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Learned harmonic mean estimator

Estimator of the Bayesian evidence

Use with any MCMC sampler or on 
saved down chains

harmonic Python package
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Model comparison

What model best describes the universe?

ΛCDM or wCDM?
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Overview

Problem Harmonic mean estimator of Bayesian evidence for model selection is known to fail catastrophically since its variance can explode.
Solution Present learned harmonic mean estimator to solve the large variance of original estimator. Interpret harmonic mean estimator as importance sampling

and introduce new target distribution. New target distribution is learned using normalizing flows concentrated so that target is contained within the posterior.
Code Learned harmonic mean estimator is implemented in the harmonic software package (https://github.com/astro-informatics/harmonic.git).

Learned harmonic mean

Bayesian model selection:

I Posterior distribution of parameters ✓ 2 ⇥
given data y

P (✓|y,M) =

Likelihoodz }| {
P (y|✓,M)

Priorz }| {
P (✓|M)

P (y|M)| {z }
Bayesian Evidence

=
L(✓)⇡(✓)

z

where z is the Bayesian evidence

z = P(y|M) =

Z
d✓ L(✓)⇡(✓).

I Estimate evidence for model comparison.

Original harmonic mean [1]:

I Harmonic mean estimator:

⇢ = EP (✓|y)


1

L(✓)

�
=

1

z
.

I Agnostic to sampling method.
I Can fail catastrophically due to large variance.

Re-targeted harmonic mean [2]:

I Introduce alternative target distribution '(✓)
with thinner tails than posterior:

⇢ = EP (✓|y)


'(✓)

L(✓)⇡(✓)

�
.

I Interpret as importance sampling, with
sampling density given by posterior and target '.

Learned target distribution [3]:

I Optimal target is the posterior but requires z
to be known, which is precisely quantity
estimating.
I Train a machine learning model of the target
distrubtion  ML on samples of the posterior:

 ML ⇡  optimal(✓) =
L(✓)⇡(✓)

z
.

I Don’t require accurate approximation but do
require learned model to be contained within
posterior ! bespoke optimisation problem to
learn target while minimising variance of the
estimator.
I Extended to simulation-based inference (SBI),
when an explicit likelihood is unavailable of infea-
sible [4].

Concentrating the probability density with normalizing flows

I This work [5]: Use normalizing flows in
learned harmonic mean estimator for
robustness and potential for scalability.

I Train real NVP flow [6] on samples from
posterior distribution ! Normalized
approximation of posterior.

I Introduce flow temperature parameter T .
Scale base distribution’s variance to
concentrate probability density, ensuring target
is contained within the posterior.

I Eliminate the need for bespoke training
approach in [3]. Robust algorithm with no
need for fine-tuning.

Rosenbrock

I Rosenbrock function exhibits a narrow
curving degeneracy. Challenging to explore
the posterior sufficiently to evaluate the
marginal likelihood.

I Learned harmonic mean estimator highly
accurate.

Pathological prior insensitivity: Normal-Gamma model

I Original harmonic mean estimator
insensitive to prior ⌧0 selection, i.e. a
pathological failure [7].

I Learned harmonic mean estimator
accurate and sensitive to prior.
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In the Bayesian framework probability distributions provide a 
quantification of uncertainty.
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Which model to choose?

Bayesian evidence tells us which 
scientific model  is more plausible

Very useful but hard to compute!

𝑀!

𝑀"

𝑀 =	?
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Estimator of evidence (Newton and Raftery, 1994)
 

It’s agnostic to sampling 
method ⟶  It’s flexible  But…. fails catastrophically
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Why does it fail?

6 Learnt harmonic mean estimator

articles that consider a variety of methods to estimate the marginal likelihood
have also found that the harmonic mean estimator is not robust and can be
highly inaccurate (Clyde et al, 2007; Friel and Wyse, 2012). To understand why
the estimator can lead to extremely large variance we consider an importance
sampling interpretation of the harmonic mean estimator.

2.1.1 Importance sampling interpretation

The harmonic mean estimator can be interpreted as importance sampling.
Consider the reciprocal marginal likelihood, which may be expressed in terms
of the prior and posterior by

⇢ =

Z
d✓

1

L(✓)
P(✓ | y) (9)

=

Z
d✓

1

z

⇡(✓)

P(✓ | y)
P(✓ | y) . (10)

It is clear the estimator has an importance sampling interpretation where the
importance sampling target distribution is the prior ⇡(✓), while the sampling
density is the posterior P(✓ | y), in contrast to typical importance sampling
scenarios.

For importance sampling to be e↵ective, one requires the sampling density
to have fatter tails than the target distribution, i.e. to have greater probability
mass in the tails of the distribution. Typically the prior has fatter tails than the
posterior since the posterior updates our initial understanding of the underly-
ing parameters ✓ that are encoded in the prior, in the presence of new data y.
For the harmonic mean estimator the importance sampling density (the pos-
terior) typically does not have fatter tails than the target (the prior) and so
importance sampling is not e↵ective. This explains why the original harmonic
mean estimator can be problematic. A number of variants of the original har-
monic mean estimator have been introduced in an attempt to address this
issue.

2.2 Adjusted harmonic mean estimator

Lenk (2009) show that while the original harmonic mean estimator is con-
sistent, in practice it exhibits simulation pseudo-bias. Simulation pseudo-bias
arises since the posterior simulation support is a subset of the prior support.
Consequently, the prior is not su�ciently captured, which often results in an
over-estimate of the marginal likelihood.

An adjusted harmonic mean estimator is introduced by Lenk (2009) to
correct for simulation pseudo-bias:

⇢̂ =
1

P(⇤)

1

N

NX

i=1

1

L(✓i)
, ✓i ⇠ P(✓ | y) , (11)

Can be interpreted as importance sampling

Target density

Sampling density

Target density has fatter 
tails than sampling density

Harmonic mean estimator fails 
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Learned harmonic mean estimator

is learned from posterior samples
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Code Learned harmonic mean estimator is implemented in the harmonic software package (https://github.com/astro-informatics/harmonic.git).

Learned harmonic mean

Bayesian model selection:

I Posterior distribution of parameters ✓ 2 ⇥
given data y

P (✓|y,M) =

Likelihoodz }| {
P (y|✓,M)

Priorz }| {
P (✓|M)

P (y|M)| {z }
Bayesian Evidence

=
L(✓)⇡(✓)

z

where z is the Bayesian evidence

z = P(y|M) =

Z
d✓ L(✓)⇡(✓).

I Estimate evidence for model comparison.

Original harmonic mean [1]:

I Harmonic mean estimator:

⇢ = EP (✓|y)


1

L(✓)

�
=

1

z
.

I Agnostic to sampling method.
I Can fail catastrophically due to large variance.

Re-targeted harmonic mean [2]:

I Introduce alternative target distribution '(✓)
with thinner tails than posterior:

⇢ = EP (✓|y)


'(✓)

L(✓)⇡(✓)

�
.

I Interpret as importance sampling, with
sampling density given by posterior and target '.

Learned target distribution [3]:

I Optimal target is the posterior but requires z
to be known, which is precisely quantity
estimating.
I Train a machine learning model of the target
distrubtion  ML on samples of the posterior:

 ML ⇡  optimal(✓) =
L(✓)⇡(✓)

z
.

I Don’t require accurate approximation but do
require learned model to be contained within
posterior ! bespoke optimisation problem to
learn target while minimising variance of the
estimator.
I Extended to simulation-based inference (SBI),
when an explicit likelihood is unavailable of infea-
sible [4].

Concentrating the probability density with normalizing flows

I This work [5]: Use normalizing flows in
learned harmonic mean estimator for
robustness and potential for scalability.

I Train real NVP flow [6] on samples from
posterior distribution ! Normalized
approximation of posterior.

I Introduce flow temperature parameter T .
Scale base distribution’s variance to
concentrate probability density, ensuring target
is contained within the posterior.

I Eliminate the need for bespoke training
approach in [3]. Robust algorithm with no
need for fine-tuning.

Rosenbrock

I Rosenbrock function exhibits a narrow
curving degeneracy. Challenging to explore
the posterior sufficiently to evaluate the
marginal likelihood.

I Learned harmonic mean estimator highly
accurate.

Pathological prior insensitivity: Normal-Gamma model

I Original harmonic mean estimator
insensitive to prior ⌧0 selection, i.e. a
pathological failure [7].

I Learned harmonic mean estimator
accurate and sensitive to prior.
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Introduce learned harmonic mean estimator (McEwen et al., 2021) :

is learned from posterior samples
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Requires bespoke training 
approach and fine-tuning

Use normalizing flows to 
solve these issues!

(Polanska et al., 2024)
arXiv:2405.05969

Alicja Polanska



Normalizing flows

0 1 𝑖 − 1 𝑖 𝑘

Adapted from lilianweng.github.io/posts/2018-10-13-flow-models

Normalizing flows take a simple base distribution through a series of 
reversible transformations to approximate a complex distribution

We use real non-volume preserving and rational-quadratic spline flows
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Concentrating the target distribution

We train a flow on samples from the 
posterior and introduce temperature 

parameter 𝑇 to concentrate the 
probability density

The base distribution variance is scaled by

0 < 𝑇 < 1
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Learned harmonic mean estimator

Train normalizing flow on posterior samples

Concentrate probability density

Use concentrated flow as

Evidence estimate
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Overview

Problem Harmonic mean estimator of Bayesian evidence for model selection is known to fail catastrophically since its variance can explode.
Solution Present learned harmonic mean estimator to solve the large variance of original estimator. Interpret harmonic mean estimator as importance sampling

and introduce new target distribution. New target distribution is learned using normalizing flows concentrated so that target is contained within the posterior.
Code Learned harmonic mean estimator is implemented in the harmonic software package (https://github.com/astro-informatics/harmonic.git).

Learned harmonic mean

Bayesian model selection:

I Posterior distribution of parameters ✓ 2 ⇥
given data y

P (✓|y,M) =

Likelihoodz }| {
P (y|✓,M)

Priorz }| {
P (✓|M)

P (y|M)| {z }
Bayesian Evidence

=
L(✓)⇡(✓)

z

where z is the Bayesian evidence

z = P(y|M) =

Z
d✓ L(✓)⇡(✓).

I Estimate evidence for model comparison.

Original harmonic mean [1]:

I Harmonic mean estimator:

⇢ = EP (✓|y)


1

L(✓)

�
=

1

z
.

I Agnostic to sampling method.
I Can fail catastrophically due to large variance.

Re-targeted harmonic mean [2]:

I Introduce alternative target distribution '(✓)
with thinner tails than posterior:

⇢ = EP (✓|y)


'(✓)

L(✓)⇡(✓)

�
.

I Interpret as importance sampling, with
sampling density given by posterior and target '.

Learned target distribution [3]:

I Optimal target is the posterior but requires z
to be known, which is precisely quantity
estimating.
I Train a machine learning model of the target
distrubtion  ML on samples of the posterior:

 ML ⇡  optimal(✓) =
L(✓)⇡(✓)

z
.

I Don’t require accurate approximation but do
require learned model to be contained within
posterior ! bespoke optimisation problem to
learn target while minimising variance of the
estimator.
I Extended to simulation-based inference (SBI),
when an explicit likelihood is unavailable of infea-
sible [4].

Concentrating the probability density with normalizing flows

I This work [5]: Use normalizing flows in
learned harmonic mean estimator for
robustness and potential for scalability.

I Train real NVP flow [6] on samples from
posterior distribution ! Normalized
approximation of posterior.

I Introduce flow temperature parameter T .
Scale base distribution’s variance to
concentrate probability density, ensuring target
is contained within the posterior.

I Eliminate the need for bespoke training
approach in [3]. Robust algorithm with no
need for fine-tuning.

Rosenbrock

I Rosenbrock function exhibits a narrow
curving degeneracy. Challenging to explore
the posterior sufficiently to evaluate the
marginal likelihood.

I Learned harmonic mean estimator highly
accurate.

Pathological prior insensitivity: Normal-Gamma model

I Original harmonic mean estimator
insensitive to prior ⌧0 selection, i.e. a
pathological failure [7].

I Learned harmonic mean estimator
accurate and sensitive to prior.
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Learned harmonic mean estimator

Accurate

Robust

Scalable

Our method provides a tool for Bayesian model comparison that is: 

16

Flexible
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harmonic software

1github.com/astro-informatics/harmonic

harmonic Python package1 has been made 
available in the new release of harmonic on 
PyPi and GitHub
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Rosenbrock example
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Outline of this talk

1. Learned harmonic mean estimator
2. High-dimensional model comparison for cosmology
3. Accelerated model comparison for gravitational waves
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High-dimensional model comparison for cosmology

20

 Emulation (CosmoPower-JAX)
+

Differentiable and probabilistic programming
+

Scalable sampling (NUTS)
+

Decoupled and scalable evidence (harmonic)
=

The future of cosmological likelihood-based inference…
(Piras et al., 2024) arXiv:2405.12965

Alicja Polanska

Piras and Spurio Mancini, 2023



High-dimensional model comparison for cosmology

21

Method Δ	 log 𝑧 Computation time

CAMB + Nested sampling 0.78 ± 0.79 8 months on 48 CPUs

CosmoPower-JAX + NUTS +  
harmonic

1.53$%.%'%.%' 2 days on 12 GPUs

ΛCDM vs 𝑤"𝑤#CDM in 37/39D

Alicja Polanska



High-dimensional model comparison for cosmology
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Method Δ	 log 𝑧 Computation time

CAMB + Nested sampling Not feasible Estimated 12 years 
on 48 CPUs

CosmoPower-JAX + NUTS +  
harmonic

1.9$%.(%.' 8 days on 24 GPUs

ΛCDM vs 𝑤"𝑤#CDM in 157/159D

Alicja Polanska



Outline of this talk

1. Learned harmonic mean estimator
2. High-dimensional model comparison for cosmology
3. Accelerated model comparison for gravitational waves
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Accelerated model comparison for gravitational waves

24Alicja Polanska

Accelerated differentiable gravitational 
waveform models (Jim)

+
Normalizing-flow assisted sampling (flowMC)

+
Decoupled and scalable evidence (harmonic)

Wong et al., 2023a,b



Accelerated model comparison for gravitational waves

25

Method log 𝑧 Computation time

Nested sampling 390.33 ± 0.11 31.3 min on 16 CPUs

Jim + harmonic 390.360	$%.%%)%.%%) 5.3 min on 1 GPU

Alicja Polanska

Evidence for simulated GW event in 4D 



Accelerated model comparison for gravitational waves

26Alicja Polanska

Evidence for simulated GW event in 11D 

Method log 𝑧 Computation time

Nested sampling 378.29 ± 0.15 3.5 h on 16 CPUs

Jim + harmonic 378.420	$%.%*%.%+ 14.2 min on 1 GPU



Summary: Learned harmonic mean

27

Accurate: based on a principled statistical framework

Robust: no fine-tuning

Scalable: analysis in 159 dimensions 

Flexible: use with any MCMC sampler, saved down chains, or any variational 
inference approach…

Method to estimate the evidence that is

Alicja Polanska



Summary: Learned harmonic mean
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Accurate: based on a principled statistical framework

Robust: no fine-tuning

Scalable: analysis in 159 dimensions 

Flexible: use with any MCMC sampler, saved down chains, or any variational 
inference approach…

Method to estimate the evidence that is

… or your application!
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DES Y1 Example
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Repeat DES Y1 3x2pt analysis from (Campagne et al., 2023) 
with harmonic

ΛCDM vs wCDM in 20D

Method Δ	 log 𝑧 Computation time

Nested sampling 2.23 ± 0.64 94h on 64 CPU

harmonic 2.15 ± 0.01 16h on 64CPU + 16min
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