Model misspecification meets ML: a HEP perspective

Alexander Held¹

¹ University of Wisconsin-Madison

PHYSTAT - Statistics meets ML https://indico.cern.ch/event/1407421/ Sep 12, 2024

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreements OAC-1836650 and PHY-2323298.

The big picture

take-away message: Histogram-based density estimation is a popular and effective technique in HEP.

Big picture: turning collisions into publications

• What we want: statements about physical parameters θ , given data x collected by an experiment

• connection: the likelihood $L_x(\theta) = p(x \mid \theta)$ — key ingredient for all subsequent statistical inference

observations *x*

statements about parameters θ

An intractable likelihood function

• We need $p(x \mid \theta)$ — unfortunately this very high-dimensional integral is *intractable*, cannot evaluate this

$$p(x \mid \theta) = \int dz_D dz_S dz_P p(x \mid z_D) p(z_D \mid z_S) p(z_S \mid z_P) p(z_P \mid \theta)$$

Density estimation & summary statistics

• There is one thing we *can* do: **simulate samples** $x_i \sim p(x \mid \theta)$

• use MC samples to estimate the density $p(x \mid \theta)$, e.g. by filling histograms with the samples x_i

• Histograms are hit by the curse of dimensionality

• number of samples x_i needed scales exponentially with dimension of observation

- We use **summary statistics** to reduce dimensionality of our measurements
 - operate on objects like jets instead of detector channel responses
 - use physicists & machine learning to efficiently compress information
- Challenge: finding the right low-dimensional summary statistic crucial for sensitivity

Model building in practice: the HistFactory example

take-away message: We are used to building statistical models with a lot of structure. This makes them easier to develop, debug & use.

Different styles of measurements

simulation-based template histograms, binned

analytic functions, sometimes unbinned

• Template histogram approach is more common, will focus on this here

• also in practice have cases without (or with only a partial) good simulation-based model

A measurement: primary and auxiliary observables

• Our models are a combination of primary and auxiliary measurements $p_{primary}(\vec{x} \mid \vec{\nu}) \cdot p_{aux}(\vec{a})$

• auxiliary: both experimental (e.g. detector calibration) and theory (e.g. changes in simulation)

The HistFactory model: overview

- HistFactory is a statistical model for binned template fits (CERN-OPEN-2012-016)
 - prescription for constructing probability density functions (pdfs) from small set of building blocks
 - covers a wide range of use cases (and can be extended if needed)
 - here: primary observables are \vec{n} , auxiliary observables are \vec{a}

The model prediction: $\nu_i(\vec{k}, \vec{\theta})$

• The prediction in each bin is a sum of all contributing samples, e.g. $\nu_i = \mu \cdot S_i(\vec{\theta}) + B_i(\vec{\theta})$

- template histograms are obtained from our simulator chain
- samples correspond to different kinds of collision processes
- nuisance parameters $\vec{\theta}$ affect the model prediction

Systematic variations

• Need to model $\nu(\vec{k}, \vec{\theta})$ for any value of nuisance parameters $\vec{\theta}$ encoding systematic uncertainties

- Ideal case: just run simulator for any value of $\vec{\theta}$
 - not computationally feasible in practice
- Instead: pick some values & interpolate
 - in practice we use on-axis variations
 - variations typically are "one at a time"
- Lots of assumptions here that we rely on in practice
 - where to simulate
 - interpolation choice
 - effects factorize

Systematic variations

• Need to model $\nu(\vec{k}, \vec{\theta})$ for any value of nuisance parameters $\vec{\theta}$ encoding systematic uncertainties

 θ_2 • Ideal case: just run simulator for any value of θ new unseen point • not computationally feasible in practice $\nu(\theta_2)$ via interpolation Instead: pick some values & interpolate in practice we use on-axis variations variations typically are "one at a time" nominal simulation • Lots of assumptions here that we rely on in practice where to simulate interpolation choice $\nu(\theta_1)$ via interpolation simulation with alternative θ effects factorize

Interpolating between points

- Use model prediction $\nu_i(\vec{k}, \vec{\theta})$ for three points θ , **interpolate to generalize**
 - interpolation is typically "vertical", other approaches exist (but more specialized)
 - note: information about statistical uncertainties in varied templates is lost here (arXiv:1809.05778)

toy example: distributions for $\theta = -1, 0, +1$

interpolation approach is technically relatively simple ⇒ limit risk of surprises ⇒ "warm fuzzy feeling" (<u>lesse</u> Thaler's talk)

interpolation in one bin

Complication: two-point systematics

- Sometimes have cases where variations in simulator chain are discrete
 - e.g. choice of one simulator vs alternative
- Typical treatment: interpolate to treat as continuous, symmetrize
 - Iots of assumptions here, but need to make a choice to profile
- Especially tricky to deal with when these play a large role
 - concerns about overly constraining uncertainty of nuisance parameter
 - best-fit model prediction may lie away from both choices

two-point systematics are inherently problematic and deserve special attention

modeling choices for main background of ttH(bb)

The HistFactory model: structure

structure helps with tooling and with debugging

HistFactory models are highly structured

channels subsets of data

samples different contributions to a channel

modifiers acting on the samples

Physics analysis design & ML / AI

take-away message: Analysis design is an iterative process, often guided by mismodeling concerns. ML unlocks many capabilities but can require special consideration. Despite the connotations of machine learning and artificial intelligence as a mysterious and radical departure from traditional approaches, we stress that machine learning has a mathematical formulation that is closely tied to statistics, the calculus of variations, approximation theory, and optimal control theory.

[PDG ML review by Cranmer, Seljak, Terao]

Modeling ducks

What is "good enough"?

• We know our simulators are imperfect: just need them to be **good enough** for our specific needs

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck. [If it looks like data, it's a sufficiently good simulator?]

[DALL·E 3 take on the topic]

Model misspecification & analysis design

• We have a lot of **great simulators** — which we also sometimes **push to their limits**

• may not always trust samples from simulators to model the full joint distribution $\vec{x}_i \sim p(\vec{x} \mid \theta)$

• In practice

- restrict to subset of \vec{x} space / select only specific events
- use specific and few summary statistics
 - ensure good modeling, often by visual inspection*
- many detailed design choices that vary by analysis

An iterative process

- Designing an analysis is an iterative process with interconnected decisions to be made
 - which subset of \vec{x} space / events do I use
 - which summary statistics / kinematic observables do I use
 - which uncertainty model is suitable
 - conscious choice how to design signal / control regions
 - blind analysis, validation of observables

Examples requiring further model updates

- "Constraining" nuisance parameters: primary observables allow better measuring of nuisance parameters
 - general concern: may underestimate uncertainties due to (local?) model misspecification
 - try to locate & understand source of effect
 - traditional setup: usually analysis split up into "regions" / "channels"
 - neural SBI & other ML methods: may want to consider similar splits
 - typical operation: replace single nuisance parameter by multiple parameters
 - may imply another round of training for SBI setups

Special consideration is given to the correlation of modelling uncertainties across different p_T^H bins, in order to provide the fit with enough flexibility to cover background mismodelling without biasing the signal extraction. The $t\bar{t} + \ge 1b$ NLO matching uncertainty is shown to depend on p_T^H and is therefore decorrelated across p_T bins in the SRs.

Analysis pipeline and tooling

• Fast turnaround to develop analysis and adjust when changes are needed is important to speed up publication

- is a new & expensive ML model training needed?
- do multiple people need to coordinate workflow steps?
- Good tooling should not be an afterthought: it is crucial to help make your great ML ideas accessible

ML with high-level inputs

• In this picture the ML step is "just a function", conceptually the same as a hand-crafted summary statistic

• can propagate uncertainties through it and validate modeling of inputs

ML with low-level inputs

- ML remains "just a function", but good modeling becomes harder to validate with lower-level inputs
 - does the simulator correctly capture correlations?
 - are we learning a bug in the simulator code? (\rightarrow desire for interpretability*)
 - are suitable calibration & uncertainties available for the inputs?

Systematics + ML: wrong vs suboptimal

• Model misspecification and (lack of) systematic uncertainties can make our results wrong and / or suboptimal

Avoiding wrong results

- incorporate and propagate all relevant sources of systematic uncertainty through chain
 - requires understanding which sources are relevant

Striving towards optimal results

- possible limitations due to training dataset size, model capacity, domain shift
- e.g. "are we using a good summary statistic?"
- often ML training + systematic uncertainties are factorized, generally non-optimal
 - instead: e.g. data augmentation, parameterized models, ... [e.g. Kyle Cranmer's talk yesterday]

Reweighting for background estimates

- Example from a di-Higgs analysis: learn reweighting for background estimate
 - need to propagate a statistical uncertainty here
 - deep ensembles with bootstrap to achieve this
- Similar idea to handle finite training statistics in Aishik Ghosh's talk yesterday

apply reweighting (derived with independent observables)

variation in prediction from bootstrap

SBI, differentiable physics analysis and beyond

take-away message: Some very interesting open questions left to answer!

Systematic uncertainties & SBI

- Propagating effects of systematic uncertainties through neural SBI setups can be challenging
 - room for new ideas
- Fully parameterize all effects
 - parameterize O(100) effects of variations, learn full dependency
 - any guarantees for interpolation / extrapolation behavior?
 - how to capture & address potential statistical fluctuations? regularization?
- Need to carefully validate that parameterization works well
 - e.g. classifier: nominal events reweighted with $r(x \mid \theta)$ vs simulated variation

Differentiable programming for physics analysis

• A differentiable analysis pipeline would allow **optimizing physics analysis parameters** ϕ **via gradient descent**

• what is the right loss function? can we do this in a manner that is robust to mismodeling?

• Exploration of differentiation of parts of this pipeline has been ongoing for a while

see e.g. <u>Artur Monsch's talk yesterday</u>, <u>INFERNO</u>, <u>neos</u>

The future?

- Increasingly many possible directions for how to do physics analysis with ML in the future
 - consider: how well do we understand relevant modeling & uncertainties, how and where can we validate that
 - · lots of promise in newer approaches like neural SBI, but also some challenges to overcome

Backup

Systematic uncertainties with HistFactory

- Common systematic uncertainties specified with two template histograms
 - "up variation": model prediction for $\theta = +1$
 - "down variation": model prediction for $\theta = -1$
 - interpolation & extrapolation provides model predictions ν for any $\vec{\theta}$
- Gaussian constraint terms used to model auxiliary measurements (in most cases)
 - centered around nuisance parameter (NP) θ_i
 - normalized width ($\sigma = 1$) and mean (auxiliary data $a_i = 0$)
 - Penalty for pulling NP away from best-fit auxiliary measurement value

$$p(\vec{n}, \vec{a} \mid \vec{k}, \vec{\theta}) = \prod_{i} \operatorname{Pois}(n_i \mid \nu_i(\vec{k}, \vec{\theta})) \cdot \prod_{j} c_j(a_j \mid \theta_j)$$

