed that the
impact of multiple sources (off-axis) can be extrapolated
by estimating the impact of individual sources (on-axis).
While simple, this approach requires that the on-axis es-
timates fully characterize the experimental response and
that they can be linearly combined to obtain the off-
axis estimates. Such assumptions may be appropriate
for smaller datasets, but they may fail in the context of
more complex datasets with a larger number of sources of
uncertainty, which deserve careful examination lest they
mimic or obscure discoveries.

In the following sections, we describe a strategy for
characterizing the impact of systematic uncertainties
without assuming factorization. Our strategy uses Gaus-
sian processes (GPs) to regress observables of the detec-
tor response. Gaussian processes are flexible, nonpara-

metric machine learning models that have been used in
high-energy physics studies involving background selec-
tion and signal extraction [8–10]. While GPs have been
less widely applied to the estimation of systematic un-
certainties, we show that they have the potential to out-
perform more traditional approaches. In addition, we
leverage the fact that the functional forms of observables
are often known to calculate their gradients and use them
to enhance the GP models. We show that GPs enhanced
with derivative information are a powerful tool for esti-
mating systematic uncertainties.

In the example scenarios presented in this paper, the
GP approach outperforms the traditional approach with
significantly fewer samples. In more complex scenarios,
however, a few samples may not be sufficient to train
a GP model to satisfaction. In such cases, having an
efficient strategy to sample the space of the detector re-
sponse and obtain new training data is essential.

Ideally, GP models should be accurate, with low pre-
dictive error, and be precise, with low predictive un-
certainty. We introduce a sampling strategy based on
Bayesian Experimental Design (BED), designed to lower
the predictive uncertainty of a GP model as it selects
new training data. In our example scenarios, we show
that the BED sampling strategy is more efficient than
random and grid sampling in reducing the variance of
the models, resulting in lower predictive uncertainty.

The rest of the paper is organized as follows: Sec. I
describes the role of systematic uncertainties in statis-
tical inference and discusses typical assumptions in the
assessment of systematic uncertainties. Sec. II describes
the elements of GP regression, and sec. III introduces the
BED strategy. In Sec. IV, we demonstrate our method
on a one-dimensional toy example, followed by Sections V
and VI, where we respectively demonstrate our approach
in two-dimensional and four-dimensional realistic high-
energy physics scenarios. Sec. VII contains our conclu-
sions and future work.
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•Even with the nominal and  one-at-a-time variations, the derivative GP is able 
to capture the effect of simultaneous variation of the two nuisance parameters 

•

±1σ
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j2 and j3. The pT distribution of the two leading jets is
shown in Fig. 5.

FIG. 5: Distribution of the pT of the two leading jets.

We estimate the efficiency as a function of the following
nuisance parameters:

• ⌫1: The jet energy scale of the leading jet, j1.

• ⌫2,3: The jet energy scale of the two softer jets, j2
and j3.

And the following pT-based selection criteria:
pT1

⌫1
> 200 GeV,

pT2

⌫2,3
< 200 GeV,

(19)

where pT1 and pT2 are the nominal transverse momenta
of j1 and j2, respectively. Once the events have been
selected according to the selection criteria, we calculate
the efficiency of events with missing transverse energy
(Emiss

T
) of less than 50 GeV. The calculations of Emiss

T

and ✏ can be summarized as
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(20)

✏(⌫1, ⌫2,3) =
NEmiss

T <50GeV

Npass(⌫1, ⌫2,3)
, (21)

where ⌫2,3 = ⌫2 = ⌫3. Npass(⌫1, ⌫2,3) is the number
of events that satisfy the selection criteria in Eq. 19,
and NEmiss

T <50GeV is the number of such events with
Emiss

T
(⌫1, ⌫2,3) < 50 GeV. For reference, Fig. 6 shows the

efficiency for ⌫1, ⌫2,3 2 [0.5, 1.5], which has been normal-
ized by the central value, ✏(1, 1). The values shown in
Fig. 6 are used as the ground truth to test the models
employed throughout this section.

Directly evaluating the efficiency can be an expensive
task, particularly when it involves datasets that are large
in size and dimensionality. In such cases, simple regres-
sion techniques are often employed. These techniques
often assume that efficiency can be factorized in terms

FIG. 6: Normalized efficiency as a function of the jet
energy scales. The image is composed of 25⇥ 25

"pixels" of size 0.4⇥ 0.4 in (⌫1, ⌫2,3).

of the individual nuisance parameters. As an example
of such techniques, we consider the following regression,
which we call the on-axis regression (OAR):

✏(⌫1, ⌫2,3)OAR
⇠= ✏(⌫1, 1)⇥ ✏(1, ⌫2,3). (22)

The idea behind this simple technique is to sample the
efficiency along the central axes of the input space, which
in this case correspond to ⌫1, ⌫2,3 = 1. These samples
are then used to estimate the rest of the efficiency by
assuming that the off-axis values can be approximated
by the product of the corresponding on-axis values.

To implement the on-axis regression, we sample 49 on-
axis observations (24 along each axis plus the central
value), which are used to estimate the off-axis efficiency
according to Eq. 22. The results are shown in Fig. 7. The
on-axis regression is significantly cheaper than evaluat-
ing the efficiency at every input location, but the perfor-
mance is poor as it fails to capture correlations between
the off-axis variables. For example, Fig. 6 shows that
the highest efficiency values are concentrated near the
diagonal starting from the top left corner. The on-axis
regression fails to predict this diagonal correctly. Instead,
it predicts the center of the input space to be the area
with the highest efficiency.

FIG. 7: Prediction (left) of the normalized efficiency by
on-axis regression, and absolute difference (right)

between ground truth and prediction. The red dots
represent the samples used in the on-axis regression.

7

A. Gaussian Process Regression

As an alternative, we approximate the efficiency by
GP regression. Like in the on-axis regression, we begin
by sampling the efficiency along the ⌫1, ⌫2,3 = 1 axes. To
test the predictive power of the GPs, we only sample five
observations (two along each axis plus the central value):

(⌫1, ⌫2,3) =(0.7, 1.0), (1.0, 1.0), (1.3, 1.0),

(1.0, 0.7), (1.0, 1.3).

These five samples are used to condition a regular GP
model with hyperparameters ↵ =

p
0.1, ` = 0.25, and

� = 1e�2. These hyperparameters are selected by grid
search. The results are shown in Fig. 8a. The prediction
is similar to that of the on-axis regression. Both predict
higher efficiencies near the center of the grid and have
the highest error along the diagonal.

We also condition a derivative GP model using the
same five training samples plus their gradients. To ob-
tain the gradients, we replace the inequalities in eqs. (19)
and (21) with sigmoid functions, which are shifted to
match the 200 GeV threshold (c = 200) and scaled by
| a |= 1/10 to smooth out the gradients. The sign of a is
determined by the sign of the inequality; see eq. 14.

For consistency, the derivative GP model uses the same
hyperparameters as the regular GP model, in addition to
the gradient noise parameter �der = 1e�1. The results are
shown in Fig. 8b. The derivative GP does surprisingly
well; with only five samples, it is able to capture the
general trend along the diagonal.

(a) Regular GP

(b) Derivative GP

FIG. 8: Prediction (left), standard deviation (middle),
and absolute difference (right) between ground truth

and prediction by the specified GP model. The red dots
represent the samples used to train the GP models.

B. Bayesian Experimental Design

We use the BED strategy to obtain 44 additional ob-
servations for a total of 49 training samples, the same
number used in the on-axis regression. A crucial decision
is the choice of utility input, Xu. We recall how the util-
ity input is used by the BED strategy to estimate the net
loss in the variance of a GP model with new training sam-
ples, and thus, one can expect uniform grids (n⇥n) to be
good choices for Xu. However, evaluating a GP model at
every point in a grid, at every BED iteration can quickly
become expensive. We also recall how we introduce a
regularization parameter, �2, which adds Gaussian noise
with variance �2 to the utility input after every BED it-
eration. With this in mind, we examine the performance
of the BED strategy with the following choices of utility
input, with and without regularization: 25 ⇥ 25 (with
�2 = 1/125 and �2 = 0), 10 ⇥ 10 (with �2 = 1/50 and
�2 = 0), and 5 ⇥ 5 (with �2 = 1/10 and �2 = 0). As an
example, Fig. 9 illustrates two such grid choices.

(a) Xu : 5⇥ 5 grid with �2 = 1/10

(b) Xu : 10⇥ 10 grid with �2 = 1/50

FIG. 9: The top panel shows samples of the choice of
5⇥ 5 utility input before (left) and after adding

Gaussian noise with variance �2 = 1/10 (two right-most
images). Similarly, the bottom panel shows samples of
the choice of 10⇥ 10 utility input with added Gaussian
noise with variance �2 = 1/50. The color scale of the jet
efficiency shown in the background is dimmed down for

clarity.

A total of 44 sequential BED iterations are performed.
After every iteration, the models are evaluated on the
test set, a fine 25 ⇥ 25 grid uniformly distributed in the
⌫1, ⌫2,3 2 [0.5, 1.5] range, to obtain the updated predic-
tive mean (µtest) and covariance matrix (⌃test). Figs. 10a
and 10b show the MSE and Tr(⌃test) values of the reg-
ular and derivative models using the BED strategy with
the various grid choices of utility input.

Target
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A c t i v e  l e a r n i n g  /  B a y e s i a n  E x p e r i m e n t a l  D e s i g n  ( B E D )

•We can also be smart about where we 
sample in nuisance parameter space 

• Sample in places where uncertainty is 
large. Iterate. 

•Active learning (BED) more efficient

24Figures from paper in preparation
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(a) Regular GP (b) Derivative GP

FIG. 2: Panel (a) shows the four observations (red dots)
used to train the regular GP model, µtest (blue line),
and confidence band (light blue area), together with

three functions sampled from the posterior (gray dotted
lines). Similarly, panel (b) shows the predictions of the
derivative GP model using the same four observations

but augmented by their gradients (red tangent
segments).

B. Bayesian Experimental Design

We use the BED strategy to sample 20 more obser-
vations. This strategy requires the specification of the
utility input Xu, and in this case, we use the same input
as the test set: 100 points uniformly distributed in the
range x 2 [�10, 10]. A visualization of the evolution of
the GP models for the first three BED iterations is shown
in Fig. 3. With every iteration, the utility is maximized
and a new training observation is selected. As we recon-
dition the models to include the latest observation, their
predictions resemble more and more the function shown
in Fig. 1, while the uncertainty band decreases in area.

In total, 20 sequential BED iterations are performed.
After every iteration, the predictive mean (µtest) and the
predictive covariance matrix (⌃test) of the models are up-
dated. We evaluate the quality of the predictions by cal-
culating the mean-squared-error (MSE), which provides a
sense of accuracy, and the trace of the covariance matrix
(Tr(⌃test)), which is proportional to the variance of the
model, providing a sense of precision. Lower Tr(⌃test)
values suggest lower predictive uncertainty.

To test the sensitivity of the BED strategy to the initial
random conditions, the algorithm is called ten times us-
ing different initial random seeds. The results are shown
in Fig. 4.

The derivative GP has the edge over the regular GP,
resulting in lower MSE and Tr(⌃test) values, corroborat-
ing the power of including derivative information.

V. HIGH-ENERGY PHYSICS EXPERIMENTS:
2D EFFICIENCY ESTIMATION

In this section, we apply the GP regression and BED
strategy to experiments in high-energy physics. We focus
on estimating the efficiency (✏) as a function of two nui-
sance parameters, the jet energy scales. The efficiency
often plays an important role in estimating systematic

(a) Regular GP (b) Derivative GP

FIG. 3: First three BED iterations of the regular (a)
derivative (b) GP models. The panels show the initial

observations (red dots), the observations selected by the
BED strategy (orange dots), µtest (blue line), the

uncertainty band (light blue area), and three functions
sampled from the posterior (gray dotted lines). Also
shown are the utility function (green line) and the

location of the next observation (dotted vertical line),
which is selected by maximizing the utility.

FIG. 4: MSE and Tr(⌃test) of the models after each of
the 20 BED iterations. The solid lines represent the
mean values of 10 calls of the BED strategy with

different initial random seeds and the shaded areas
represent the standard deviation.

uncertainties (Eq. 3), and having a strategy to accurately
estimate it based on limited samples can be a powerful
tool in high-energy physics experiments.

The dataset consists of 30K events with three jets each.
The jets are arranged in descending pT order, with j1
corresponding to the hardest jet in an event, followed by

12

(a) Regular GP

(b) Derivative GP

(c) Comparison

FIG. 17: Panel (a) shows the MSE and Tr(⌃test) of the
regular GP model after each of the 88 BED iterations

with the various choices of utility input (Xu). Similarly,
panel (b) shows the MSE and Tr(⌃test) of the derivative
GP model, and panel (c) shows their comparison along
with the MSE of the on-axis regression. For simplicity,
panel (c) only shows the results of the GP models with

the choice of Xu of 54 (�2 = 1/10). The solid lines
represent the mean values of five calls of the BED
strategy with different initial random seeds and the

shaded areas the standard deviation.

assessment of systematic uncertainties, which can be
viewed as nuisance parameters. Most assume the factor-
ization of their underlying correlations. These assump-
tions are often extended to treat the impact of the indi-
vidual nuisance parameters on the experimental response
as also factorizable variables. In this paper, we argue that

(a) Regular GP

(b) Derivative GP

FIG. 18: MSE and Tr(⌃test) after each iteration of the
various sampling strategies. In the BED and random

sampling cases, the solid lines represent the mean values
of five calls of the sampling strategies using different

initial random seeds and the shaded areas the standard
deviation.

such assumptions are not always reliable.
We propose a method for assessing the impact of

systematic uncertainties in experiments without assum-
ing factorization–a method based on Gaussian processes.
Our approach uses GP regression to learn a representa-
tion of observables of the experimental response as a func-
tion of the nuisance parameters. If the analytical forms
of the observables are known, gradients can be used to
enhance the GP regression. We test our approach by es-
timating the efficiency of high-energy physics events as a
function of multiple (two and four) nuisance parameters.
The factorized approach fails catastrophically, while our
approach more accurately predicts the impact of the indi-
vidual nuisance parameters on the efficiency. Enhancing
the GP regression with gradients improves the accuracy
of the models.

The GP models perform well when predicting the im-
pact of the nuisance parameters on the efficiency, even
when conditioned on a few samples. However, in more
complicated cases, few samples may not be enough to
train a GP model to satisfaction. In such cases, having
efficient sampling strategies would be essential. We in-
troduce a Bayesian-based sampling strategy, BED, which
is designed to sample the space of the experimental re-
sponse while efficiently reducing the predictive variance

Iteratio
ns



Traditional use of ML for searches
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Tr a d i t i o n a l  u s e  o f  M L  f o r  s e a r c h e s

•Most searches for new particles are cast into a 
hypothesis testing framework 

• Likelihood ratio is well motivated, but the likelihood 
for high dimensional, low-level observations from 
simulation is intractable  

•Instead of designing a summary statistic by hand, can 
use a neural network to learn a more powerful 
summary statistic (that approximates likelihood ratio) 

• From that point on, the NN output is treated like 
any other summary statistic in the down-stream 
statistical analysis
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2. Ax;,,: the  x2 difference between fitting tracks  in 
the  je t both to secondary and primary vertices  
compared to assuming all tracks  come from the  
interaction point. This  is  based upon a  secondary 
vertex pattern recognition a lgorithm which 
searches  for displaced vertices  via a  three-dimen- 
sional grid point search [lo]; 

3. pT: the transverse  momentum of identified lep- 
tons with respect to the  je t axis  [8]; 

4. 9’: the  boos ted sphericity of the  je t, defined to 
be the  sphericity of energy flow particles  in the  
res t frame of the  je t; 

5. Multiplicity/lnEj,,: the  energy flow particle  mul- 
tiplicity of the  je t divided by the  logarithm of the  
je t energy. Normalizing by In E removes  the  ex- 
pected energy dependence of the  multiplicity; 

6. zp;: the  sum of the  transverse  momentum 
squared of each energy flow particle  with respect 
to the  je t axis . 
For the  hA analysis , a  neural network based upon 

the  firs t three  variables  (Pje t, Ax&, and pT) is  used 
for identifying b-jets  while  all s ix variables  a re  used 
in another neural network for the  Higgs-s trahlung 
process  [4]. In this  la tte r analysis , the  extra  variables  
which a re  efficient a t discriminating between b-jets  

and light quark je ts  give higher b tagging efficiency 
a t a  given background; in the  hA case , however, the  
s ix-variable  neural network increases  the  background 
of bbgg events  due to the  similarity between gluon 
and b je ts  in the  event shape  variables  [I 11. 

The network architecture  is  multilayer feed-for- 
ward, consisting of four layers  and is  based upon the  
JETNET 3.4 package  [12]. Deta iled descriptions  of 
theore tica l aspects  of neural ne tworks  a re  available 
e lsewhere  [ 131. The neural network was  tra ined, with 
the  backward propagation method, using b and non-b 
je ts  in radia tive  re turns to the  2 from a  sample  of 
400000 Monte Carlo qq events  genera ted a t a  cen- 
tre-of-mass  energy of 161 GeV. Radiative  re turns to 
the  Z were  used because  the  je ts  in such events  a re  
produced in a  kinematic configuration similar to tha t 
of the  signal; this  was  pre fe rred to training the  
network using s imulated signal events  in order to 
reduce  the  associa ted systematic e rror in the  signal 
efficiency. 

An independent sample  of 100000 Monte Carlo 
events  was  used for tes ting. The resulting neural 
network output is  shown in Fig. 2a  for je ts  in the  161 
GeV da ta  and Monte Carlo, se lected using the  
Durham je t finding a lgorithm with y,,, = 0.008. For 

1  

0.5: . ..+... .; ./ i. ..: i... i. i ;. 

: 
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Fig. 2. (a ) The  output 1) of the  neural network b tag for radiative returns to the  Z for 161 GeV q?j Monte  Carlo (his togram) compared to the  
data at 161 GeV (points). The  shaded region shows the  contribution from generated b-je ts . (b) The  performance of the  neural network b tag 
(solid line) for Monte  Carlo events , presented in terms of the  efficiency for identifying b-je ts  versus the  efficiency for rejecting light quark 
je ts . Tbe  performance of the  s ingle  most powerful b tagging input variable to the  neural network is  shown for comparison (dashed curve). 
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I n c o r p o r a t i n g  S y s t e m a t i c s

•We want to take advantage of the power of machine learning, but we need to 
incorporate systematic uncertainties.  

• 
Two notions of “incorporate”: 

• Don’t be wrong: view analysis chain as fixed and propagate systematic 
uncertainty through it.  

• e.g. control rate of type-I error in the presence of nuisance parameters 

• Try to be “optimal”: adjust the training of ML components so that the analysis 
is sensitive after accounting for systematics  

• e.g. minimize rate of type-II error / maximize power 

27



F i x e d  c l a s s i f i e r  i s  n o t  o p t i m a l

•Imagine a simple example of bump on flat background 

• train on nominal samples with  to obtain fixed classifier  

• uncertainty in  modifies location and width of peak 

• the classifier not optimal for , but we can propagate uncertainty

ν = ν0 f(x)

ν

ν ≠ ν0

28

x

f(x)p(x| )ν
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P r o p a g a t i o n  o f  u n c e r t a i n t y

•One might form a statistical model for the number of events  that have n f(x) > c

29

x

f(x)p(x| )ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
∞

c
p( f |y = 1,ν)df ϵbkg(ν) = ∫

∞

c
p( f |y = 0,ν)df
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A n  a l t e r n a t e  i d e a :  D a t a  a u g m e n t a t i o n

•An intuitive approach to incorporate systematics into training is to train on “smeared data”, or data 
generated from a marginal model 

• Note: this requires a prior / proposal distribution  

•

p(ν)

30

57 41. Machine Learning

the uncertainty in the data distribution through the learned model as described in the preceding2218

section.2219

Note, this adversarial technique has also been employed in other settings where one would like2220

to decorrelate the output of the classifier with an observed quantity so that it can be used for back-2221

ground estimation [307]. Widely used alternative approaches to decorrelation include uboost [308]2222

and DDT [309]. Other examples of the domain adaptation and decorrelation use cases from the2223

Living Review include [302,307–322].2224

41.7.3 Parameterized models2225
ML:sec:parameterized_models

An alternative to learning a model f(x) that is pivotal — i.e. whose distribution is independent2226

of the nuisance parameter ‹ — is to learn a family of models f(x; ‹) that is parameterized in terms2227

of the nuisance parameters. In general, there is a tradeo� between the two terms of Eq. 41.74 for2228

a single model f(x). In a parameterized model, f(x; ‹) optimizes the performance of the model2229

for every value of ‹. Parameterized classifiers were first advocated in Ref. [58] in the context of2230

simulation-based inference (see Sec. 41.7.7) and in Ref. [323] for new physics searches. It has also2231

been applied to simulation-based inference for e�ective field theory parameters in Ref. [19] and2232

Ref. [324] provides additional pedagogical examples.2233

The training of a parameterized model is similar to the standard procedure. For example, if one2234

originally wanted to minimize the squared loss function L(y, f(x)) = (y ≠f(x))2 with training data2235

{xi, yi}i=1,...,n, then the corresponding training procedure for the parameterized model would be as2236

follows. One would need to construct a training set {xi, yi, ‹i}i=1,...,n as described in the preceeding2237

section, construct a parameterized model f(x; ‹) that takes as input the original feature vector x as2238

well as the nuisance parameters ‹, and then train using the same loss L(y, f(x; ‹)) = (y ≠f(x; ‹))2.2239

One complication of the parameterized approach is that it is no longer possible to evaluate2240

the model on a dataset {xi} and pass on only {fi} for downstream analysis tasks since f(xi; ‹)2241

still depends on ‹. Instead, one delay evaluating the model to some down-stream stage when the2242

dependence on ‹ would accounted for. For example, in the context of a likelihood based analysis2243

where one is testing a hypothesis where the nuisance parameters take on a particular value ‹test,2244

then one will consider the data distribution p(x|‹test), and at that point one would evaluate the2245

model at the corresponding nuisance parameter value, i.e. f(x; ‹test). Explicit examples are given2246

in Refs. [19,58,324]. While this may seem complicated, it actually corresponds to what is done in a2247

typical likelihood-based fit when the statistical model has nuisance parameters; i.e. the likelihood2248

ratio corresponds to the model f(x; ‹) as in Eq. 41.12.2249

41.7.4 Data augmentation2250

An intuitive approach to building in robustness to systematic e�ects that can lead to do-2251

main shift, is simply to augment the training data so that it includes examples correspond-2252

ing to several values of the nuisance parameter or systematic variations. As before one can2253

construct a dataset {xi, yi, ‹i}i=1,...,n, but instead of leveraging the information about ‹i, one2254

simply discards this information. This corresponds to sampling from the marginal distribution2255

xi, yi ≥ p(x, y) =
s

d‹p(x, y|‹)p(‹), and is often referred to as smearing. One can then use this2256

smeared dataset for supervised learning in the traditional way. While it is possible that this ap-2257

proach will lead to improved robustness to systematic variations (i.e. generalization for ‹ other than2258

the nominal value) than if systematic uncertainty weren’t considered at all), this intuitive approach2259

has several shortcomings. The approach does not yield a pivotal quantity as in the adversarial ap-2260

proach, so propagation of uncertainty through the network is still required. Moreover, there is2261

no direct way to control the trade-o� between independence from the nuisance parameter and the2262

original target loss as in the adversarial approach. Finally, it can lead to significant performance2263

loss compared to what is possible with the parameterized approach. These trade-o�s were studied2264
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F i x e d  c l a s s i f i e r  i s  n o t  o p t i m a l

•Training on smeared samples with  still results in a fixed classifier  

• classifier not optimal for any  

• we can still propagate uncertainty through the fixed classifier as before

ν ∼ p(ν) fsmeared(x)

ν
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Learning to Pivot
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L e a r n i n g  t o  p i v o t  w i t h  a d v e r s a r i a l  n e t w o r k s

• Typically classifier  trained to minimize loss Lf.  

• want classifier output to be insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that tries to predict ν based 
on .  

• setup as a minimax game:

f(x)

f

33

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD
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of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)
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• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f )), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f )) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f ) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f ) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f ) � H(Z|f(X; ✓f )) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f )�H(Z|f(X; ✓f )) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f )� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f ) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f ) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f ) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f )
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

Objective

• Consider the value function

V (D,G ) = Ex⇠pdata [log(D(x))] + Ez⇠pnoise [log(1� D(G (z)))];

• We want to
For fixed G , find D which maximizes V (D,G ),
For fixed D, find G which minimizes V (D,G );

• In other words, we are looking for the saddle point

(D⇤,G ⇤) = max
D

min
G

V (D,G ).
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from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f )) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f ) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f ) is also a pivotal quantity.
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given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f ) � H(Z|f(X; ✓f )) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f )�H(Z|f(X; ✓f )) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f )� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f ) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


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�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
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(1, 1 + Z),


1 0
0 1
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when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f ) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f ) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f )
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier
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A n  e x a m p l e  o f  l e a r n i n g  t o  p i v o t

•Technique allows us to tune λ, the tradeoff between classification power and 
robustness to systematic uncertainty
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L e a r n e d  a d v e r s a r y   e x p l i c i t  r e g u l a r i z a t i o n→

•One way of interpreting the mini-max game  
is to minimize a regularized loss term  where the 

optimization with respect to  is not exposed 

•This motivates another approach in which the regularization is not achieved 
through a learned adversary, but some other measure of discrepancy

L̃(θf) = arg max
θr

Eλ(θf, θr)

θr

35

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)
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Parametrized Classifier &  
Parametrized Likelihood Ratio Trick
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s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function  that minimizes loss: 
 
 
 
 

• i.e. approximate the optimal classifier 

 

• which is 1-to-1 with the likelihood ratio

s(x)
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s(x)        0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015] 

L[s] = Ep(x|H1)[� log s(x)] + Ep(x|H0)[� log(1� s(x))]
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s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function  that minimizes loss: 
 
 
 
 

• i.e. approximate the optimal classifier 

 

• which is 1-to-1 with the likelihood ratio
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.
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s(x)        0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015] 
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•Can do the same thing for any two points  &  in parameter space .  
 
 
 
 
Or train to classify data from  versus some fixed reference  
 
 
 
 
I call this a parametrized classifier.  

θ0 θ1 Θ

p(x |θ) pref (x)

39K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]
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•The original arXiv:1506.02169 paper lays out 
and demonstrates how the parametrized 
classifier approach can be used to model the 
profile likelihood ratio   

• The basis for later work in MadMiner 

• In my mind, cleanest conceptually 

• Also called “uncertainty-aware” in review by Ghosh, 
Nachman, and Whiteson [arXiv:2105.08742]
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learning p(x|✓), since the reduction s projects x into a one-dimensional space in which only

the (simpler) informative content of r(x) is preserved.

An alternative approach for calibration is to approximate the density ratio r(ŝ(x))

directly. For example, isotonic regression, which is commonly used to transform the clas-

sifier score ŝ(x) into ŝiso(x) that more accurately reflect the posterior probability s⇤(x)

of Eqn. 2.10, can be used for calibration. This is done by inverting the relationship

r(x) = (1 � s⇤(x))/s⇤(x) to obtain r̂(ŝ(x)) = (1 � ŝiso(x))/ŝiso(x). Additionally, Sec. 5

describes related work in which the ratio r̂(x) is estimated directly on the feature space X .

One strength of the proposed approach is that it factorizes the approximation of the di-

mensionality reduction (ŝ(x) ⇡ s(x)) from the calibration procedure (p̂(ŝ(x)|✓) ⇡ p(ŝ(x)|✓)

or r̂(ŝ(x)) ⇡ r(ŝ(x))). Thus, even if the classifier does a poor job at learning the optimal

decision function 2.10 and, therefore, at reproducing the level sets of the per-sample likeli-

hood ratio, the density of ŝ can still be well calibrated. In that case, one might loose power,

but the resulting inference will still be valid. This point was made by Neal (2007) and is

well appreciated by the particle physics community that typically takes a conservative at-

titude towards the use of machine learning classifiers precisely due to concerns about the

calibration of p-values in the face of nuisance parameters associated to the simulator.

3 Generalized likelihood ratio tests

Thus far we have shown that the target likelihood ratio r(x; ✓0, ✓1) with high dimensional

features x can be reproduced via the univariate densities p(s(x)|✓0) and p(s(x)|✓1) if the

reduction s(x) is monotonic with r(x; ✓0, ✓1). We now generalize from the ratio of two

simple hypotheses specified by ✓0 and ✓1 to the case of composite hypothesis testing where

✓ are continuous model parameters.

8
3.1 Composite hypothesis testing

In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥1 (such that

⇥0 \ ⇥1 = ; and ⇥0 [ ⇥1 = ⇥), the generalized likelihood ratio test, also known as the

profile likelihood ratio test, is commonly used

⇤(⇥0) =
sup✓2⇥0

p(D|✓)
sup✓2⇥ p(D|✓) . (3.1)

This generalized likelihood ratio can be used both for hypothesis tests in the presence of

nuisance parameters or to create confidence intervals with or without nuisance parame-

ters. Often, the parameter vector is broken into two components ✓ = (µ, ⌫), where the µ

components are considered parameters of interest while the ⌫ components are considered

nuisance parameters. In that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Evaluating the generalized likelihood ratio as defined by Eqn. 3.1 requires finding for

both the numerator and the denominator the maximum likelihood estimator

✓̂ = argmax
✓

p(D|✓). (3.2)

Again, this is made di�cult in the likelihood-free setting and it is not obvious that we can

find the same estimators if we are working instead with p(s(x)|✓). Fortunately, there is a

construction based on s that works: the maximum likelihood estimate of Eqn. 3.2 is the

same as the value that maximizes the likelihood ratio with respect to p(D|✓1), for some

fixed value of ✓1 chosen such that the support of p(x|✓1) covers the support of p(x|✓). This

9

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �2
1 distribution. Figure 2b also confirms this behavior, supporting the applicability
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(a) p(x|�) for � = 0.05 and � = 0 (b) p̂c(ŝc,c0(x)) and (1 + r̂(ŝc,c0(x))�1

(c) log r̂(ŝ(x)) using neural network (d) log r̂(ŝ(x)) using random forest

(e) p(log r̂(ŝ(x)) | � = 0.05) (f) �2 log⇤(�)

Figure 1: Histogram of D generated from � = 0.05 and plots illustrating various stages

in the approximation of the log-likelihood ratio log r(x; � = 0.05, � = 0) with calibrated

classifiers (see text).
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•2015 NeurIPS ML & Physics workshop: 
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• https://indico.cern.ch/event/465572/  

• 
First SBI paper with Neural Likelihood Ratios 

• “CARL” paper arXiv:1506.02169  

• 
2016 NeurIPS Keynote 

• https://doi.org/10.6084/m9.figshare.4291565.v1
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D i a g n o s t i c s  w i t h  c l a s s i f i e r s

•This paper also introduced two diagnostics 

• classifier tests with data reweighed 
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(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓1, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓0) and samples from p(x|✓1) weighted as indicated in the legend.
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the target likelihood ratio can be formulated in terms of pairwise classification problems.

Specifically, we can write

p(x|✓0)
p(x|✓1)

=

P
c wc(✓0)pc(x|✓0)P

c0 wc0(✓1)pc0(x|✓1)

=
X

c

"
X

c0

wc0(✓1)

wc(✓0)

pc0(x|✓1)
pc(x|✓0)

#�1

=
X

c

"
X

c0

wc0(✓1)

wc(✓0)

pc0(sc,c0(x; ✓0, ✓1)|✓1)
pc(sc,c0(x; ✓0, ✓1)|✓0)

#�1

. (3.5)

The second line is a trivial, but a useful decomposition into pairwise density ratio sub-

problems between pc0(x|✓1) and pc(x|✓0). The third line uses Thm. 1 to relate the high-

dimensional likelihood ratio into an equivalent calibrated likelihood ratio based on the

univariate density of the corresponding classifier.

In applications where mixture models are commonly used, this decomposition allows

one to construct better likelihood ratio estimates since it allows the classifiers sc,c0 to focus

on simpler sub-problems, for which higher accuracy is expected.

Finally, as a technical point, in the situation where the only free parameters of the model

are the mixture coe�cients wc, the distributions pc(sc,c0(x; ✓0, ✓1)|✓) are independent of ✓.

For this reason, sub-ratios rc,c0(x; ✓0, ✓1) =
pc0 (sc,c0 (x;✓0,✓1)|✓1)
pc(sc,c0 (x;✓0,✓1)|✓0)

simplify to
pc0 (sc,c0 (x))

pc(sc,c0 (x))
, which can

be pre-computed without the need of parameterized classification or calibration.

3.5 Diagnostics

While Thm. 1 states that the likelihood ratio r(x; ✓0, ✓1) is invariant under the dimension-

ality reduction s(x; ✓0, ✓1) provided that it is monotonic with r(x; ✓0, ✓1) itself and we know

that any universally strongly consistent algorithm can be used to learn such a function,

we know that in practice r̂(ŝ(x; ✓0, ✓1)) will not be exact. Thus, it is crucial that to have

13

some diagnostic procedures to assess the quality of this approximation. This is complicated

by the fact that in the likelihood-free setting, we don’t have access to the true likelihood

ratio. Below we consider two such diagnostic procedures that can be implemented in the

likelihood-free setting. We illustrate these diagnostic procedures in Fig. 5.

The first diagnostic procedure is related to the procedure for finding the MLE ✓̂ in

Eqn. 3.3. As pointed out there it is important that one maximizes the likelihood ratio as

the surface integral and Jacobian factors related to the dimensionality reduction only cancel

in the ratio (see Eqn. 2.8). Importantly, they also only cancel if the reduction map satisfies

the assumptions of Thm. 1. Moreover, the resulting value of ✓̂ should be independent of

the value of ✓1 used in the denominator of the likelihood ratio. Similarly, we have

log⇤(✓) = log
p(D|✓)
p(D|✓̂)

= log
p(D|✓)
p(D|✓1)

� log
p(D|✓̂)
p(D|✓1)

(3.6)

for all values of ✓1. Thus, by explicitly checking the independence of these quantities on ✓1

we indirectly probe the quality of the approximation r̂(ŝ(x; ✓0, ✓1)) ⇡ r(s(x; ✓0, ✓1)).

The second diagnostic procedure leverages the connection of this technique to direct

density ratio estimation and its application to covariate shift and importance sampling.

The idea is simple: we test the relationship p(x|✓0) = p(x|✓1)r(s(x; ✓0, ✓1)) with the ap-

proximate ratio r̂(ŝ(x; ✓0, ✓1)) and samples drawn from the generative model. More specif-

ically, we can train a classifier to distinguish between unweighted samples from p(x|✓0)

and samples from p(x|✓1) weighted by r̂(ŝ(x; ✓0, ✓1)). If the classifier can distinguish be-

tween the distributions, then r̂(ŝ(x; ✓0, ✓1)) is not a good approximation of r(s(x; ✓0, ✓1)).

In contrast, if the classifier is unable to distinguish between the two distributions, then

either r̂(ŝ(x; ✓0, ✓1)) is a good approximation or the discriminator is not e↵ective. The two

situations can be disentangled to some degree by training another classifier to distinguish

between an unweighted distribution of samples from p(x|✓1).
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Parameter dependence in 
 Neural Likelihood Ratio Estimation
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P a r a m e t e r  d e p e n d e n c e

•Say we want to model either   or .  

•A few approaches that change structure of the model 

• Point-by-Point: model  for a set of points  

• Not explicitly parametrized in , no structure 

• Parametrized Network: NN models both -dependence  
and -dependence 

• Most flexible, but doesn’t exploit any physics knowledge 

• Fixed Interpolation: multiple NNs model -dependence,  
but  form of -dependence is fixed & defined by physicist 

• e.g. this is possible for EFT coefficients (exact) 

• This is what HistFactory etc. do for nuisance parameters 
but this makes assumptions

p(x |θ) r(x |θ) =
p(x |θ)
pref(x)

p(x |θi) {θi}

θ

x
θ

x
θ
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x

log r̂

ŝ

r̂

for each ✓0

✓0

x log r̂

ŝ

r̂

t̂

x

✓0

wc

log r̂c

log r̂

r̂

ŝ

t̂

for each c

Figure 8: Schematic neural network architectures for point-by-point (top), agnostic parameterized
(middle), and morphing-aware parameterized (bottom) estimators. Solid lines denote dependencies

with learnable weights, dashed lines show fixed functional dependencies.

Fig from: https://arxiv.org/abs/1805.00020 

https://arxiv.org/abs/1805.00020


C u r s e  o f  d i m e n s i o n a l i t y  f o r  n u i s a n c e  p a r a m e t e r s

•The traditional binned-template analysis approach uses a fixed interpolation / “template 
morphing” strategy 

• Dependence on the parameters of interest are usually very well motivated 

• makes assumptions about factorization of systematics that might not be true 

• … either way, fixed parametric form makes it VERY sample efficient 

•In contrast, parametrized NN is physics-agnostic and the interpolation is non-parametric 

• Flexible, but requires many samples for a high-dimensional nuisance parameter space 

• Curse of dimensionality 

•Is there a way to apply similar assumptions as template-based morphing strategy in 
neural SBI context?
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R e c e n t  d e v e l o p m e n t s  s h o w n  a t  P h y S t a t  S B I

•R.  Schöfbeck &  
Jay Sandesara both 
showed work in that 
direction at PhyStat SBI

47

The known analytical form is used to factorize out the POI  dependence.


We also factorize out the NP -dependence again to avoid the training and validation of 
paramaterized NNs - especially difficult with the O(100) NPs in a typical ATLAS analysis.

μ

α

P(xi |μ, α)
Pref(xi)

= 1
∑c gc(α) ⋅ fc(μ) ⋅ νc ∑

c [ fc(μ) ⋅ wc(xi |α) ⋅ νc ⋅ Pc(xi)
Pref(xi) ]

8

Factorizing the SBI analysis

Usual parameterized event yields, like in 
Histfactory





with  estimated using 
analytic interpolation techniques from 

inputs ,  and the nominal yield 

ν(μ, α)

gc(α) = νc(α)/νc

νc(1) νc(−1)
νc(0) = νc

Per-event parameterized ratios:





Same strategy as Histfactory - 
but instead of histograms, we do 

per-event interpolation from 


wc(x |α) = ∏
k

Pc(x |αk)
Pc(x)

Pc(x |αk = ± 1)
Pc(x)

Per-event Density Ratio

Inspired by the "Mixture 
Models" trick defined in 

CARL paper

Per-event 
Density Ratio

BACK TO REALITY!

• Systematics dominate in many/most applications

• Binned analyses? Use additive model with exponentials

• How to find the parameters Δ? 

• “Vary simulation” ⟷Generate synthetic datasets

• shift JEC, scale b-tagging efficiencies, PS weights, hDamp

• Decades of experience with modeling choices

9

[CMS-TOP-20-006]

[combine paper] 
(N. Wardle)

prediction(𝛉, 𝛎) = 

R.  Schöfbeck @ PhyStat SBI
LEARNING PARAMETERIZATIONS

• “Likelihood ratio trick” 

• Parametric ansatz: 

Implement coefficient functions Δ(x) as NNs or trees:

• Sufficiently many synthetic data sets

15

R.  Schöfbeck @ PhyStat SBI

https://arxiv.org/abs/2406.19076

of the inclusive parton-level prediction. The k-factors typically pertain only to a single pro-
cess, with the ensuing (reduced) uncertainties best modeled with nuisances that scale only this
component. Another use-case for normalization nuisances are small backgrounds whose pdf in
D can be reliably estimated from A, but the uncertainties in its normalization are significant.
A normalization nuisance can then be used to obtain in-situ constraints from D. Concretely,
the special choice �n,p,1 = log↵norm, p and �n,p,2 = 0 for all n, leads to a scaling of process p
where ↵norm, p is a positive constant normalizing the impact of the nuisance ⌫norm, p. We can also
exclude ⌫norm, p from the penalty, allowing the process’ normalization to “float” in the profiling.

6.2 Approximate factorization of systematic effects

We now replace the DCR in Eq. 6 with an ML surrogate model. The term “likelihood-free”
inference relates to techniques that contend with parametrically evaluating ratios of the ex-
tended likelihood, and thereby ratios of the differential cross-section d⌃(✓,⌫). Access to ratios
is sufficient for evaluating Eq. 10.

The construction of a generic ML surrogate proceeds as follows. First, the unbinned model
d⌃(✓,⌫), without the ratio, is written as a sum over weighted sub-processes, possibly subject
to uncertainties in the normalization we treat separately5 with nuisance parameters ⌫p,norm. We
then have

d⌃(x|✓,⌫) =
X

p

↵
⌫norm, p
norm, p d�p(x|✓,⌫), (57)

where for each component d�p(x|✓,⌫), we can obtain event samples from Eq. 23, Eq. 30, or
Eq. 31. Next, we factorize the systematic effects and the POI dependence. The SM point
corresponds to ✓ =⌫ =0 and for each d�p(x|✓,⌫) we have

d�p(x|✓,⌫)
d�p(x|0,0)

=
d�p(x|✓,⌫)
d�p(x|0,⌫)

d�p(x|0,⌫)
d�p(x|0,0)

⇡
d�p(x|✓,0)
d�p(x|0,0)

d�p(x|0,⌫)
d�p(x|0,0)

⌘
d�p(x|✓,0)
d�p(x|SM)
| {z }

R̂p(x|✓)

d�p(x|0,⌫)
d�p(x|SM)
| {z }

Ŝp(x|⌫)

. (58)

The approximation is valid if the relative SMEFT effects are independent of the relative system-
atic effects, i.e.,

d�p(x|✓,⌫)
d�p(x|0,⌫)

⇡
d�p(x|✓,0)
d�p(x|0,0)

. (59)

The factor

R̂p(x|✓) '
d�p(x|✓,0)
d�p(x|SM)

(60)

approximates the SMEFT variations and is a polynomial in ✓. It can be obtained from one of
the techniques in Refs. [8–17]. Systematic effects are parametrized by

Ŝp(x|⌫) '
d�p(x|0,⌫)
d�p(x|SM)

. (61)

5
The reason for the separate treatment of normalization nuisances is best seen in comparing the Taylor expan-

sion in ⌫ with the corresponding expansion of the purely multiplicative model in Ref. [17] where nuisances are

modeled relative to the total differential cross-section instead of per-process. For arbitrary values of normalization

nuisances, a polynomial expansion of the logarithm of the total differential cross-section requires arbitrarily many

terms that would have to be learned individually. The ansatz in Eq. 57 will reduce the ensuing ML task to a

straightforward classification problem, one for each process.
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We can learn this parametric dependence using the general strategy summarized in Sec. 5. The
ML implementation can be a neural network or the tree-based algorithm we develop in Sec. 7.

The validity of Eq. 59 must be established case-by-case and can be checked using simulation.
The separation of particle and detector-level effects from the SMEFT effects of the POIs is
highly accurate because of the different involved energy scales. It is generally straightforward
to establish that the POIs do not affect, e.g., the low-scale detector interactions. At the parton
level, we must independently verify the relative independence of the POIs and the systematic
effects. The PDFs can have dependencies on the SMEFT POIs [53], and care needs to be taken
when neglecting this correlation. Similarly, the linear and quadratic SMEFT terms could have
scale uncertainties that differ from the SM prediction. In this case, Ŝp(x|⌫R, ⌫F ) should, for
example, be trained with synthetic scale variations covering the SMEFT variations. A suitably
flexible model should accommodate these subtle analysis-dependent effects, which we leave to
future treatment. From now on, we assume the factorization

R̂p(x|✓) Ŝp(x|⌫) '
d�p(x|✓,⌫)
d�p(x|SM)

(62)

holds to good accuracy. We estimate Ŝp(x|⌫) with Eq. 53 for each process. Following the
same steps, we can furthermore factorize Ŝp(x|⌫) into mutually uncorrelated groups of system-
atic uncertainties and train each factor individually. For example, uncorrelated one-parameter
systematic uncertainties at quadratic accuracy reduce the surrogate to

Ŝp(x|⌫) =
KY

k=1

exp
⇣
⌫k�̂p,k,1(x) + ⌫2k�̂p,k,2(x)

⌘
(63)

with 2K real-valued functions �̂p,k,1(x) and �̂p,k,2(x) for each p. In most cases, first or second-
degree polynomials provide excellent approximations although this is not a limitation of our
methodology.

6.3 A general unbinned surrogate model

In analogy to Eq. 56, we use these building blocks to define a model for the fiducial differential
cross-section as

d⌃(x|✓,⌫) =
NpX

p=1

R̂p(x|✓)↵
⌫norm, p
norm, p Ŝp(x|⌫) d�p(x|SM). (64)

which we will use next to obtain a likelihood-free ML surrogate, i.e., we want to work solely with
ratios of differential cross-sections. From Eq. 11, we must divide by

d⌃(x|SM) =
X

p

d�p(x|SM). (65)

The resulting expression contains per-process DCRs that we replace with surrogates. The sim-
plest approach is to divide each d�p(x|SM) on the r.h.s. of Eq. 64 by Eq. 65 to find

d⌃(x|✓,⌫)
d⌃(x|SM)

=

NpX

p=1

R̂p(x|✓)↵
⌫norm, p
norm, p Ŝp(x|⌫) ĝp(x) where ĝp(x) '

d�p(x|SM)P
q d�q(x|SM)

. (66)

The estimate ĝp(x) approximates the DCR of the individual processes to the total differential
cross-section at the SM reference point. A classifier trained to separate the process p from the
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Jay Sandesara @ PhyStat SBI

• Basic idea: use same interpolation point wise in 
, replace histogram bin with function of .x x



Population-level / Experiment-wide 
Neural SBI

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t E x p e r i m e n t - w i d e



L e a r n i n g  t o  p r o f i l e

•In the fully-parametrized neural SBI approach, one must learn 
the dependence of the [likelihood, likelihood ratio, posterior] 
as a function of the parameters of interest and the nuisance 
parameters 

• Then one eliminates dependence on nuisance 
parameters through profiling or marginalization in the 
standard way 

• This is conceptually clean, but computationally difficult 
with many nuisance parameters 

•Ultimately, profiled value of nuisance parameters is a function 
of POI and the full data set - viz.  

• Can we “learn to profile” and just learn the profile 
likelihood ratio directly? 

• Is this easier? Function now depends on the entire dataset

̂ ̂ν({xi}, μ)
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Abstract

When analyzing real-world data it is common to work with event ensembles, which comprise
sets of observations that collectively constrain the parameters of an underlying model of
interest. Such models often have a hierarchical structure, where “local” parameters impact
individual events and “global” parameters influence the entire dataset. We introduce practical
approaches for frequentist and Bayesian dataset-wide probabilistic inference in cases where
the likelihood is intractable, but simulations can be realized via a hierarchical forward model.
We construct neural estimators for the likelihood(-ratio) or posterior and show that explicitly
accounting for the model’s hierarchical structure can lead to significantly tighter parameter
constraints. We ground our discussion using case studies from the physical sciences, focusing
on examples from particle physics and cosmology.

1 Introduction

Datasets composed of multiple samples are ubiquitous in scientific and more broadly real-world data analysis
tasks. These datasets are typically governed by underlying models that exhibit a rich hierarchical structure,
with local parameters shaping individual events while global parameters exert influence across the entire
dataset. This layered structure, if appropriately utilized, can greatly augment the e�ciency and e�ectiveness
of the inference process.

The complexity of scientific models and high-dimensionality of datasets has led to a recent surge in interest
in implicitly-specified models, where the likelihood function is intractable but simulations can be realized via
mechanistic forward modeling. The paradigm of simulation-based inference (SBI), augmented using tools
from machine learning and di�erentiable optimization more broadly, has emerged as a powerful approach for
performing inference in such scenarios (Cranmer et al., 2020). However, the majority of existing methods for
simulation-based inference are designed for learning from individual data points and do not fully capitalize
on the hierarchical structure of the data-generating process.

To address these gaps, we propose a set of novel approaches that augment existing simulation-based inference
techniques, in both frequentist and Bayesian paradigms, with the goal of exploiting the hierarchical structure
of the governing models. We contextualize our discussion using case studies from the physical sciences, with
a particular focus on particle physics (particle collider data) and astrophysics (strong gravitational lensing
images).
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Learning Optimal Test Statistics in the Presence of

Nuisance Parameters

Lukas Heinrich
Technical University of Munich

E-mail: lukas.heinrich@cern.ch

Abstract. The design of optimal test statistics is a key task in frequentist statistics and for a
number of scenarios optimal test statistics such as the profile-likelihood ratio are known. By
turning this argument around we can find the profile likelihood ratio even in likelihood-free cases,
where only samples from a simulator are available, by optimizing a test statistic within those
scenarios. We propose a likelihood-free training algorithm that produces test statistics that are
equivalent to the profile likelihood ratios in cases where the latter is known to be optimal.

1. Introduction
Statistical data analysis in the natural sciences is most often founded on a probabilistic modelling
of the underlying data-generating process, where p(x|✓) denotes the probability of experimentally
observing data x given a set of theory parameters ✓. Inference aims at assessing the theory
space in light of the observed data in order to estimate points or intervals in this space that are
compatible with the data as well as test hypotheses for data-driven decision-making. In frequentist
statistics the main tools for these tasks are estimates based on the well-developed methodology of
maximum-likelihood estimation, confidence intervals construction and test statistics. In a Bayesian
context, most inference tasks derive their results from methods that aim to compute posterior
densities of the form p(✓|x). A major problem for both approaches, however, are likelihood-free
settings, i.e. experimental situations where samples x ⇠ p(x|✓) are available but evaluating the
likelihood p(x|✓) is computationally intractable. The field of likelihood-free inference thus aims to
develop methods that allow us to still perform the desired inference tasks without requiring explicit
evaluation of the model. High-Energy Physics data analysis is a prominent example of such a
likelihood-free problem, which appears due to a rich, but unobservable evolution of the original
particle collision through many latent intermediate states zi culminating into a high-dimensional
measurement x. While the evolution probability itself is p(x, z|✓) is tractable, the model of the
observable data p(x|✓) =

R
dz p(x, z|✓) is not. Classical approaches to likelihood-free inference

often use simulation and summary statistics f(x) to derive a low-dimensional approximate model
p̂(f(x)|✓) to which the standard methodology can then be applied. More recently a new breed of
methods are developed that aim to use machine learning to eschew an explicit approximation of
the statistical model, in favor of directly targeting only the model-derived quantities required for
inference. In this work we add to this program by presenting a method to learn a test statistic
with best average power. For models which lie in the asymptotic regime, this is equivalent to
the profile likelihood ratio test statistic, which is a key quantity in frequentist data analysis for
models that incorporate systematic uncertainties through nuisance parameters.
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Figure 1: Schematic illustration of the deep set-based architecture used in this work. The red lines/arrows
show the path used only in the frequentist setting for training a global test-statistic estimator while profiling
over global nuisance parameters.

additional details on the experiments, including details on training. All experiments are implemented using
PyTorch (Paszke et al., 2019).

5.1 Simple multi-variate normal likelihood

The forward model To verify the ability of our method to recover the true posterior distribution for sets
of varying cardinality, we consider a simple multivariate normal likelihood with known covariance matrix �;
p({x} | ◊, �) =

rN
i=0 No(xi | ◊, �).

The model parameter is the mean vector ◊, and µ0, �0 are the hyperparameters of the prior multivariate
normal distribution; p(◊) = No(µ0, �0). In this case, the posterior distribution p(◊ | {x}) is also a multivariate
normal – the prior and posterior are conjugate – with mean µpost and covariance �post of an updated posterior
given by µpost =

!
�≠1

0 + N�≠1"≠1 !
�≠1

0 µ0 + N�≠1x
"

and �post =
!
�≠1

0 + N�≠1"≠1 where x is the sample
mean of xi and N is the total cardinality of the dataset. We choose � = diag(2, 4, 6), with each sample
consisting of 5 draws from the multi-variate normal distribution; each individual data point then consists of
15 features.

Inference We train the deep set and transformer architectures described in Sec. 4 on 50,000 samples
drawn from this likelihood with prior p(µ) = No(0, 3) and a maximum sequence length of Nmax = 200. The
cardinality of the training set is randomly varying as N ≥ Unif(1, Nmax). Further details on the training
procedure are provided in App. A.

Results The model is then tested on 500 new sequences, and the distribution (median and middle-68%
containment) over inferred standard deviation ‡ for each of the 3 parameters is shown in Fig. 2 (left: deep
set, middle: transformer) compared to the true expected scaling of the parameters (dashed lines). We show
‡1, ‡2, and ‡3, which are the diagonal entries of �post, the covariance of the posterior on the target mean
parameters ◊. The deep set model typically gives more faithful posterior widths compared to the transformer,
potentially due to the relatively simple nature of the problem combined with the more data-hungry nature of
the transformer architecture. Given this, we restrict our experiments in subsequent sections to use the deep
set-based architecture, noting that the transformer approach may nevertheless yield advantages depending on
the specific structure of the forward model. The right plot shows the evolution of a posterior for a specific
sequence using the deep set model, illustrating convergence of the posterior mass around the true point as
more data points are included. We note that although this is a simple, analytically tractable example, the
final posterior is obtained by analyzing a dataset of dimensionality 3000 – far from a trivial task.
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statistic s and a statistical procedure to obtain an unbiased interval estimate of the parameter of interest
which accounts for the effect of nuisance parameters. The resulting interval can be characterised by
its width �Ê0 = Ê̂

+
0 ≠ Ê̂

≠
0 , defined by some criterion so as to contain on average, upon repeated

samping, a given fraction of the probability density, e.g. a central 68.3% interval. The expected size
of the interval depends on the summary statistic s chosen: in general, summary statistics that are more
informative about the parameters of interest will provide narrower confidence or credible intervals on
their value. Under this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s

ú that minimises the interval width:
s

ú = argmins�Ê0. (2)
The above construction can be extended to several parameters of interest by considering the interval
volume or any other function of the resulting confidence or credible regions.

3 Method

In this section, a machine learning technique to learn non-linear sample summary statistics is described
in detail. The method seeks to minimise the expected variance of the parameters of interest obtained
via a non-parametric simulation-based synthetic likelihood. A graphical description of the technique
is depicted on Fig. 1. The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function accounts for the
details of the statistical model as well as the expected effect of nuisance parameters.
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Figure 1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is composed by a neural network
model applied to each dataset observation f(x; „) : X ™ Rd æ Y ™ Rb, whose parameters „

will be learned during training by means of stochastic gradient descent, as will be discussed later.
Therefore, using set-builder notation the family of summary statistics considered can be denoted as:

s(D, „) = s ( { f(xi; „) | ’ xi œ D } ) (3)
where f(xi; „) will reduce the dimensionality from the input observations space X to a lower-
dimensional space Y . The next step is to map observation outputs to a dataset summary statistic,
which will in turn be calibrated and optimised via a non-parametric likelihood L(D; ◊, „) created
using a set of simulated observations Gs = {x0, ..., xg}, generated at a certain instantiation of the
simulator parameters ◊s.

In experimental high energy physics experiments, which are the scientific context that initially
motivated this work, histograms of observation counts are the most commonly used non-parametric
density estimator because the resulting likelihoods can be expressed as the product of Poisson factors,
one for each of the considered bins. A naive sample summary statistic can be built from the output of
the neural network by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x; „), so each element of the sample summary will correspond to the
following sum:

si(D; „) =
ÿ

xœD

I
1 i = argmaxj={0,...,b}(fj(x; „))
0 i ”= argmaxj={0,...,b}(fj(x; „)) (4)
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Stochastic Optimization for Collision Selection in High Energy Physics

S. Whiteson1 and D. Whiteson2
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The underlying structure of matter can be deeply probed via precision measurements of the mass of the top
quark, the most massive observed fundamental particle. Top quarks can be produced and studied only in colli-
sions at high energy particle accelerators. Most collisions, however, do not produce top quarks; making precise
measurements requires culling these collisions into a sample that is rich in collisions producing top quarks (sig-
nal) and spare in collisions producing other particles (background). Collision selection is typically performed
with heuristics or supervised learning methods. However, such approaches are suboptimal because they assume
that the selector with the highest classification accuracy will yield a mass measurement with the smallest statisti-
cal uncertainty. In practice, however, the mass measurement is more sensitive to some backgrounds than others.
Hence, this paper presents a new approach that uses stochastic optimization techniques to directly search for
selectors that minimize statistical uncertainty in the top quark mass measurement. Empirical results confirm that
stochastically optimized selectors have much smaller uncertainty. This new approach contributes substantially
to our knowledge of the top quark’s mass, as the new selectors are currently in use selecting real collisions.

PACS numbers:

I. INTRODUCTION

The underlying structure of matter and the laws that gov-
ern its interaction remain compelling mysteries. Physicists
hope to solve these mysteries with the help of modern high
energy accelerators, which collide protons and anti-protons
to create exotic particles that have not existed since the early
universe. Of particular interest is the top quark, the most mas-
sive observed fundamental particle and nearly as massive as
a gold atom. The top quark is intriguing not only because
of its mass, but because of what it may reveal about the na-
ture of mass itself: precision measurements of its mass strin-
gently test theories that attempt to explain the origins of parti-
cle mass [11, 12, 14, 15].

Only the world’s most powerful collider, the FermiLab
Tevatron in Batavia, Illinois, has sufficient energy to produce
top quarks [2, 3]. Even so, out of approximately 1010 col-
lisions per hour, on average fewer than one produces a top
quark. Since collisions are extraordinarily expensive to gener-
ate, maximizing the precision of the resulting mass measure-
ment is critical. Doing so requires culling these collisions into
a sample that is rich in collisions producing top quarks (sig-
nal) and spare in collisions producing other particles (back-
ground). Collision selection is difficult because several types
of background mimic the top quark’s characteristic signature.

However, these difficulties can be overcome with the help
of machine learning. Previous research on related collision
selection problems used supervised learning methods to train
neural networks [1, 7] or support vector machines [20] that
classify collisions as signal or background. While this ap-
proach has proven effective, it is applicable only to the narrow
class of problems where higher classification accuracy consis-
tently yields more precise measurements. The measurement
of the top quark mass exemplifies a broader class of prob-
lems where this assumption does not hold. Instead, the mass
measurement is more sensitive to the presence of some back-
ground collisions than others, in ways that are difficult to pre-
dict a priori. Therefore, selectors that maximize classification

accuracy may perform worse than those that 1) increase the
quantity of signal by tolerating harmless background or 2) re-
duce the quantity of signal to eliminate disruptive background.

This paper presents a new approach that uses stochas-
tic optimization techniques to find such a selector. Rather
than maximizing classification accuracy, this approach di-
rectly searches for selectors that yield mass measurements
with the smallest statistical uncertainty. Using NEAT [18],
an evolutionary method for training neural networks, we train
collision selectors that operate either in conjunction with su-
pervised classifiers or in lieu of them.

We present experiments that compare the performance of
neural network selectors trained with backpropagation [16],
a supervised method, to those trained with NEAT. The re-
sults confirm the advantage of the stochastic optimization ap-
proach, as the NEAT selectors yield much more precise mass
measurements. These NEAT selectors are currently in use
at FermiLab for selecting collisions from real data collected
with the Tevatron collider. Hence, this new approach to col-
lision selection contributes substantially to our knowledge of
the top quark’s mass and our understanding of the larger ques-
tions upon which it sheds light.

II. MEASURING THE TOP QUARK’S MASS

This section presents an overview of the three steps required
to measure the top quark’s mass: 1) generating collisions, 2)
selecting collisions, and 3) measuring mass.

A. Generating Collisions

To provide enough energy to produce massive exotic parti-
cles such as the top quark, one must accelerate and annihilate
lighter particles and their anti-particles. The Tevatron collider
at FermiLab accelerates protons and anti-protons to a center-
of-mass energy of 1.96 tera electron-volts, the highest con-

https://arxiv.org/abs/hep-ex/0607012

* Shimon Whiteson (Daniel Whiteson’s brother) is now Professor of 
Computer Science at Oxford and the Head of Research at Waymo UK.



P h y S t a t  2 0 0 3  &  P h y s i c s G P

•Discussed high-level strategies: 

• Indirect: Optimize an objective that yields a well-motivated  
function (e.g. approximate likelihood ratio) 

• Argue that the resulting classifier should be close to optimal 

• Direct: optimize expected discovery significance  

• Objective includes systematic uncertainty! 

•Genetic Programming / Symbolic Regression: 

• Search through space of cuts / summary statistics expressed symbolically 
using genetic programming 

• Interpretable. Less prone to overfitting (low VC dimension) 

•Hypothesis Testing & Statistical Learning Theory: 

• Expressed Neyman-Pearson in terms of Risk 

• Discussion of VC dimension for NNs, SVMs, symbolic cuts
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Multivariate Analysis from a Statistical Point of View
K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

Multivariate Analysis is an increasingly common tool in experimental high energy physics; however, many of the
common approaches were borrowed from other fields. We clarify what the goal of a multivariate algorithm should
be for the search for a new particle and compare different approaches. We also translate the Neyman-Pearson
theory into the language of statistical learning theory.

1. INTRODUCTION

Multivariate Analysis is an increasingly common
tool in experimental high energy physics; however,
most of the common approaches were borrowed from
other fields. Each of these algorithms were developed
for their own particular task, thus they look quite dif-
ferent at their core. It is not obvious that what these
different algorithms do internally is optimal for the the
tasks which they perform within high energy physics.
It is also quite difficult to compare these different al-
gorithms due to the differences in the formalisms that
were used to derive and/or document them. In Sec-
tion 2 we introduce a formalism for a Learning Ma-
chine, which is general enough to encompass all of
the techniques used within high energy physics. In
Sections 3 & 4 we review the statistical statements
relevant to new particle searches and translate them
into the formalism of statistical learning theory. In
the remainder of the note, we look at the main re-
sults of statistical learning theory and their relevance
to some of the common algorithms used within high
energy physics.

2. FORMALISM

Formally a Learning Machine is a family of func-
tions F with domain I and range O parametrized by
α ∈ Λ. The domain can usually be thought of as, or
at least embedded in, Rd and we generically denote
points in the domain as x. The points x can be re-
ferred to in many ways (e.g. patterns, events, inputs,
examples, . . . ). The range is most commonly R, [0, 1],
or just {0, 1}. Elements of the range are denoted by
y and can be referred to in many ways (e.g. classes,
target values, outputs, . . . ). The parameters α spec-
ify a particular function fα ∈ F and the structure of
α ∈ Λ depends upon the learning machine [1, 2].

In the modern theory of machine learning, the per-
formance of a learning machine is usually cast in the
more pessimistic setting of risk. In general, the risk,
R, of a learning machine is written as

R(α) =
∫

Q(x, y;α) p(x, y)dxdy (1)

where Q measures some notion of loss between fα(x)
and the target value y. For example, when classifying
events, the risk of mis-classification is given by Eq. 1
with Q(x, y;α) = |y−fα(x)|. Similarly, for regression1

tasks one takes Q(x, y;α) = (y − fα(x))2. Most of
the classic applications of learning machines can be
cast into this formalism; however, searches for new
particles place some strain on the notion of risk.

3. SEARCHES FOR NEW PARTICLES

The conclusion of an experimental search for a new
particle is a statistical statement – usually a decla-
ration of discovery or a limit on the mass of the hy-
pothetical particle. Thus, the appropriate notion of
performance for a multivariate algorithm used in a
search for a new particle is that performance mea-
sure which will maximize the chance of declaring a
discovery or provide the tightest limits on the hypo-
thetical particle. In principle, it should be a fairly
straight-forward procedure to use the formal statis-
tical statements to derive the most appropriate per-
formance measure. This procedure is complicated by
the fact that experimentalists (and statisticians) can-
not settle on a formalism to use (i.e. Bayesians vs.
Frequentists). As an example, let us consider the Fre-
quentist theory developed by Neyman and Pearson [3].
This was the basis for the results of the search for the
Standard Model Higgs boson at LEP [4].

The Neyman-Pearson theory (which we review
briefly for completeness) begins with two Hypothe-
ses: the null hypothesis H0 and the alternate hypoth-
esis H1 [3]. In the case of a new particle search H0
is identified with the currently accepted theory (i.e.
the Standard Model) and is usually referred to as the
“background-only” hypothesis. Similarly, H1 is iden-
tified with the theory being tested usually referred to
as the “signal-plus-background” hypothesis

1During the presentation, J. Friedman did not distinguish
between these two tasks; however, in a region with p(x, 1) = b
and p(x, 0) = 1 − b, the optimal f(x) for classification and
regression differ. For classification, f(x) = {1 if b > 1/2, else 0},
and for regression the optimal f(x) = b.
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(a) (b)

(d)(c)

Fig. 2. An example of crossover. At
some given generation, two parents (a)
and (b) are chosen for a crossover mu-
tation. Two subtrees, shown in bold,
are selected at random from the par-
ents and are swapped to produce two
children (c) and (d) in the subsequent
generation.

to abstract syntax trees that might
be generated by a compiler as an in-
termediate representation of a com-
puter program. An example of such a
tree is shown in Fig. 2a which corre-
sponds to a cut |4.2v1 + v2/1.5| < 1.
Leafs are either constants or one of
the input variables. Nodes are simple
arithmetic operators: addition, sub-
traction, multiplication, and safe di-
vision 2 .When an individual is pre-
sented with an event, each expression
tree is evaluated to produce a num-
ber. If all these numbers lie within the
range (−1, 1), the event is considered
signal. Otherwise the event is classi-
fied as background.

Initial trees are built using the PTC1
algorithm described in [6]. After each
generation, the trees are modified by

2 Safe division is used to avoid division
by zero.

mutation and crossover. Mutation
comes in two flavors. In the first, a
randomly chosen expression in an in-
dividual is scaled or translated by a
random amount. In the second kind
of mutation, a randomly chosen sub-
tree of a randomly chosen expression
is replaced with a randomly gener-
ated expression tree using the same
algorithm that is used to build the
initial trees.

While mutation plays an important
rôle in maintaining genetic diversity
in the population, most new individ-
uals in a particular generation result
from crossover. The crossover opera-
tion takes two individuals, selects a
random subtree from a random ex-
pression from each, and exchanges
the two. This process is illustrated in
Fig. 2.

3.2 Recentering

Some expression trees, having been
generated randomly, may prove to
be useless since the range of their
expressions over the domain of their
inputs lies well outside the interval
(−1, 1) for every input event. When
an individual classifies all events
in the same way (signal or back-
ground), each of its expressions is
translated to the origin for some ran-
domly chosen event exemplar v⃗0, viz.
f(v⃗) → f(v⃗) − f(v⃗0). This modifi-
cation is similar to, and thus reduces
the need for, normalizing input vari-
ables.
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PhysicsGP:AGenetic ProgrammingApproach

to Event Selection

Kyle Cranmer a R. Sean Bowman b

aCERN, CH-1211 Geveva, Switzerland

bOpen Software Services, LLC, Little Rock, Arkansas, USA

Abstract

We present a novel multivariate classification technique based on Genetic Program-
ming. The technique is distinct from Genetic Algorithms and offers several advan-
tages compared to Neural Networks and Support Vector Machines. The technique
optimizes a set of human-readable classifiers with respect to some user-defined per-
formance measure. We calculate the Vapnik-Chervonenkis dimension of this class
of learning machines and consider a practical example: the search for the Stan-
dard Model Higgs Boson at the LHC. The resulting classifier is very fast to eval-
uate, human-readable, and easily portable. The software may be downloaded at:
http://cern.ch/∼cranmer/PhysicsGP.html

Key words: Genetic Programming, Triggering, Classification, VC Dimension,
Genetic Algorithms, Neural Networks, Support Vector Machines

1 Introduction

The use of multivariate algorithms
in the search for particles in High
Energy Physics has become quite
common. Traditionally, a search can
be viewed from a classification point
of view: from a tuple of physical mea-
surements (i.e., momenta, energy,
etc.) we wish to classify an event as
signal or background. Typically, this
classification is realized through a
Boolean expression or cut designed
by hand. The high dimensionality of
the data makes this problem diffi-
cult in general and favors more so-

phisticated multivariate algorithms
such as Neural Networks, Fisher Dis-
criminants, Kernel Estimation Tech-
niques, or Support Vector Machines.
This paper focuses on a Genetic Pro-
gramming approach and considers a
specific example: the search for the
Higgs Boson at the LHC.

The use of Genetic Programming for
classification is fairly limited; how-
ever, it can be traced to the early
works on the subject by Koza [1].
More recently, Kishore et al. ex-
tended Koza’s work to the multicat-
egory problem [2]. To the best of the
authors’ knowledge, the work pre-

Preprint submitted to Elsevier Science 25 October 2018
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C o m m e n t

•Learning a function of experiment-level data  objective is much difficult that learning a function of for 
an individual event  

• Function is more complicated & the optimization itself is more expensive than for an event-level objective 

•Intuition and confusion: 

• Final sensitivity (including systematics) is a function of all the events in the dataset 

• Nuisance parameters affect all the events, introduces “correlation” 

• Profiling / ability to constrain nuisance parameters is a function of all of the events 

• Makes it seem like this event-level optimization is required to be “optimal” 

•Resolution: 

• The data is assumed to be i.i.d., so event-level modeling should be sufficient 

• If you can learn the per-event likelihood function , then it is possible to profile or marginalize the 
likelihood for the full dataset, which is effectively “optimal”.  

• So event-level optimization isn’t required conceptually. Practical question, which approach is easier.

{x1, …, xn}
xi

p(xi |θ, ν)
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Summary



F o u r  a p p r o a c h e s  t o  i n c o r p o r a t i n g  s y s t e m a t i c s

•propagation of errors: one works with a model  and simply characterizes how un- 
certainty in the data distribution propagate through the function to the down-stream task 
irrespective of how it was trained.  

•data augmentation: one trains a model  in the usual way using training data from 
multiple domains by sampling from some distribution over .  

•domain adaptation: one incorporates knowledge of the distribution for domains (or the 
parameterized family of distributions ) into the training procedure so that the 
performance of  for the down-stream task is robust or insensitive to the uncertainty in .  

•parameterized models: instead of learning a single function of the data , one learns a 
family of functions  that is explicitly parameterized in terms of nuisance parameters 
and then accounts for the dependence on the nuisance parameters in the down-stream 
task. 

f(x)

f(x)
ν

p(x |y, ν)
f(x) ν

f(x)
f(x; ν)
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A  r e v i e w  w i t h  o t h e r  a p p r o a c h e s

•See also this paper that 
compares the approaches I 
mentioned and advocates 
parameterized approach
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Dealing with Nuisance Parameters using Machine
Learning in High Energy Physics: a Review

T. Dorigo and P. de Castro Manzano

Istituto Nazionale di Fisica Nucleare - Sezione di Padova,
Via Marzolo 8, 35131 Padova - Italy,

tommaso.dorigo@cern.ch⇤ pablo.de.castro@cern.ch

In this work we discuss the impact of nuisance parameters on the ef-
fectiveness of machine learning in high-energy physics problems, and
provide a review of techniques that allow to include their e↵ect and re-
duce their impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates
the supervised learning task and its correspondence with the data anal-
ysis goal, due to their contribution degrading the model performances
in real data, and the necessary addition of uncertainties in the result-
ing statistical inference. The approaches discussed include nuisance-
parameterized models, modified or adversary losses, semi-supervised
learning approaches, and inference-aware techniques.

1. Introduction

Particle physics o↵ers a variety of use cases for machine learning techniques.
Of these, probably the most common is the use of supervised classifica-
tion to construct low-dimensional event summaries, which allow to perform
statistical inference on the parameters of interest. The learned summary
statistics –functions of the data that are informative about the relevant
properties of the data– can e�ciently combine high-dimensional informa-
tion from each event into one or a few variables which may be used as the
basis of statistical inference. The informational source for this compres-
sion are simulated observations produced by a complex generative model;
the latter reproduces the chain of physical processes occurring in subnu-
clear collisions and the subsequent interaction of the produced final state

⇤Corresponding author.
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C o n c l u s i o n

•Systematic uncertainties usually have a negative connotation since they reduce 
the sensitivity of an experiment.  

•However, the practical and conceptual challenges posed by various types of 
systematic uncertainty also have a long track record of motivating new ideas.  

• Thank you / Questions? 
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Learning to Pivot

x  C h o i c e  
( S u m m a r y  S t a t )

L o w - d i m  s u m m a r y  s t a t  
d e s i g n e d  b y  e x p e r t

L o w - D i m  s u m m a r y  s t a t  
l e a r n e d  /  o p t i m i z e d

L o w - l e v e l  x ,   
n o  e x p l i c i t  s u m m a r y  s t a t  

( l e a r n e d  i m p l i c i t l y )

M o d e l  t a rg e t D e n s i t y  /  L i k e l i h o o d L i k e l i h o o d  R a t i o

x - d e p e n d e n c e L o w - d i m  x  
 H i s t o g r a m ,  K e r n e l

N N  ( o r  Tr e e )  

θ - d e p e n d e n c e F i x e d  P a r a m e t r i z a t i o n  /  
I n t e r p o l a t i o n  /  M o r p h i n g

A g n o s t i c  /   
“ n o n - p a r a m e t r i c ”  

( e . g .  N N ,  G P )

S c o p e  o f  o p t i m i z a t i o n  
o b j e c t i v e

N / A  
( c o n s t r u c t i v e )

P e r- E v e n t  
( C l a s s i f i e r )

E x p e r i m e n t - w i d e  
( A d v e r s a r y  &  H y p e r  

p a r a m e t e r  o p t . )



L e a r n i n g  t o  p i v o t  w i t h  a d v e r s a r i a l  n e t w o r k s

• Typically classifier  trained to minimize loss Lf.  

• want classifier output to be insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that tries to predict ν based 
on .  

• setup as a minimax game:

f(x)

f
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

4

• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f )), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f )) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f ) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f ) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f ) � H(Z|f(X; ✓f )) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f )�H(Z|f(X; ✓f )) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f )� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f ) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f ) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f ) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f )
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

Objective

• Consider the value function

V (D,G ) = Ex⇠pdata [log(D(x))] + Ez⇠pnoise [log(1� D(G (z)))];

• We want to
For fixed G , find D which maximizes V (D,G ),
For fixed D, find G which minimizes V (D,G );

• In other words, we are looking for the saddle point

(D⇤,G ⇤) = max
D

min
G

V (D,G ).
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• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f )), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f )) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f ) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f ) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f ) � H(Z|f(X; ✓f )) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f )�H(Z|f(X; ✓f )) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f )� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f ) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f ) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f ) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f )
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier
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A n  e x a m p l e  o f  l e a r n i n g  t o  p i v o t

•Technique allows us to tune λ, the tradeoff between classification power and 
robustness to systematic uncertainty
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An example: 
background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Pileup as source of 
uncertainty 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness
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D o m a i n  a d a p t a t i o n

•In machine learning literature, the setting where training data doesn’t match real world data is referred 
to as “domain shift” and techniques to mitigate the loss in performance are called “domain 
adaptation” 

•A similar adversarial technique was introduced in arxiv:1505.07818 where adversary tries to get 
distribution of hidden state features to be invariant. This works for discrete domains, but doesn’t 
generalize well to continuous nuisance parameters. 

• adversary works on some low-level features (not just the class prediction )
63
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Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1505.07818


L e a r n e d  a d v e r s a r y   e x p l i c i t  r e g u l a r i z a t i o n→

•One way of interpreting the mini-max game  
is to minimize a regularized loss term  where the 

optimization with respect to  is not exposed 

•This motivates another approach in which the regularization is not achieved 
through a learned adversary, but some other measure of discrepancy

L̃(θf) = arg max
θr

Eλ(θf, θr)

θr
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

Phys.Rev.Lett. 125 (2020) 12, 122001



Ancient History



M C  S t a t  U n c e r t a i n t i e s  ⇒  K e r n e l  D e n s i t y  E s t i m a t i o n

•Back in ~1999, the four experiments LEP experiments were performing the first 
likelihood-based combinations 

• Input to the combinations were histograms, but limited Monte Carlo sample size 
led to unphysical fluctuations  

• Now we explicitly treat these as MC stat uncertainty with nuisance parameters, 
but at the time the desire was to smooth the distributions 

•My first paper was to introduce  
kernel density estimation for this (KEYS) 

• An example of density estimation 

• Non-parametric. ML-adjacent 

• Regularization is important
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Fig. 1. The performance of boundary kernels on a Neural Network distribution with

a hard boundary

1.3.1 Covariance Issues

When dealing with multivariate density estimation, the covariance structure of
the data becomes an issue. Because the covariance structure of the data may
not match the diagonal covariance structure of our kernels, we must apply
a linear transformation which will diagonalize the covariance matrix Σjk of
the data. Ideally, the transformation would remain a local object; however, in
practice such non-linear transformations may be very difficult to obtain. In
the remainder of this paper, the transformation matrix will be referred to as
Ajk, and the {t⃗i} will be assumed to be transformed.

1.3.2 Fixed Kernel Estimation

For product kernels, the fixed kernel estimate is given by

f̂0(x⃗) =
1

nh1 . . . hd

n
∑

i=1

⎡

⎣

d
∏

j=1

K

(

xj − tij
hj

)

⎤

⎦ . (9)

In the asymptotic limit of normally distributed data, the mean integrated
squared error of f̂0 is minimized when

h∗
j =

(

4

d + 2

)1/(d+4)

σjn
−1/(d+4). (10)

1.3.3 Adaptive Kernel Estimation

The adaptive kernel estimate f̂1(x⃗) is constructed in a similar manner as the
univariate case; however, the scaling law is usually left in a general form.

6
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T h e  f i r s t  P h y S t a t

•It was 24 years ago! 

• I was just starting as a graduate student 

•Louis suggested I think about frequentist 
statistical procedures with systematics

68https://cds.cern.ch/record/411537?ln=en



N e y m a n  c o n s t r u c t i o n  w i t h  s y s t e m a t i c s  &  p r o f i l i n g

•At PhyStat 2003, I presented my first work on 
frequents hypothesis testing & Neyman 
Construction with nuisance parameters 

• Mainly translating Kendall and Stuart  

• Early days of HEP understanding the  
profile likelihood ratio
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Frequentist Hypothesis Testing with Background Uncertainty
K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

We consider the standard Neyman-Pearson hypothesis test of a signal-plus-background hypothesis and
background-only hypothesis in the presence of uncertainty on the background-only prediction. Surprisingly,
this problem has not been addressed in the recent conferences on statistical techniques in high-energy physics –
although the its confidence-interval equivalent has been. We discuss the issues of power, similar tests, coverage,
and ordering rules. The method presented is compared to the Cousins-Highland technique, the ratio of Poisson
means, and “profile” method.

1. INTRODUCTION

In the last five years there have been several con-
ferences on statistics for particle physics. Much of
the emphasis of these conferences were on limit set-
ting and the Feldman-Cousins “unified approach”, the
quintessential frequentist method based on the Ney-
man construction. As particle physicists prepare for
the Large Hadron Collider (LHC) at CERN, we will
need to reexamine our list of statistical tools in the
context of discovery. In fact, there has been no pre-
sentation at these statistical conferences on frequen-
tist hypothesis testing in the presence of uncertainty
on the background.

In Section 2 we will review the Neyman-Pearson
theory for testing between two simple hypotheses, and
examine the impact of background uncertainty in Sec-
tion 3. In Sections 4- 5 we will present a fully frequen-
tist method for hypothesis testing with background
uncertainty based on the Neyman Construction. In
the remainder of the text we will present an example
and compare this method to other existing methods.

2. SIMPLE HYPOTHESIS TESTING

In the case of Simple Hypothesis testing, the
Neyman-Pearson theory (which we review briefly for
completeness) begins with two Hypotheses: the null
hypothesis H0 and the alternate hypothesis H1 [1].
These hypotheses are called simple because they have
no free parameters. Predictions of some physical ob-
servable x can be made with these hypotheses and
described by the likelihood functions L(x|H0) and
L(x|H1) (for simplicity, think of x as the number of
events observed).

Next, one defines a region W ∈ I such that if the
data fall in W we accept the H0 (and reject H1). Con-
versely, if the data fall in I − W we reject H0 and
accept the H1. The probability to commit a Type I
error is called the size of the test and is given by

α =
∫

I−W
L(x|H0)dx. (1)

The probability to commit a Type II error is given by

β =
∫

W
L(x|H1)dx. (2)

Finally, the Neyman-Pearson lemma tells us that the
region W of size α which minimizes the rate of Type II
error (maximizes the power) is given by

W =

{
x

∣∣∣∣∣
L(x|H1)
L(x|H0)

> kα

}
. (3)

3. NUISANCE PARAMETERS

Within physics, the majority of the emphasis on
statistics has been on limit setting – which can be
translated to hypothesis testing through a well known
dictionary [1]. When one includes nuisance param-
eters θs (parameters that are not of interest or not
observable to the experimenter) into the calculation
of a confidence interval, one must ensure coverage for
every value of the nuisance parameter. When one is
interested in hypothesis testing, there is no longer a
physics parameter θr to cover, instead one must ensure
the rate of Type I error is bounded by some predefined
value. Analogously, when one includes a nuisance pa-
rameters in the null hypothesis, one must ensure that
the rate of Type I error is bounded for every value
of the nuisance parameter. Ideally one can find an
acceptance region W which has the same size for all
values of the nuisance parameter (i.e. a similar test).
Furthermore, the power of a region W also depends
on the nuisance parameter; ideally, we would like to
maximize the power for all values of the nuisance pa-
rameter (i.e. Uniformly Most Powerful). Such tests
do not exist in general.

In this note, we wish to address how the standard
hypothesis test is modified by uncertainty on the back-
ground prediction. The uncertainty in the background
prediction represents the presence of a nuisance pa-
rameter: for example, let us assume it is the expected
background b. Typically, an auxiliary, or side-band,
measurement is made to provide a handle on the nui-
sance parameter. Let us generically call that mea-
surement M and L(M |H0, b) the prediction of that
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Figure 1: The Neyman construction for a test statistic x,
an auxiliary measurement M , and a nuisance parameter
b. Vertical planes represent acceptance regions Wb for H0

given b. The condition for discovery corresponds to data
(x0, M0) that do not intersect any acceptance region.
The contours of L(x, M |H0, b) are in color.

where b̂ conditionally maximizes L(x, M |H1, b) and ˆ̂b
conditionally maximizes L(x, M |H0, b).

Now let us take s = 50 and ∆ = 5%, both of which
could be determined from Monte Carlo. In our toy ex-
ample, we collect data M0 = 100. Let α = 2.85 ·10−7,
which corresponds to 5σ. The question now is how
many events x must we observe to claim a discovery?1

The condition for discovery is that (x0, M0) do not lie
in any acceptance region Wb. In Fig. 1 a sample of
acceptance regions are displayed. One can imagine a
horizontal plane at M0 = 100 slicing through the var-
ious acceptance regions. The condition for discovery
is that x0 > xmax where xmax is the maximal x in the
intersection.

There is one subtlety which arises from the or-
dering rule in Eq. 5. The acceptance region Wb =
{(x, M) | l > lα} is bounded by a contour of the
likelihood ratio and must satisfy the constraint of size:∫

Wb
L(x, M |H0, b) = (1 − α). While it is true that

the likelihood is independent of b, the constraint on
size is dependent upon b. Similar tests are achieved
when lα is independent of b. The contours of the like-
lihood ratio are shown in Fig. 2 together with con-
tours of L(x, M |H0, b). While tests are roughly sim-
ilar for b ≈ M , similarity is violated for M ≪ b.
This violation should be irrelevant because clearly
b ≪ M should not be accepted. This problem can
be avoided by clipping the acceptance region around
M = b ± N∆b, where N is sufficiently large (≈ 10)
to have negligible affect on the size of the acceptance

1In practice, one would measure x0 and M0 and then ask,
“have we made a discovery?”. For the sake of explanation, we
have broken this process into two pieces.
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Figure 2: Contours of the likelihood L(x, M |H0, b) are
shown as concentric ellipses for b = 32 and b = 80.
Contours of the likelihood ratio in Eq. 5 are shown as
diagonal lines. This figure schematically illustrates that if
one chooses acceptance regions based solely on contours
of the likelihood ratio, that similarity is badly violated.
For example, data M = 80, x = 130 would be considered
part of the acceptance region for b = 32, even though it
should clearly be ruled out.

region. Fig. 1 shows the acceptance region with this
slight modification.

In the case where s = 50, ∆ = 5%, and M0 = 100,
one must observe 167 events to claim a discovery.
While no figure is provided, the range of b consis-
tent with M0 = 100 (and no constraint on x) is
b ∈ [68, 200]. In this range, the tests are similar to
a very high degree.

7. THE COUSINS-HIGHLAND
TECHNIQUE

The Cousins-Highland approach to hypothesis test-
ing is quite popular [4] because it is a simple smear-
ing on the nuisance parameter [5]. In particular, the
background-only hypothesis L(x|H0, b) is transformed
from a compound hypothesis with nuisance parameter
b to a simple hypothesis L′(x|H0) by

L′(x|H0) =
∫

b
L(x|H0, b)L(b)db, (6)

where L(b) is typically a normal distribution. The
problem with this method is largely philosophical:
L(b) is meaningless in a frequentist formalism. In a
Bayesian formalism one can obtain L(b) by consider-
ing L(M |b) and inverting it with the use of Bayes’s
theorem and the a priori likelihood for b. Typically,
L(M |b) is normal and one assumes a flat prior on b.

In the case where s = 50, L(b) is a normal distribu-
tion with mean µ = M0 = 100 and standard deviation
σ = ∆M0 = 5, one must observe 161 events to claim a
discovery. Initially, one might think that 161 is quite
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measurement given the null hypothesis with nuisance
parameter b. In Section 8 we address the special case
that L(M |H0, b) is a Poisson distribution.

4. THE NEYMAN-CONSTRUCTION

Usually one does not consider an explicit Neyman
construction when performing hypothesis testing be-
tween two simple hypotheses; though one exists im-
plicitly. Because of the presence of the nuisance pa-
rameter, the implicit Neyman construction must be
made explicit and the dimensionality increased. The
basic idea is that for each value of the nuisance param-
eters θs, one must construct an acceptance interval
(for H0) in a space which includes their correspond-
ing auxiliary measurements M , and the original test
statistic x which was being used to test H0 against
H1.

For the simple case introduced in the previous sec-
tion, this requires a three-dimensional construction
with b, M , and x. For each value of b, one must
construct a two-dimensional acceptance region Wb of
size α (under H0). If an experiment’s data (x0, M0)
fall into an acceptance region Wb, then one cannot
exclude the null hypothesis with 100(1 − α)% confi-
dence. Conversely, to reject the null hypothesis (i.e.
claim a discovery) the data must not lie in any ac-
ceptance region Wb. Said yet another way, to claim
a discovery, the confidence interval for the nuisance
parameter(s) must be empty (when the construction
is made assuming the null hypothesis).

5. THE ORDERING RULE

The basic criterion for discovery was discussed ab-
stractly in the previous section. In order to provide
an actual calculation, one must provide an ordering
rule: an algorithm which decides how to chose the re-
gion Wb. Recall, that there the constraint on Type I
error does not uniquely specify an acceptance region
for H0. In the Neyman-Pearson lemma, it is the al-
ternate hypothesis H1 that breaks the symmetry be-
tween possible acceptance regions. Also in the unified
approach, it is the likelihood ratio that is used as an
ordering rule [2].

At the Workshop on conference limits at FermiLab,
Feldman showed that Unified Method with Nuisance
Parameters is in Kendall’s Theory (the chapter on
likelihood ratio tests & test efficiency) [3]. The nota-
tion used by Kendall is given in Table I. Also, Kendall
identifies H0 with θr = θr0 and H1 with θr ̸= θr0.

Let us briefly quote from Kendall:
“Now consider the Likelihood Ratio

l =
L(x|θr0,

ˆ̂θs)
L(x|θ̂r, θ̂s)

(4)

Variable Meaning
θr physics parameters
θs nuisance parameters
θ̂r, θ̂s unconditionally maximize L(x|θ̂r, θ̂s)
ˆ̂θs conditionally maximize L(x|θr0,

ˆ̂θs)

Table I The notation used by Kendall for likelihood tests
with nuisance parameters

Intuitively l is a reasonable test statistic
for H0: it is the maximum likelihood un-
der H0 as a fraction of its largest possible
value, and large values of l signify that H0
is reasonably acceptable.”

Feldman uses this chapter as motivation for the pro-
file method (see Section 9), though in Kendall’s book
the same likelihood ratio is used as an ordering rule
for each value of the nuisance parameter.

The author tried simple variations on this order-
ing rule before rediscovering it as written. It is worth
pointing out that Eq. 4 is independent of the nuisance
parameter b; however, the contour of lα which pro-
vides an acceptance region of size α is not necessarily
independent of b. It is also worth pointing out that
θ̂r and θ̂s do not consider the null hypothesis – if they
did, the region in which l = 1 may be larger than
(1 −α). Finally, if one uses θs instead of θ̂s or ˆ̂θs, one
will not obtain tests which are approximately similar.

6. AN EXAMPLE

Let us consider the case when the nuisance param-
eter is the expected number of background events b
and M is an auxiliary measurement of b. Further-
more, let us assume that we have a absolute prediction
of the number of signal events s. For our test statis-
tic we choose the number of events observed x which
is Poisson distributed with mean µ = b for H0 and
µ = s + b for H1. In the construction there are no as-
sumptions about L(M |H0, b) – it could be some very
complicated shape relating particle identification effi-
ciencies, Monte Carlo extrapolation, etc. In the case
where L(M |H0, b) is a Poisson distribution, other so-
lutions exist (see Section 8). For our example, let us
take L(M |H0, b) to be a Normal distribution centered
on b with standard deviation ∆b, where ∆ is some
relative systematic error. Additionally, let us assume
that we can factorize L(x, M |H, b) = L(x|H, b)L(M |b)
(where H is either H0 or H1).

For our example problem, we can re-write the or-
dering rule in Eq. 4 as

l =
L(x, M |H0,

ˆ̂b)
L(x, M |H1, b̂)

, (5)
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measurement given the null hypothesis with nuisance
parameter b. In Section 8 we address the special case
that L(M |H0, b) is a Poisson distribution.

4. THE NEYMAN-CONSTRUCTION

Usually one does not consider an explicit Neyman
construction when performing hypothesis testing be-
tween two simple hypotheses; though one exists im-
plicitly. Because of the presence of the nuisance pa-
rameter, the implicit Neyman construction must be
made explicit and the dimensionality increased. The
basic idea is that for each value of the nuisance param-
eters θs, one must construct an acceptance interval
(for H0) in a space which includes their correspond-
ing auxiliary measurements M , and the original test
statistic x which was being used to test H0 against
H1.

For the simple case introduced in the previous sec-
tion, this requires a three-dimensional construction
with b, M , and x. For each value of b, one must
construct a two-dimensional acceptance region Wb of
size α (under H0). If an experiment’s data (x0, M0)
fall into an acceptance region Wb, then one cannot
exclude the null hypothesis with 100(1 − α)% confi-
dence. Conversely, to reject the null hypothesis (i.e.
claim a discovery) the data must not lie in any ac-
ceptance region Wb. Said yet another way, to claim
a discovery, the confidence interval for the nuisance
parameter(s) must be empty (when the construction
is made assuming the null hypothesis).

5. THE ORDERING RULE

The basic criterion for discovery was discussed ab-
stractly in the previous section. In order to provide
an actual calculation, one must provide an ordering
rule: an algorithm which decides how to chose the re-
gion Wb. Recall, that there the constraint on Type I
error does not uniquely specify an acceptance region
for H0. In the Neyman-Pearson lemma, it is the al-
ternate hypothesis H1 that breaks the symmetry be-
tween possible acceptance regions. Also in the unified
approach, it is the likelihood ratio that is used as an
ordering rule [2].

At the Workshop on conference limits at FermiLab,
Feldman showed that Unified Method with Nuisance
Parameters is in Kendall’s Theory (the chapter on
likelihood ratio tests & test efficiency) [3]. The nota-
tion used by Kendall is given in Table I. Also, Kendall
identifies H0 with θr = θr0 and H1 with θr ̸= θr0.

Let us briefly quote from Kendall:
“Now consider the Likelihood Ratio

l =
L(x|θr0,

ˆ̂θs)
L(x|θ̂r, θ̂s)

(4)

Variable Meaning
θr physics parameters
θs nuisance parameters
θ̂r, θ̂s unconditionally maximize L(x|θ̂r, θ̂s)
ˆ̂θs conditionally maximize L(x|θr0,

ˆ̂θs)

Table I The notation used by Kendall for likelihood tests
with nuisance parameters

Intuitively l is a reasonable test statistic
for H0: it is the maximum likelihood un-
der H0 as a fraction of its largest possible
value, and large values of l signify that H0
is reasonably acceptable.”

Feldman uses this chapter as motivation for the pro-
file method (see Section 9), though in Kendall’s book
the same likelihood ratio is used as an ordering rule
for each value of the nuisance parameter.

The author tried simple variations on this order-
ing rule before rediscovering it as written. It is worth
pointing out that Eq. 4 is independent of the nuisance
parameter b; however, the contour of lα which pro-
vides an acceptance region of size α is not necessarily
independent of b. It is also worth pointing out that
θ̂r and θ̂s do not consider the null hypothesis – if they
did, the region in which l = 1 may be larger than
(1 −α). Finally, if one uses θs instead of θ̂s or ˆ̂θs, one
will not obtain tests which are approximately similar.

6. AN EXAMPLE

Let us consider the case when the nuisance param-
eter is the expected number of background events b
and M is an auxiliary measurement of b. Further-
more, let us assume that we have a absolute prediction
of the number of signal events s. For our test statis-
tic we choose the number of events observed x which
is Poisson distributed with mean µ = b for H0 and
µ = s + b for H1. In the construction there are no as-
sumptions about L(M |H0, b) – it could be some very
complicated shape relating particle identification effi-
ciencies, Monte Carlo extrapolation, etc. In the case
where L(M |H0, b) is a Poisson distribution, other so-
lutions exist (see Section 8). For our example, let us
take L(M |H0, b) to be a Normal distribution centered
on b with standard deviation ∆b, where ∆ is some
relative systematic error. Additionally, let us assume
that we can factorize L(x, M |H, b) = L(x|H, b)L(M |b)
(where H is either H0 or H1).

For our example problem, we can re-write the or-
dering rule in Eq. 4 as

l =
L(x, M |H0,

ˆ̂b)
L(x, M |H1, b̂)

, (5)
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H i s t o r i c a l  C o n t e x t

•In late 1990s and early 2000s, HEP was using neural networks (mainly shallow MLPs).  

• Decision trees were growing in popularity (a topic at PhyStat 2003) 

• Support Vector Machines and Vapnik’s Statistical Learning Theory were becoming 
very popular  

• Provided formal guarantees, unique solutions, etc. 

• VC Dimension captured intuitive notion that very flexible models can overfit  

• John Koza introduced Genetic Programming  

• Discrete optimization / search over expressions  

•Comparing these for HEP was one of my first ML projects  

• … and we still called it “multivairate analysis” 😆
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with the likelihood ratio. Because the
methods are not directly concerned
with minimizing the rate of Type
II error, they should be considered
indirect methods. Furthermore, the
asymptotic equivalence breaks down
in most applications, and the indi-
rect methods are no longer optimal.
Neural Networks, Kernel Estimation
techniques, and Support Vector Ma-
chines all represent indirect solutions
to the search for new particles. The
Genetic Programming approach is a
direct method concerned with opti-
mizing a user-defined performance
measure.

5 Statistical Learning Theory

In 1979, Vapnik provided a re-
markable family of bounds relating
the performance of a learning ma-
chine and its generalization capac-
ity [17]. The capacity, or Vapnik-
Chervonenkis dimension (VCD) is
a property of a set of functions, or
learning machines, {f(v⃗;α)}, where
α is a set of parameters for the learn-
ing machine [18].

In the two-class pattern recogni-
tion case considered in this paper,
an event x is classified by a learn-
ing machine such that f(v⃗;α) ∈
{signal, background}. Given a set of
l events each represented by v⃗i, there
are 2l possible permutations of them
belonging to the class signal or back-
ground. If for each permutation there
exists a member of the set {f(v⃗;α)}
which correctly classifies each event,
then we say the set of points is shat-
tered by that set of functions. The

Fig. 5. The VCD for a line in R2 is 3.

VCD for a set of functions {f(v⃗;α)}
is defined as the maximum number
of points which can be shattered by
{f(v⃗;α)}. If the VCD is h, it does
not mean that every set of h points
can be shattered, but that there ex-
ists some set of h points which can
be shattered. For example, a hyper-
plane in Rn can shatter n + 1 points
(see Fig. 5 for n = 2).

In the modern theory of machine
learning, the performance of a learn-
ing machine is usually cast in the
more pessimistic setting of risk. In
general, the risk, R, of a learning
machine is written as

R(α) =
∫

Q(v⃗, y;α) p(v⃗, y) dv⃗dy

(1)
where Q measures some notion of
loss between f(v⃗;α) and the tar-
get value y. For example, when
classifying events, the risk of mis-
classification is given by Eq. 1 with
Q(v⃗, y;α) = |y − f(v⃗;α)|. Simi-
larly, for regression tasks one takes
Q(v⃗, y;α) = (y − f(v⃗;α))2. Most of
the classic applications of learning
machines can be cast into this for-
malism; however, searches for new
particles place some strain on the
notion of risk [3, 4].

The starting point for statistical
learning theory is to accept that we

8
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•Discussed high-level strategies: 

• Indirect: Optimize an objective that yields a well-motivated  
function (e.g. approximate likelihood ratio) 

• Argue that the resulting classifier should be close to optimal 

• Direct: optimize expected discovery significance  

• Objective can include systematic uncertainty! 

•Genetic Programming / Symbolic Regression: 

• Search through space of cuts / summary statistics expressed symbolically 
using genetic programming 

• Interpretable. Less prone to overfitting (low VC dimension) 

•Hypothesis Testing & Statistical Learning Theory: 

• Expressed Neyman-Pearson in terms of Risk 

• Discussion of VC dimension for NNs, SVMs, symbolic cuts
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Multivariate Analysis from a Statistical Point of View
K.S. Cranmer
University of Wisconsin-Madison, Madison, WI 53706, USA

Multivariate Analysis is an increasingly common tool in experimental high energy physics; however, many of the
common approaches were borrowed from other fields. We clarify what the goal of a multivariate algorithm should
be for the search for a new particle and compare different approaches. We also translate the Neyman-Pearson
theory into the language of statistical learning theory.

1. INTRODUCTION

Multivariate Analysis is an increasingly common
tool in experimental high energy physics; however,
most of the common approaches were borrowed from
other fields. Each of these algorithms were developed
for their own particular task, thus they look quite dif-
ferent at their core. It is not obvious that what these
different algorithms do internally is optimal for the the
tasks which they perform within high energy physics.
It is also quite difficult to compare these different al-
gorithms due to the differences in the formalisms that
were used to derive and/or document them. In Sec-
tion 2 we introduce a formalism for a Learning Ma-
chine, which is general enough to encompass all of
the techniques used within high energy physics. In
Sections 3 & 4 we review the statistical statements
relevant to new particle searches and translate them
into the formalism of statistical learning theory. In
the remainder of the note, we look at the main re-
sults of statistical learning theory and their relevance
to some of the common algorithms used within high
energy physics.

2. FORMALISM

Formally a Learning Machine is a family of func-
tions F with domain I and range O parametrized by
α ∈ Λ. The domain can usually be thought of as, or
at least embedded in, Rd and we generically denote
points in the domain as x. The points x can be re-
ferred to in many ways (e.g. patterns, events, inputs,
examples, . . . ). The range is most commonly R, [0, 1],
or just {0, 1}. Elements of the range are denoted by
y and can be referred to in many ways (e.g. classes,
target values, outputs, . . . ). The parameters α spec-
ify a particular function fα ∈ F and the structure of
α ∈ Λ depends upon the learning machine [1, 2].

In the modern theory of machine learning, the per-
formance of a learning machine is usually cast in the
more pessimistic setting of risk. In general, the risk,
R, of a learning machine is written as

R(α) =
∫

Q(x, y;α) p(x, y)dxdy (1)

where Q measures some notion of loss between fα(x)
and the target value y. For example, when classifying
events, the risk of mis-classification is given by Eq. 1
with Q(x, y;α) = |y−fα(x)|. Similarly, for regression1

tasks one takes Q(x, y;α) = (y − fα(x))2. Most of
the classic applications of learning machines can be
cast into this formalism; however, searches for new
particles place some strain on the notion of risk.

3. SEARCHES FOR NEW PARTICLES

The conclusion of an experimental search for a new
particle is a statistical statement – usually a decla-
ration of discovery or a limit on the mass of the hy-
pothetical particle. Thus, the appropriate notion of
performance for a multivariate algorithm used in a
search for a new particle is that performance mea-
sure which will maximize the chance of declaring a
discovery or provide the tightest limits on the hypo-
thetical particle. In principle, it should be a fairly
straight-forward procedure to use the formal statis-
tical statements to derive the most appropriate per-
formance measure. This procedure is complicated by
the fact that experimentalists (and statisticians) can-
not settle on a formalism to use (i.e. Bayesians vs.
Frequentists). As an example, let us consider the Fre-
quentist theory developed by Neyman and Pearson [3].
This was the basis for the results of the search for the
Standard Model Higgs boson at LEP [4].

The Neyman-Pearson theory (which we review
briefly for completeness) begins with two Hypothe-
ses: the null hypothesis H0 and the alternate hypoth-
esis H1 [3]. In the case of a new particle search H0
is identified with the currently accepted theory (i.e.
the Standard Model) and is usually referred to as the
“background-only” hypothesis. Similarly, H1 is iden-
tified with the theory being tested usually referred to
as the “signal-plus-background” hypothesis

1During the presentation, J. Friedman did not distinguish
between these two tasks; however, in a region with p(x, 1) = b
and p(x, 0) = 1 − b, the optimal f(x) for classification and
regression differ. For classification, f(x) = {1 if b > 1/2, else 0},
and for regression the optimal f(x) = b.
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(a) (b)

(d)(c)

Fig. 2. An example of crossover. At
some given generation, two parents (a)
and (b) are chosen for a crossover mu-
tation. Two subtrees, shown in bold,
are selected at random from the par-
ents and are swapped to produce two
children (c) and (d) in the subsequent
generation.

to abstract syntax trees that might
be generated by a compiler as an in-
termediate representation of a com-
puter program. An example of such a
tree is shown in Fig. 2a which corre-
sponds to a cut |4.2v1 + v2/1.5| < 1.
Leafs are either constants or one of
the input variables. Nodes are simple
arithmetic operators: addition, sub-
traction, multiplication, and safe di-
vision 2 .When an individual is pre-
sented with an event, each expression
tree is evaluated to produce a num-
ber. If all these numbers lie within the
range (−1, 1), the event is considered
signal. Otherwise the event is classi-
fied as background.

Initial trees are built using the PTC1
algorithm described in [6]. After each
generation, the trees are modified by

2 Safe division is used to avoid division
by zero.

mutation and crossover. Mutation
comes in two flavors. In the first, a
randomly chosen expression in an in-
dividual is scaled or translated by a
random amount. In the second kind
of mutation, a randomly chosen sub-
tree of a randomly chosen expression
is replaced with a randomly gener-
ated expression tree using the same
algorithm that is used to build the
initial trees.

While mutation plays an important
rôle in maintaining genetic diversity
in the population, most new individ-
uals in a particular generation result
from crossover. The crossover opera-
tion takes two individuals, selects a
random subtree from a random ex-
pression from each, and exchanges
the two. This process is illustrated in
Fig. 2.

3.2 Recentering

Some expression trees, having been
generated randomly, may prove to
be useless since the range of their
expressions over the domain of their
inputs lies well outside the interval
(−1, 1) for every input event. When
an individual classifies all events
in the same way (signal or back-
ground), each of its expressions is
translated to the origin for some ran-
domly chosen event exemplar v⃗0, viz.
f(v⃗) → f(v⃗) − f(v⃗0). This modifi-
cation is similar to, and thus reduces
the need for, normalizing input vari-
ables.

4

ar
X

iv
:p

hy
sic

s/0
40

20
30

v1
  [

ph
ys

ic
s.d

at
a-

an
]  

5 
Fe

b 
20

04

PhysicsGP:AGenetic ProgrammingApproach

to Event Selection

Kyle Cranmer a R. Sean Bowman b

aCERN, CH-1211 Geveva, Switzerland

bOpen Software Services, LLC, Little Rock, Arkansas, USA

Abstract

We present a novel multivariate classification technique based on Genetic Program-
ming. The technique is distinct from Genetic Algorithms and offers several advan-
tages compared to Neural Networks and Support Vector Machines. The technique
optimizes a set of human-readable classifiers with respect to some user-defined per-
formance measure. We calculate the Vapnik-Chervonenkis dimension of this class
of learning machines and consider a practical example: the search for the Stan-
dard Model Higgs Boson at the LHC. The resulting classifier is very fast to eval-
uate, human-readable, and easily portable. The software may be downloaded at:
http://cern.ch/∼cranmer/PhysicsGP.html

Key words: Genetic Programming, Triggering, Classification, VC Dimension,
Genetic Algorithms, Neural Networks, Support Vector Machines

1 Introduction

The use of multivariate algorithms
in the search for particles in High
Energy Physics has become quite
common. Traditionally, a search can
be viewed from a classification point
of view: from a tuple of physical mea-
surements (i.e., momenta, energy,
etc.) we wish to classify an event as
signal or background. Typically, this
classification is realized through a
Boolean expression or cut designed
by hand. The high dimensionality of
the data makes this problem diffi-
cult in general and favors more so-

phisticated multivariate algorithms
such as Neural Networks, Fisher Dis-
criminants, Kernel Estimation Tech-
niques, or Support Vector Machines.
This paper focuses on a Genetic Pro-
gramming approach and considers a
specific example: the search for the
Higgs Boson at the LHC.

The use of Genetic Programming for
classification is fairly limited; how-
ever, it can be traced to the early
works on the subject by Koza [1].
More recently, Kishore et al. ex-
tended Koza’s work to the multicat-
egory problem [2]. To the best of the
authors’ knowledge, the work pre-
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•For PhyStat 2005 and 2007, my focus was mainly on statistical procedures and 
software for the LHC (RooFit, RooStats, profile likelihood ratio, asymptotics, 
HistFactory, workspaces, etc.) 
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