Normalizing flows for machine learning assisted Bayesian model comparison

Alicja Polanska, Matthew A. Price, Davide Piras, Alessio Spurio Mancini and Jason D. McEwen

Learned harmonic mean estimator

Estimator of the Bayesian evidence

Use with any MCMC sampler or on saved down chains

harmonic Python package

github.com/astro-informatics/harmonic

Outline of this talk

- 1. Learned harmonic mean estimator
- 2. High-dimensional model comparison for cosmology
- 3. Accelerated model comparison for gravitational waves

Outline of this talk

1. Learned harmonic mean estimator

- 2. High-dimensional model comparison for cosmology
- 3. Accelerated model comparison for gravitational waves

Model comparison

What model best describes the universe?

ΛCDM or wCDM?

Bayesian model comparison Bayesian model comparison

In the Bayesian framework probability distributions provide a

interaction of weaptainty quantification of uncertainty. y dictribution[.]
Waliotribution

Which model to choose?

Bayesian evidence tells us which scientific model is more plausible

Very useful but hard to compute!

Harmonic mean estimator original harmonic means and contributed.

Sumator of Evidence (Newton and Narter) Estimator of evidence (Newton and Raftery, 1994)

$$
\rho = \mathbb{E}_{P(\theta|\mathbf{y})} \left[\frac{1}{\mathcal{L}(\theta)} \right] = \frac{1}{z}
$$

It's agnostic to sampling

and let's agnostic to sampling R -targeted harmonic means $\frac{1}{2}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ But.... fails catastrophically method \rightarrow It's flexible

Why does it fail?

 ϵ and he interpreted as impertance sempling $\frac{1}{2}$ the posterior by $\frac{1}{2}$ Can be interpreted as importance sampling

Target density has fatter tails than sampling density

Harmonic mean estimator fails

Learned harmonic mean estimator $\overline{}$ I Can fail catastrophically due to large variance. L earned harmonic mear althonic Intraduction of the target distribution of σ

rget density $\varnothing(\theta)$ (Gelfand and Dev 1994) Introduce arbitrary normalized target density $\varphi(\theta)$ (Gelfand and Dey, 1994) ↑ carget acris ity $\varphi(\theta)$ (G) *.*

$$
\rho = \mathbb{E}_{P(\theta|\mathbf{y})}\left[\frac{1}{\mathcal{L}(\theta)}\right] = \frac{1}{z} \qquad \rho = \mathbb{E}_{P(\theta|\mathbf{y})}\left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)}\right]
$$

Learned harmonic mean estimator I Can fail catastrophically due to large variance. Learned target distribution [3]: I Agnostic to sampling method. Re-targeted harmonic mean [2]: I Catalander due to large variance.

Introduce learned harmonic mean estimate with the posterior: estimation of the state of the s
Equator of the state Introduce learned harmonic mean estimator (McEwen et al., 2021) :

> $\varphi(\theta)$ is learned from posterior samples *.* $\varphi(\theta)$ is learned from posterior samples $\mathcal{L}(\mathcal{L})$ distribution measurements of the positive of the posterior:

$$
\psi^{\sf ML}\approx\psi^{\sf optimal}(\theta)=\frac{{\cal L}(\theta)\pi(\theta)}{z}
$$

$$
\rho = \mathbb{E}_{P(\theta|\mathbf{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right]
$$

Learned harmonic mean estimator I Agnostic to sampling method. I Can fail catastrophically due to large variance. Learned target distribution [3]: I Catalander due to large variance. Re-targeted harmonic mean [2]:

Introduce learned harmonic mean estimator (McEwen et al., 2021) : Introduce learned harmonic mean estimate with the posterior: estimation of the state of the s
Equator of the state of the state

> $\varphi(\theta)$ is learned from posterior samples *.* $\varphi(\theta)$ is learned from posterior samples $\mathcal{L}(\mathcal{L})$ distribution measurements of the positive of the posterior:

$$
\psi^{\sf ML}\approx\psi^{\sf optimal}(\theta)=\frac{{\cal L}(\theta)\pi(\theta)}{z}
$$

$$
\rho = \mathbb{E}_{P(\theta|\mathbf{y})} \left[\frac{\varphi(\theta)}{\mathcal{L}(\theta)\pi(\theta)} \right]
$$

 $r_{\rm c}$ require learned with the contained with \sim $\left(\begin{array}{cc} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)$ approach and fine-tuning supproach and the turning Requires bespoke training approach and fine-tuning

Sample density density density density density of the USE normalizing flows to solve these issues!

I Optimal target is the posterior but requires *z arXiv:2405.05969 (Polanska et al., 2024)*

Normalizing flows

Normalizing flows take a simple base distribution through a series of reversible transformations to approximate a complex distribution

Adapted from lilianweng.github.io/posts/2018-10-13-flow-models

We use real non-volume preserving and rational-quadratic spline flows

Concentrating the target distribution

We train a flow on samples from the posterior and introduce temperature parameter T to concentrate the probability density

The base distribution variance is scaled by

 $0 < T < 1$

Learned harmonic mean estimator Original harmonic mean [1]: ed harmonic me Rosenbrock

Train normalizing flow on posterior samples rior! = *z .*

Learned harmonic mean estimator

Our method provides a tool for Bayesian model comparison that is:

harmonic software

harmonic Python package¹ has been made available in the new release of harmonic on PyPi and GitHub

1github.com/astro-informatics/harmonic

Rosenbrock example

Outline of this talk

- 1. Learned harmonic mean estimator
- 2. High-dimensional model comparison for cosmology
- 3. Accelerated model comparison for gravitational waves

High-dimensional model comparison for cosmology

Piras and Spurio Mancini, 2023

Emulation (CosmoPower-JAX) + Differentiable and probabilistic programming + Scalable sampling (NUTS) + Decoupled and scalable evidence (*harmonic) =*

The future of cosmological likelihood-based inference… (Piras et al., 2024) arXiv:2405.12965

High-dimensional model comparison for cosmology

 Λ CDM vs $w_0 w_a$ CDM in 37/39D

High-dimensional model comparison for cosmology

 Λ CDM vs w_0w_a CDM in 157/159D

Outline of this talk

- 1. Learned harmonic mean estimator
- 2. High-dimensional model comparison for cosmology
- 3. Accelerated model comparison for gravitational waves

Accelerated model comparison for gravitational waves

Wong et al., 2023a,b

Accelerated differentiable gravitational waveform models (Jim)

+

Normalizing-flow assisted sampling (flowMC)

+

Decoupled and scalable evidence (*harmonic)*

Accelerated model comparison for gravitational waves

Evidence for simulated GW event in 4D

Accelerated model comparison for gravitational waves

Evidence for simulated GW event in 11D

Summary: Learned harmonic mean

Method to estimate the evidence that is

Accurate: based on a principled statistical framework

Robust: no fine-tuning

Flexible: use with any MCMC sampler, saved down chains, or any variational inference approach…

Summary: Learned harmonic mean

Method to estimate the evidence that is

Accurate: based on a principled statistical framework

Robust: no fine-tuning

Scalable: analysis in 159 dimensions

- **Flexible:** use with any MCMC sampler, saved down chains, or any variational inference approach…
	- … or your application!

References

Jason D. McEwen, Christopher G. R. Wallis, Matthew A. Price, and Alessio Spurio Mancini. Machine learning ass
mean estimator, 2023 arXiv:2111.12720

Michael A. Newton and Adrian E. Raftery. Approximate Bayesian inference with the weighted likelihood bootstical
(Methodological), 56(1):3–26, 1994.

Davide Piras and Alessio Spurio Mancini. CosmoPower-JAX: high-dimensional Bayesian inference with differential
Astrophysics, 6, June 2023. ISSN 2565-6120.

Davide Piras and Alicja Polanska and Alessio Spurio Mancini and Matthew A. Price and Jason D. McEwen. 'The f accelerated high-dimensional parameter estimation and model comparison', https://arxiv.org/abs/2405.12965

Alicja Polanska, Matthew A. Price, Davide Piras, Alessio Spurio Mancini, and Jason D. McEwen. 'Learned Harmo
Normalizing Flows'. arXiv [Astro-Ph.IM], 9 May 2024. arXiv. http://arxiv.org/abs/2405.05969.

Kaze W. K. Wong, Maximiliano Isi, and Thomas D. P. Edwards. Fast Gravitational-wave Parameter 183 Estimation

Kaze W. K. Wong, Marylou Gabri., and Daniel Foreman-Mackey. flowMC: Normalizing flow enhanced sampling p
Softw., 8(83):5021, 2023.

A. Spurio Mancini, M. M. Docherty, M. A. Price, and J. D. McEwen. Bayesian model comparison for simulation-based inference. And μ

DES Y1 Example

Repeat DES Y1 3x2pt analysis from (Campagne et al., 2023) with harmonic

ΛCDM vs wCDM in 20D

 $b₅$

