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The big picture

take-away message:
Histogram-based density estimation is a popular and effective technique in HEP.



Big picture: turning collisions into publications

* What we want: statements about physical parameters ¢, given data x collected by an experiment

> connection: the likelihood L (6) = p(x | @) — key ingredient for all subsequent statistical inference

observations x statements about parameters ¢
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An intractable likelihood function

* We need p(x | ) — unfortunately this very high-dimensional integral is intractable, cannot evaluate this

p(x16)= |dzpdzgdzp p (x| 2p)p (2p | 25)P (25 | 2p) P (20 | 6)

parton level 2, parton shower z; detector interaction 7, observables x
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The dependence on
parameters 0 is here.

HEP 0902 (2009) 007 CERN-EX-1301009
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Density estimation & summary statistics

* There is one thing we can do: simulate samples x; ~ p(x | @) /

> use MC samples to estimate the density p(x | €), e.g. by filling histograms with the samples x;
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* We use summary statistics to reduce dimensionality of our measurements / of g
af =
> operate on objects like jets instead of detector channel responses of ™
.. . . .. . . 0 e ” —
> use physicists & machine learning to efficiently compress information 110 120 130 140 150 160

m, [GeV]

* Challenge: finding the right low-dimensional summary statistic — crucial for sensitivity
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Model building in practice: the HistFactory example

take-away message:
We are used to building statistical models with a lot of structure.
This makes them easier to develop, debug & use.



Different styles of measurements

analytic functions, sometimes unbinned simulation-based template histograms, binned
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* Template histogram approach is more common, will focus on this here

> also in practice have cases without (or with only a partial) good simulation-based model
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A measurement: primary and auxiliary observables

primary observables x auxiliary observables d
auxiliary

measurement 2

A

(o] lugo] signal

region 2 region

control region 1 auxiliary
K measurement 1 J
>
data in our analysis calibration measurements + theory

(assumed to be statistically independent)

» Our models are a combination of primary and auxiliary measurements p,,.... ., (X | V) - p,,,(@)

> auxiliary: both experimental (e.g. detector calibration) and theory (e.g. changes in simulation)

Alexander Held 8




The HistFactory model: overview

» HistFactory is a statistical model for binned template fits (CERN-OPEN-2012-016)

> prescription for constructing probability density functions (pdfs) from small set of building blocks
> covers a wide range of use cases (and can be extended if needed)

> here: primary observables are 7, auxiliary observables are a

primary term auxiliary term
unconstrained
parameters, e.g. POI prediction (summed constraint term (e.g.
observed data l over samples) Gaussian)

W " b |
p@v i | k,0) = [TPoistn, | vk, 0) - [T e, 1 6)
j ;

auxiliary data, e.g. from

calibration measurement ~ constrained nuisance

parameters product over all bins
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https://cds.cern.ch/record/1456844

The model prediction: vk, 0)

* The prediction in each bin is a sum of all contributing samples, e.q.v; =y - Si(é) + Bi(é)

» template histograms are obtained from our simulator chain
» samples correspond to different kinds of collision processes

* nuisance parameters ¢ affect the model prediction

prediction (summed
observed data over samples)

! !

p(ii,d | k,0) = HPOls(n | vk, 0)) - Hc(a | 0)

!

unconstrained
parameters, e.g. POI
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Systematic variations

* Need to model 1/(%, 5) for any value of nuisance parameters 6 encoding systematic uncertainties

* Ideal case: just run simulator for any value of ¢

* not computationally feasible in practice

* Instead: pick some values & interpolate

> in practice we use on-axis variations

> variations typically are “one at a time” ‘

/

nominal simulation

‘_>(9

* Lots of assumptions here that we rely on in practice

» where to simulate

>

> interpolation choice . o .
simulation with alternative 0 v(6y) via interpolation

> effects factorize
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Systematic variations

* Need to model 1/(%, 5) for any value of nuisance parameters 6 encoding systematic uncertainties

0
- 2 .
* Ideal case: just run simulator for any value of ¢ ' new unseen point
1
* not computationally feasible in practice o ) T ! /
v(6,) via interpolation ory
,
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* Instead: pick some values & interpolate i .
1
> in practice we use on-axis variations .
1
> variations typically are “one at a time” ‘ ; ‘_>9
/ | 1
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* Lots of assumptions here that we rely on in practice nominal simulation '
1
> where to simulate '
+— , —>
» interpolation choice . ——-b‘ . :
simulation with alternative ¢ v(6)) via interpolation
> effects factorize
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Inte rp O I ati n g b Etwee n p O i ntS interpolation approach is technically

relatively simple
= |imit risk of surprises
= “warm fuzzy feeling” (Jesse

* Use model prediction v;(k, 0) for three points ¢, interpolate to generalize Thalers oll)

» interpolation is typically “vertical”, other approaches exist (but more specialized)

* note: information about statistical uncertainties in varied templates is lost here (arXiv:1809.05778)

toy example: distributions ford = -1, 0, + 1 interpolation in one bin
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Complication: two-point systematiCS [ wo-point systematics are

inherently problematic and
deserve special attention

* Sometimes have cases where variations in simulator chain are discrete

> e.g. choice of one simulator vs alternative modeling choices for main background of ttH(bb)
g 0-4@;I ' —:ATLASPPStf_bE = -
—— ATLAS PH?7 ttbb =
g 03" _____ .. ATLAS PP tibb dipole 3 9
. . . . 2 03 -- ATLASPP8 tibb h,s2 7
* Typical treatment: interpolate to treat as continuous, symmetrize £ - — ATLAS Sherpatibh 3 §
: I
> lots of assumptions here, but need to make a choice to profile 02 — Amas EIS
0.15 15=13 TeV, = 4b, > 4j =
0.1 Dilepton channel Hlo
0.05 — E
* Especially tricky to deal with when these play a large role o 15 - - E
ot R RRARRRE 3
> concerns about overly constraining uncertainty of nuisance parameter £2 £ e o s b e
E gosp - — _;
> best-fit model prediction may lie away from both choices 1 5 6 7 8 9 =10
N.
jets
“anti”-PH7? PP8 PH7
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symmetrize ‘ nature?
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https://cds.cern.ch/record/2812088

The HistFactory model: structure [wuctre heips with tooling

and with debugging
« HistFactory models are highly structured
channels samples modifiers
subsets of data different contributions to a channel acting on the samples
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Physics analysis design & ML [ Al

take-away message:
Analysis design is an iterative process, often guided by mismodeling concerns.
ML unlocks many capabilities but can require special consideration.

16



Despite the connotations of machine learning and artificial intelligence as a mysterious and
radical departure from traditional approaches, we stress that machine learning has a mathematical
formulation that is closely tied to statistics, the calculus of variations, approximation theory, and

optimal control theory.
[PDG ML review by Cranmer, Seljak, Terao]
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M Od eI | ng d u CkS What is “good enough”?

* We know our simulators are imperfect: just need them to be good enough for our specific needs

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.
[If it looks like data, it's a sufficiently good simulator?]

[DALL-E 3 take on the topic]
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Model misspecification & analysis design

* We have a lot of great simulators — which we also sometimes push to their limits

* may not always trust samples from simulators to model the full joint distribution x; ~ p(xX | )

* In practice
* restrict to subset of X space / select only specific events
> use specific and few summary statistics
- ensure good modeling, often by visual inspection®

» many detailed design choices that vary by analysis

X; used
in
analysis

space of
all x;

*not uncommon to regularly look at 100s of 1d histogram stacks
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An iterative process

* Designing an analysis is an iterative process with interconnected decisions to be made / ' \
X; used in analysis

> which subset of X space / events do I use

» which summary statistics [ kinematic observables do I use control signal

. . . . i 2 H
» which uncertainty model is suitable region el

> conscious choice how to design signal / control regions

- blind analysis, validation of observables control region 1
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Examples requiring further model updates

+ “Constraining” nuisance parameters: primary observables allow better measuring of nuisance parameters

* general concern: may underestimate uncertainties due to (local?) model misspecification
A
> try to locate & understand source of effect

- traditional setup: usually analysis split up into “regions” / “channels” control signal
region 2 region
- neural SBI & other ML methods: may want to consider similar splits

> typical operation: replace single nuisance parameter by multiple parameters

- may imply another round of training for SBI setups

>

Special consideration is given to the correlation of modelling uncertainties across different p!r" bins, in
order to provide the fit with enough flexibility to cover background mismodelling without biasing the
signal extraction. The ¢ + >1b NLO matching uncertainty is shown to depend on p? and is therefore
decorrelated across pt bins in the SRs.

L6 (220¢) 90 d3HI
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23/

Analysis pipeline and tooling

* Fast turnaround to develop analysis and adjust when changes are needed is important to speed up publication
> is a new & expensive ML model training needed?

> do multiple people need to coordinate workflow steps?

* Good tooling should not be an afterthought: it is crucial to help make your great ML ideas accessible

2 damle
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Input Feature
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i) NG 3 ﬁ https://agc.readthedocs.io/
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https://agc.readthedocs.io/

ML with high-level inputs

non-ML approach (e.g. jet py)

histogram-based

calibrated physics

simulated events ]
objects

model building

propagate uncertainties

ML from high-

[ 4
level observables (e.g. AR) ﬂ D

histogram-based

calibrated physics
objects

simulated events higher level

observables model building

propagate uncertainties validate modeling, e.g. in CR

* In this picture the ML step is “just a function”, conceptually the same as a hand-crafted summary statistic

* can propagate uncertainties through it and validate modeling of inputs
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ML with low-level inputs
ML from high-

level observables ﬂ. m

calibrated physics higher level histogram-based

simulated events e
objects observables model building

validate modeling, e.g. in CR
ML from low-
level observables

L4

. h
. calibrated physics , histogram-based
Simulatedievents objects > 1 model, other SBI :
‘. --------- "

validate modeling (incl. correlations) validate modeling, e.g. in CR

* ML remains “just a function”, but good modeling becomes harder to validate with lower-level inputs
> does the simulator correctly capture correlations?
> are we learning a bug in the simulator code? (— desire for interpretability*)

> are suitable calibration & uncertainties available for the inputs?

“not just to feel warm and fuzzy, but safe against bugs
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Systematics + ML: wrong vs suboptimal

« Model misspecification and (lack of) systematic uncertainties can make our results wrong and / or suboptimal

* Avoiding wrong results
> incorporate and propagate all relevant sources of systematic uncertainty through chain family of ,,(x)

- requires understanding which sources are relevant

* Striving towards optimal results

> possible limitations due to training dataset size, model capacity, domain shift

> e.g. “are we using a good summary statistic?”

target f(x)
» often ML training + systematic uncertainties are factorized, generally non-optimal

- instead: e.g. data augmentation, parameterized models, ... [e.g. Kyle Cranmer's talk yesterday]
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Reweighting for background estimates
A

* Example from a di-Higgs analysis: learn reweighting for background estimate

* need to propagate a statistical uncertainty here

> deep ensembles with bootstrap to achieve this

learn
reweighting

« Similar idea to handle finite training statistics in Aishik Ghosh's talk yesterday

apply reweighting
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SBI, differentiable physics analysis and beyond

take-away message:
Some very interesting open questions left to answer!
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Systematic uncertainties & SBI

* Propagating effects of systematic uncertainties through neural SBI setups can be challenging

» room for new ideas
detector uncertainty Q

parameter of interest

* Fully parameterize all effects

» parameterize O(100) effects of variations, learn full dependency . ,
> any guarantees for interpolation / extrapolation behavior? 7 \\
* how to capture & address potential statistical fluctuations? regularization? ?

Do T

> b piecewise exponential
E quadratic-interp, linear extrap
F —— poly-interp, expo extrap

* Need to carefully validate that parameterization works well

> e.g. classifier: nominal events reweighted with 7 (x | #) vs simulated variation

4 needtobeabletorely 3

0.4f  oninter-/extrapolation -
0.2f 3
| FEEN N ST FUETE N S P
2 45 1 05 0 05 1 15 2

S
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Differentiable programming for physics analysis

+ A differentiable analysis pipeline would allow optimizing physics analysis parameters ¢ via gradient descent

» what is the right loss function? can we do this in a manner that is robust to mismodeling?

F

F T T
= 1_15; ATLAS Run2

1.10F

-------------==... E 3
---- - 1.05F E
.., = 1.00? ¥ —
— = — —p o
V\’ 0907 f
0.851~ —
common inputs 080f \ ‘ L
0.95 1.00 1.05 1.10 1.15
o _ analysis results
object reconstruction b :
‘ analysis
¢I’€(’()
* Exploration of differentiation of parts of this pipeline has been ongoing for a while
> see e.g. Artur Monsch's talk yesterday, INFERNO, neos
29
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The future?

* Increasingly many possible directions for how to do physics analysis with ML in the future
> consider: how well do we understand relevant modeling & uncertainties, how and where can we validate that

> lots of promise in newer approaches like neural SBI, but also some challenges to overcome

|¢1 I 4)2

a )
theory D . theory
—_— >
giig | -_.
—_—

\D 5 4
\_ J

physics + targeted ML ‘ ' “maximalist”
(+ differentiable programming pipeline?) everything is one big network

inspired by: L. Heinrich, ACAT 2024
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Backup
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Systematic uncertainties with HistFactory

« Common systematic uncertainties specified with two template histograms
> “up variation”: model prediction for 0 = + 1
> “down variation”: model prediction for 0 = -1

» interpolation & extrapolation provides model predictions v for any 6

* Gaussian constraint terms used to model auxiliary measurements (in most cases)
> centered around nuisance parameter (NP) ¢,
* normalized width (¢ = 1) and mean (auxiliary data a; = 0)

> penalty for pulling NP away from best-fit auxiliary measurement value

-

prediction for one bin

pGia | k,0) = [ [ Pois(, | vk, 0)) - [ [ efa; 16)  —»
i j
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