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Characteristics of (good) physical models

•Follow from explicitly enumerable set of assumptions and physical principles

•Leads to mathematical models that can be solved (analytically/numerically) to yield useful 
predictions (deterministically/probabilistically). 

•Explainable (rooted in cause-effect relationships grounded in domain knowledge.) 

•Generalises beyond initial domain to explain wider range of phenomena. 

•Compresses information: explains wide range of phenomena from minimal set of ingredients 
(~Occam's razor.) 

•Domain of validity can be quantified explicitly.



My definitions

(i) interpretability: account for why ML system reaches particular decision or prediction; 
  
(ii) explainability: map this account onto existing knowledge in relevant science domain.

•Currently challenging because of  “black box” nature of ML architectures.  

•Many physical models satisfy my list of characteristics only partially, e.g. systems exhibiting 
emergent phenomena, chaotic systems.
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Figure 2. A slice of the baryon density, temperature, H I number density,
and flux from the L20 N2048 simulation at z = 2.5. The slice covers the
domain of 20 x 20 h�1Mpc, with a thickness of about 100 h�1kpc (10 cells).
Note that the F line of sight is the y-axis direction, so that broadened lines
show up as vertical black streaks.

2.2 Included Physics

Besides solving for gravity and the Euler equations, we model the
chemistry of the gas as having a primordial composition with hy-
drogen and helium mass abundances of X = 0.75, and Y = 0.25,
respectively. The choice of values is in agreement with the recent
CMB observations and Big Bang nucleosynthesis (Coc, Uzan &
Vangioni 2013). The resulting reaction network includes 6 atomic
species: H I, H II, He I, He II, He III and e�, which we evolve under
the assumption of ionization equilibrium. The resulting system of
algebraic equations is:
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in addition, there are three closure equations for the conservation
of charge and hydrogen and helium abundances. Radiative recom-
bination (ar,X), dielectronic recombination (ad,X), and collisional
ionization (Ge,X) rates are strongly dependent on the temperature,
which itself depends on the ionization state through the mean mass
per particle µ

T =
2
3

mp

kB
µ eint (6)

where mp is the mass of a proton, kB is the Boltzmann con-
stant, and eint is the internal thermal energy per mass of the gas.
Here we assume adiabatic index for monoatomic ideal gas. For

a gas composed of only hydrogen and helium, µ is related to
the number density of free electrons relative to hydrogen by µ =
1/ [1� (3/4)Y +(1�Y )ne/nH]. We iteratively solve the reaction
network equations together with the ideal gas equation of state,
p = 2/3reint, to determine the temperature and equilibrium dis-
tribution of species.

We compute radiative cooling as in Katz, Weinberg & Hern-
quist (1996), and assume a spatially uniform, but time-varying ul-
traviolet background (UVB) radiation field from either Faucher-
Giguère et al. (2009) or Haardt & Madau (2012). We do not follow
radiation transport through the box, nor do we explicitly account
for the effects of thermal feedback of stars, quasars, or active galac-
tic nuclei; all cells are assumed to be optically thin, and radiative
feedback is accounted for via the UVB model. In addition, we in-
clude inverse Compton cooling off the microwave background. For
the exact rates used in the Nyx code and comparison of two UV
backgrounds we refer the reader to Appendix A.

2.3 Simulated Spectra

The optical depth t for Lya photon scattering is

tn =
Z

nXsn dr (7)

where n is the frequency, nX is the number density of species X,
sn is the cross section of the interaction, and dr is the proper path
length element. For our current work, we assume a Doppler line
profile, so the resulting optical depth is
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where DnD = (b/c)n0 is the Doppler width with the Doppler pa-
rameter b = bthermal =

p
2kBT/mH, and f12 is the upward oscilla-

tor strength of the Lya resonance transition of frequency n0. See
Appendix B for a more detailed discussion of our optical depth cal-
culation, including the discretization of Equation (8).

We choose sightlines, or “skewers”, crossing the domain par-
allel to one of the axes of the simulation grid and piercing the cell
centers. Computationally, this is the most efficient approach. This
choice of rays avoids explicit ray-casting and any interpolation of
the cell-centered data, which introduce other numerical and peri-
odicity issues. We cover the entire N3 grid with skewers, which
provides the equivalent of N2 spectra. Although large-scale modes
along different spatial dimensions are statistically independent al-
lowing some gain in statistics from multiple viewing directions, in
this work we use a single line-of-sight axis rather than combining
together skewers using all 3 axes. The process of going from simu-
lated baryon values to flux F is illustrated in Figure 1.

3 PHYSICAL PROPERTIES OF THE LYa FOREST

Zhang et al. (1998) discuss the physical properties of the Lya forest
in hierarchical models such as CDM. The discussion in this section
can largely be considered as an update of that work.

As described above, the state of the IGM is relatively sim-
ple with a few power laws approximately tying together the spatial
distribution of baryon density, temperature, proper H I number den-
sity, and optical depth to H I Lya photon scattering. Figure 2 shows
a slice of these quantities in one of our high-resolution simulations,
except with the optical depth replaced by the transmitted flux. We
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Emulation:  
ML-accelerated forward-
modelling of observables

Simulation-based optimisation:  
 data-driven calibration of high-
dimensional generative models

Explainable AI:  
machine-assisted knowledge extraction

Solving cosmological modelling challenges with machine learning

See Luisa Lucie-Smith talk
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Adapted from Justin Alsing

Photometric catalogues require redshift estimation

Blanton et al. (2003) Loureiro et al. (2023)



Key idea: learn joint distribution of 
galaxy properties over cosmic history

Figure: Hubble Ultra Deep Field

Machine learning models can accurately describe 
this complicated web of interdependencies



Recipe for making galaxy spectra and colours

• mass
• star formation history
• dust
• gas
• metallicity
• active galactic nuclei
• redshift

…



Model galaxy spectra using stellar population synthesis

add up light from all the stars (at their ages and metallicities)

dust absorption 
and emission nebular emission, 

gas physics

CONROY, GUNN AND WHITE (2009), CONROY AND GUNN (2010)



Speeding things up with neural emulators

Emulating spectra

16-parameter SPS model | sub-percent accuracy  | factors x 10^4 speed-up | differentiable

Emulating photometry

ALSING, PEIRIS, LEJA, HAHN, TOJEIRO, MORTLOCK, LEISTEDT, JOHNSON, CONROY (APJS, 2020) 



Flexible neural models for distribution of galaxy properties

score-based diffusion model

Gaussian distribution

learn transformation that degrades 
target distribution to Gaussian noise

draw from random distribution: 
invert learned transformation to 
sample from target distribution

~Brownian motion

~reverse Brownian motion

t=0 t=T

SONG AND ERMON (2019), SONG+ (2020A,B)



WEAVER ET AL (2021), ALSING ET AL (2022, APJS), LEISTEDT ET AL. (2022, APJS), ALSING ET AL (2024,APJS) 

Pop-Cosmos: galaxy population model 
calibrated with COSMOS2020

~140,000 galaxies  | 26 bands near-UV to mid-IR | deep z < 4 | simple selection r<25

Zero-point calibration | emission line corrections | Student-t uncertainty model



 
Solving explicit parametric BHM intractable even in principle

forward model of dataset = selection x data model x population model
intractable no good parametric model



SPS parameters noiseless fluxes noisy fluxes

selection

SPS emulator data model

TOY MODEL SIMULATION BY JUSTIN ALSING

Learning the galaxy population model

Equivalent to data-driven calibration of population prior in hierarchical Bayes



Pop-Cosmos: a generative model for galaxy surveys

- First time full joint density of galaxy properties has 
been estimated from large galaxy catalogue

- Can predict properties (incl. redshift distribution) 
of any catalogue of comparable / shallower depth

- Bonus: information on full galaxy population over 
cosmic time

ALSING ET AL (2022, APJS), LEISTEDT ET AL. (2022, APJS), ALSING ET AL (2024, APJS), THORP ET AL (2024, APJ)  

Pop-Cosmos prediction for COSMOS2020 redshift distribution



Forward-modelling other catalogues

SPS parameters noiseless fluxes

SPS emulator

ADAPTED FROM STEPHEN THORP

+ new noise model

+ selection

GAMA

LSST

KiDS



Full Bayesian SED fitting of large photometric catalogues

THORP ET AL (2024, APJ)  

15 GPU-sec / galaxy under pop-cosmos prior |  
0.6 GPU-sec /  galaxy under Prospector prior.

https://zenodo.org/records/13627489

- Demonstration analysis of ~300,000 
COSMOS2020 galaxies — 3 x larger than 
previously possible under full SPS prior, with 
modest GPU requirements.

- Comparison: FSPS under Prospector  
25 CPU-hrs / galaxy



Data-space validation of high-dimensional generative model

THORP ET AL (2024, APJS SUBMITTED)  

Validated using magnitude marginals, 
densities in colour pairs, and PP and QQ 
plots in PCA projections



Pop-Cosmos as a prior for galaxy photo-z inference 

THORP ET AL (2024, APJ)  

Validate where “ground truth” known Validate against state-of-the-art



Quality of individual redshifts

THORP ET AL (2024, APJ)  

less biased

smaller errors

fewer outliers

Validate with standard domain-specific metrics



Bonus: information on full galaxy population over cosmic time

star forming sequence metallicity dust

ALSING ET AL (APJS, 2024)

Validate against domain knowledge for key population properties in lower-dimensional projections



Mass-completeness of pop-cosmos

DEGER ET AL (IN PREP)

Establish explicit domain of validity for pop-cosmos so we know when we are extrapolating



Extrapolation to redshifts of IRAC1<26 galaxies

THORP ET AL (APJ, 2024)

Test generalisation of model to deeper selection of COSMOS2020 galaxies



Characteristics of pop-cosmos generative model

✓Follow from explicitly enumerable set of assumptions and physical principles

✓Leads to mathematical models that can be solved (analytically/numerically) to yield useful 
predictions (deterministically/probabilistically). 

✓Explainable (rooted in cause-effect relationships grounded in domain knowledge.) 

✓Generalises beyond initial domain to explain wider range of phenomena. 

✓Compresses information: explains wide range of phenomena from minimal set of 
ingredients (~Occam's razor.) 

✓Domain of validity can be quantified explicitly.



For more details
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