

pop-cosmos

investigating the explainability of a high-dimensional, data-driven generative model in cosmology

European Research Council Established by the European Commission

Hiranya V. Peiris

UNIVERSITY OF CAMBRIDGE



accuracy

precision

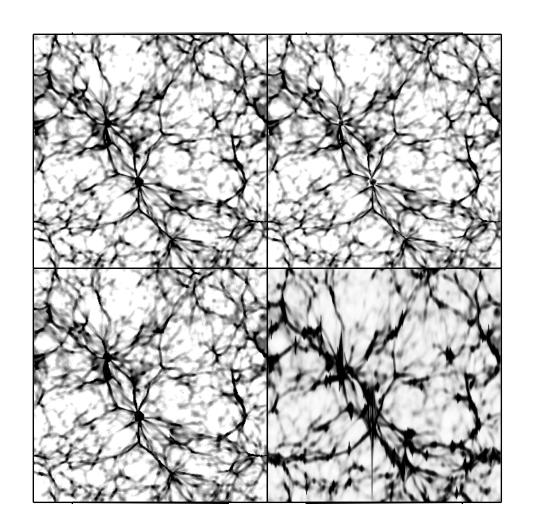
Characteristics of (good) physical models

- Follow from explicitly enumerable set of assumptions and physical principles
- Leads to mathematical models that can be solved (analytically/numerically) to yield useful predictions (deterministically/probabilistically).
- **Explainable** (rooted in cause-effect relationships grounded in domain knowledge.)
- Generalises beyond initial domain to explain wider range of phenomena.
- Compresses information: explains wide range of phenomena from minimal set of ingredients (~Occam's razor.)
- **Domain of validity** can be quantified explicitly.

My definitions

- (i) interpretability: account for why ML system reaches particular decision or prediction;
- (ii) explainability: map this account onto existing knowledge in relevant science domain.
- Currently challenging because of "black box" nature of ML architectures.
- Many physical models satisfy my list of characteristics only partially, e.g. systems exhibiting emergent phenomena, chaotic systems.

Solving cosmological modelling challenges with machine learning





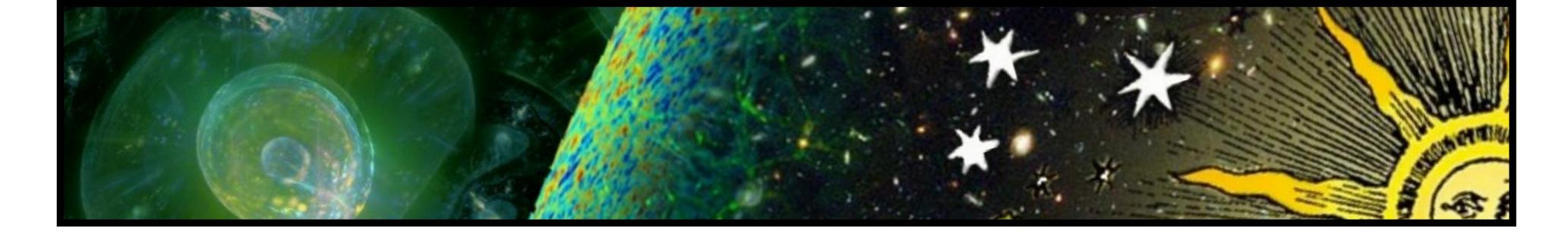
Emulation: ML-accelerated forwardmodelling of observables

data-driven calibration of highdimensional generative models

Simulation-based optimisation:

Explainable AI: machine-assisted knowledge extraction

See Luisa Lucie-Smith talk



pop-cosmos team

Justin Alsing

Stephen Thorp

Daniel Mortlock

Sinan Deger

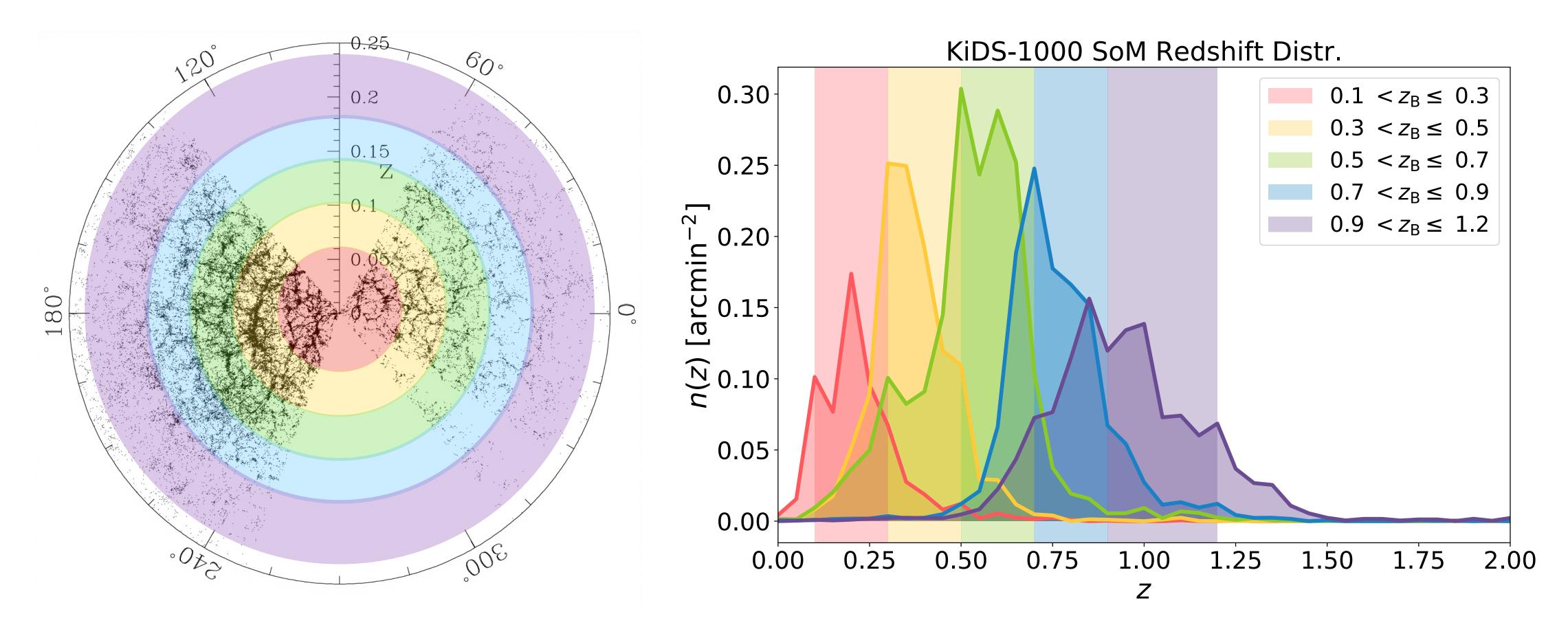
Boris Leistedt

Arthur Loureiro

Joel Leja

Hiranya Peiris

Photometric catalogues require redshift estimation



Blanton et al. (2003)

Loureiro et al. (2023)

Adapted from Justin Alsing

Key idea: learn joint distribution of galaxy properties over cosmic history

Machine learning models can accurately describe this complicated web of interdependencies

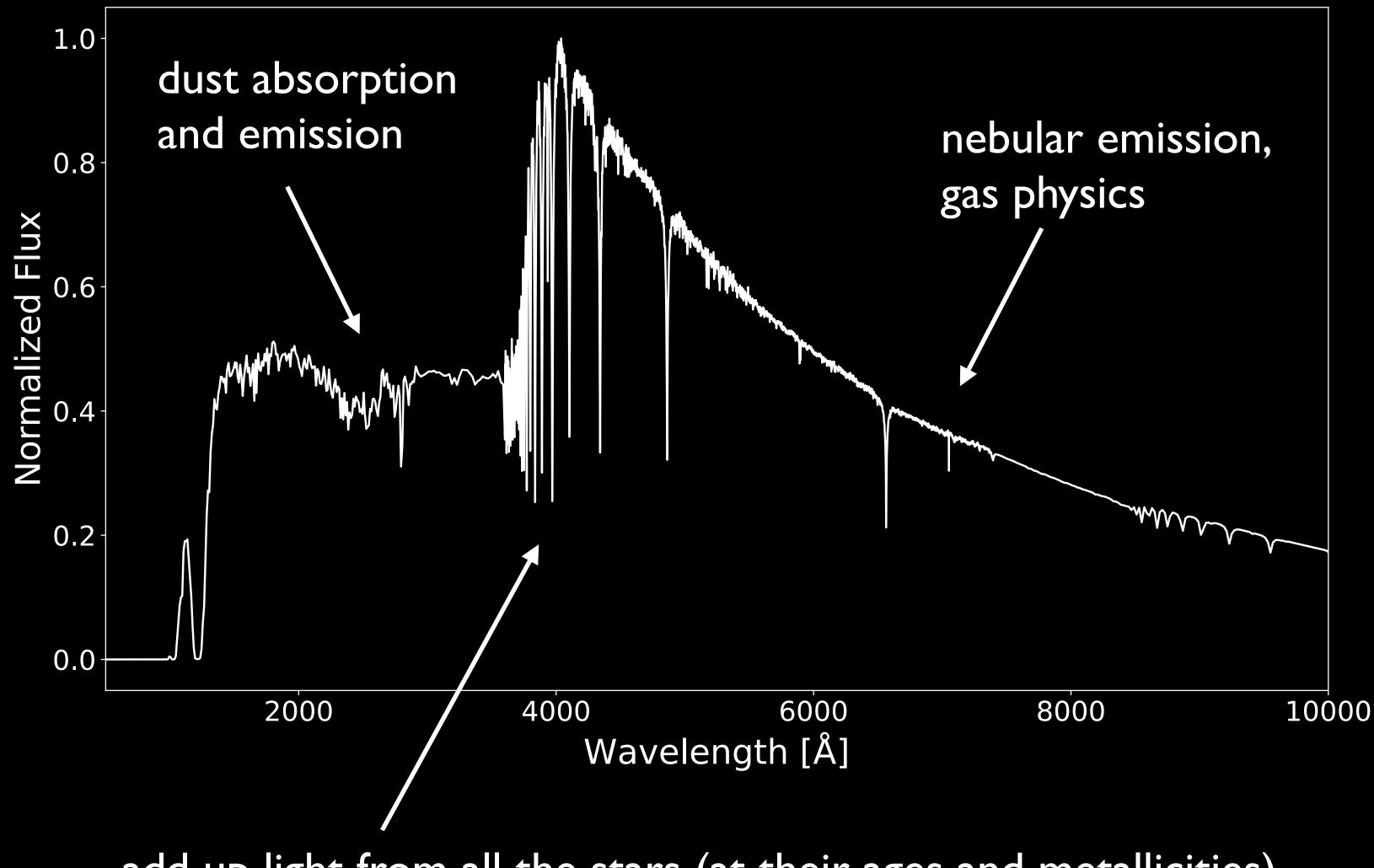
Figure: Hubble Ultra Deep Field

Recipe for making galaxy spectra and colours

- mass
- star formation history
- dust
- gas
- metallicity
- active galactic nuclei
- redshift

 \bullet \bullet \bullet

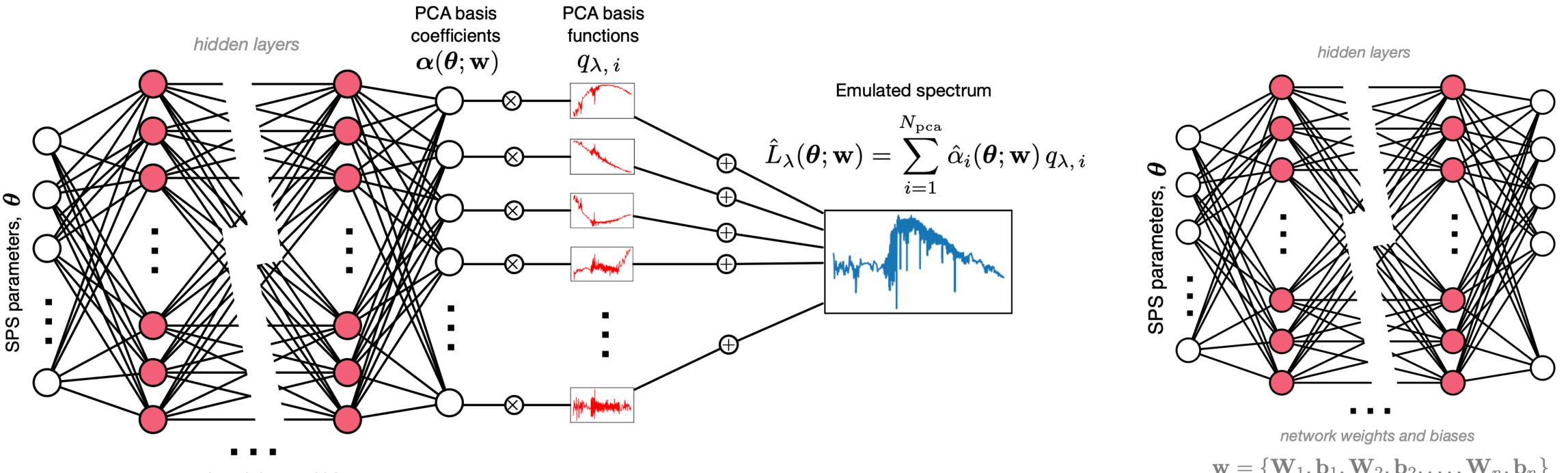
Model galaxy spectra using stellar population synthesis



add up light from all the stars (at their ages and metallicities)

CONROY, GUNN AND WHITE (2009), CONROY AND GUNN (2010)

Speeding things up with neural emulators



network weights and biases

 $\mathbf{w} = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_n, \mathbf{b}_n\}$

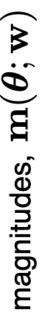
Emulating spectra

I6-parameter SPS model | sub-percent accuracy | factors x I0^4 speed-up | differentiable

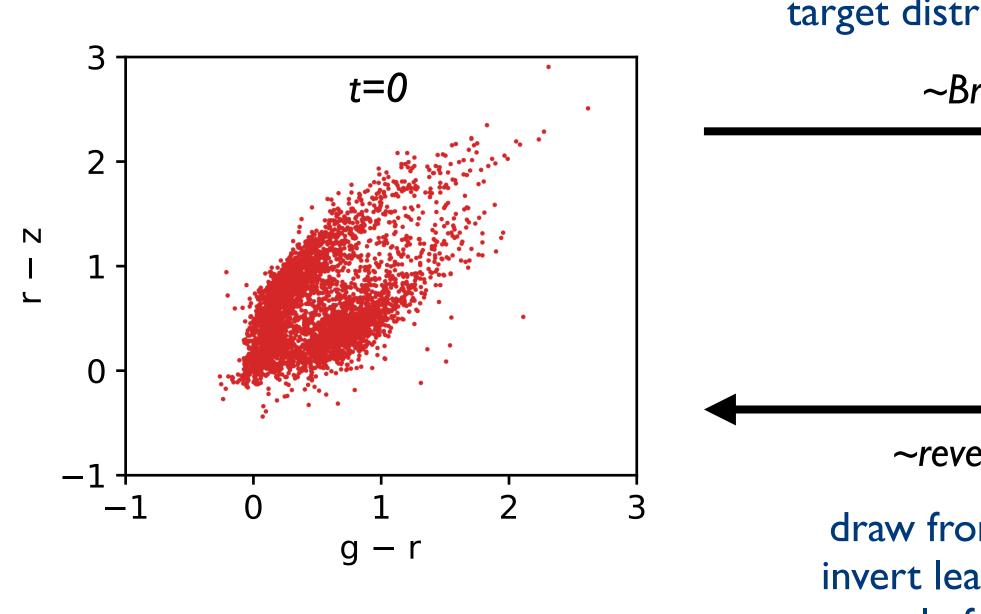
Alsing, Peiris, Leja, Hahn, Tojeiro, Mortlock, Leistedt, Johnson, Conroy (ApJS, 2020)

 $\mathbf{w} = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_n, \mathbf{b}_n\}$

Emulating photometry



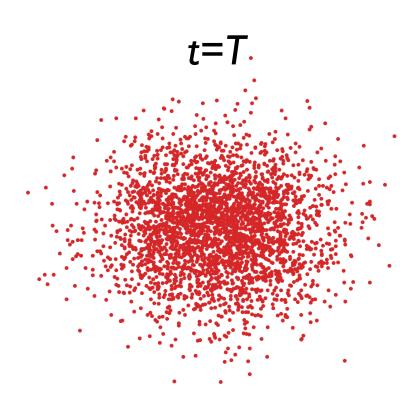
Flexible neural models for distribution of galaxy properties



score-based diffusion model

learn transformation that degrades target distribution to Gaussian noise

~Brownian motion



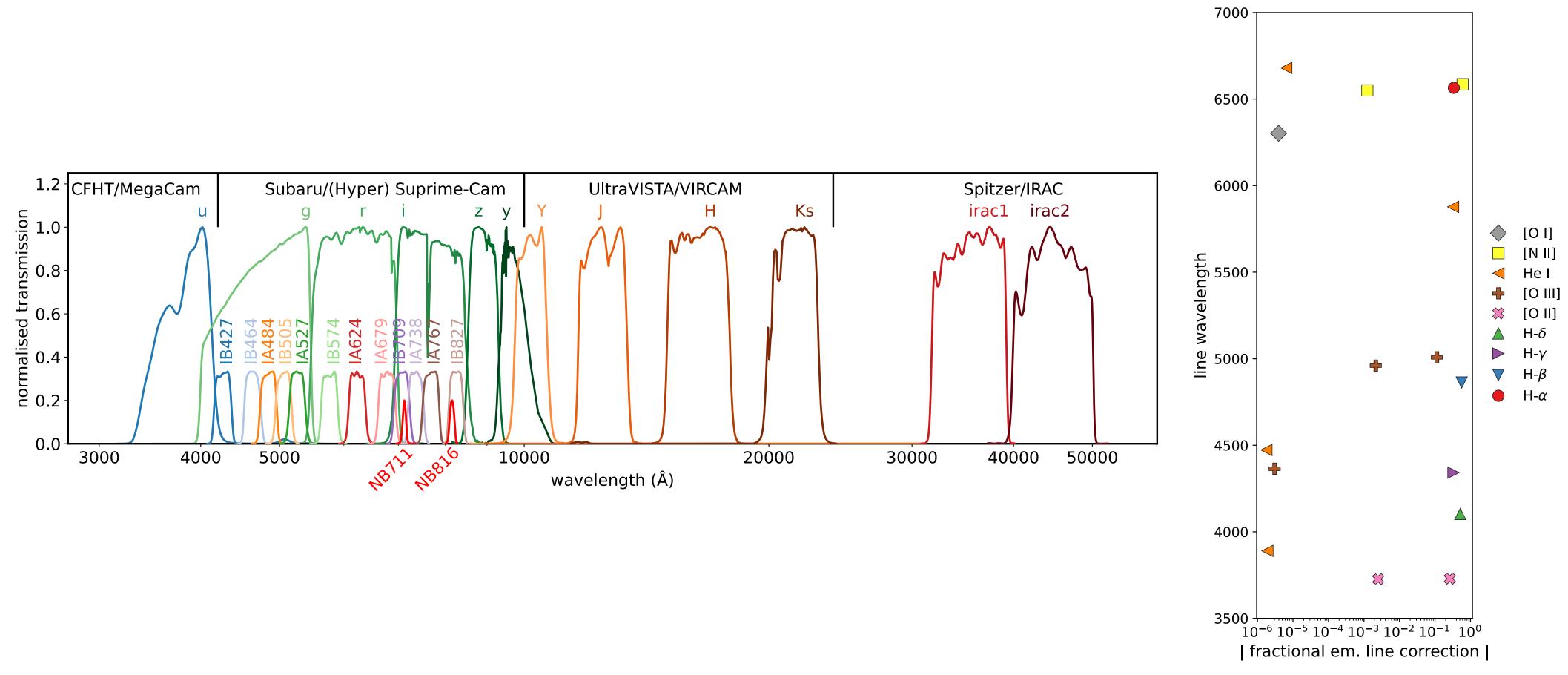
~reverse Brownian motion

draw from random distribution: invert learned transformation to sample from target distribution

Gaussian distribution

Song and Ermon (2019), Song+ (2020A,B)

Pop-Cosmos: galaxy population model calibrated with COSMOS2020

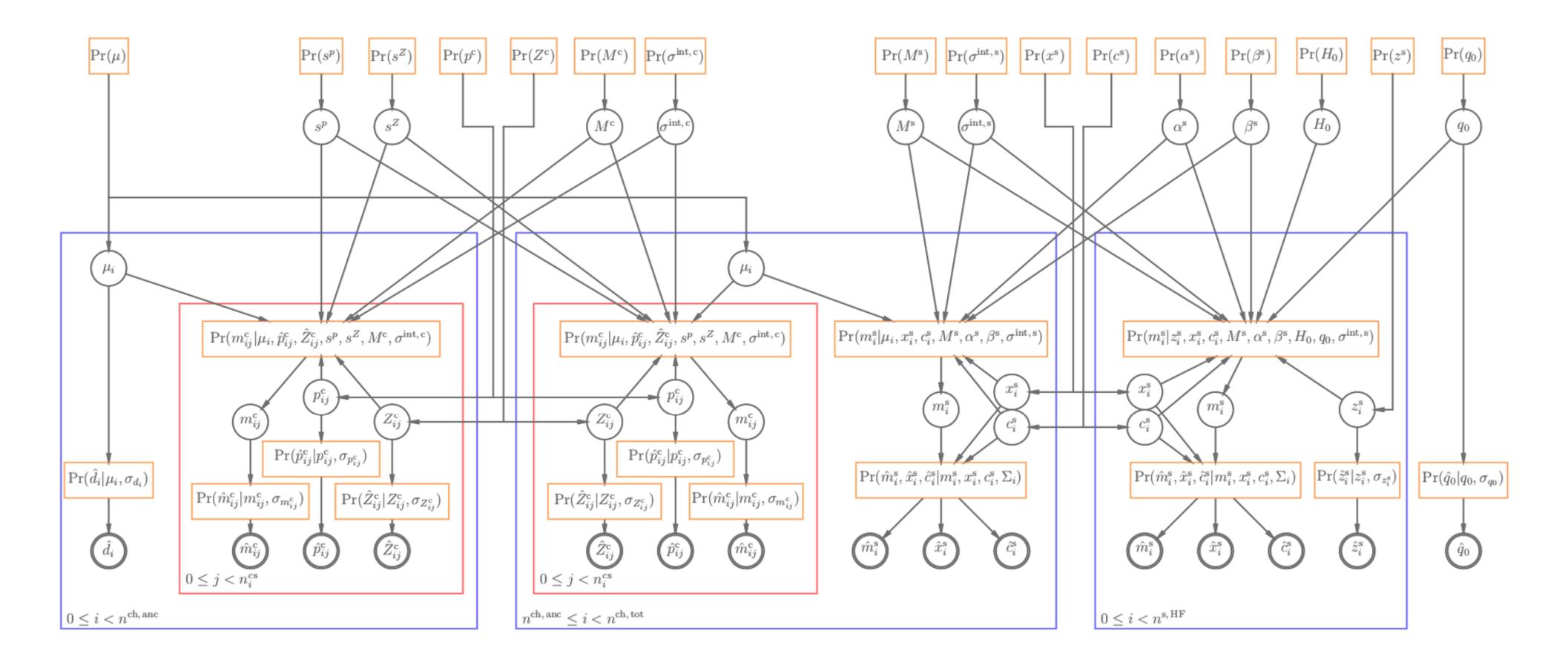


WEAVER ET AL (2021), ALSING ET AL (2022, APJS), LEISTEDT ET AL. (2022, APJS), ALSING ET AL (2024, APJS)

~140,000 galaxies | 26 bands near-UV to mid-IR | deep z < 4 | simple selection r<25

Zero-point calibration | emission line corrections | Student-t uncertainty model

Solving explicit parametric BHM intractable even in principle

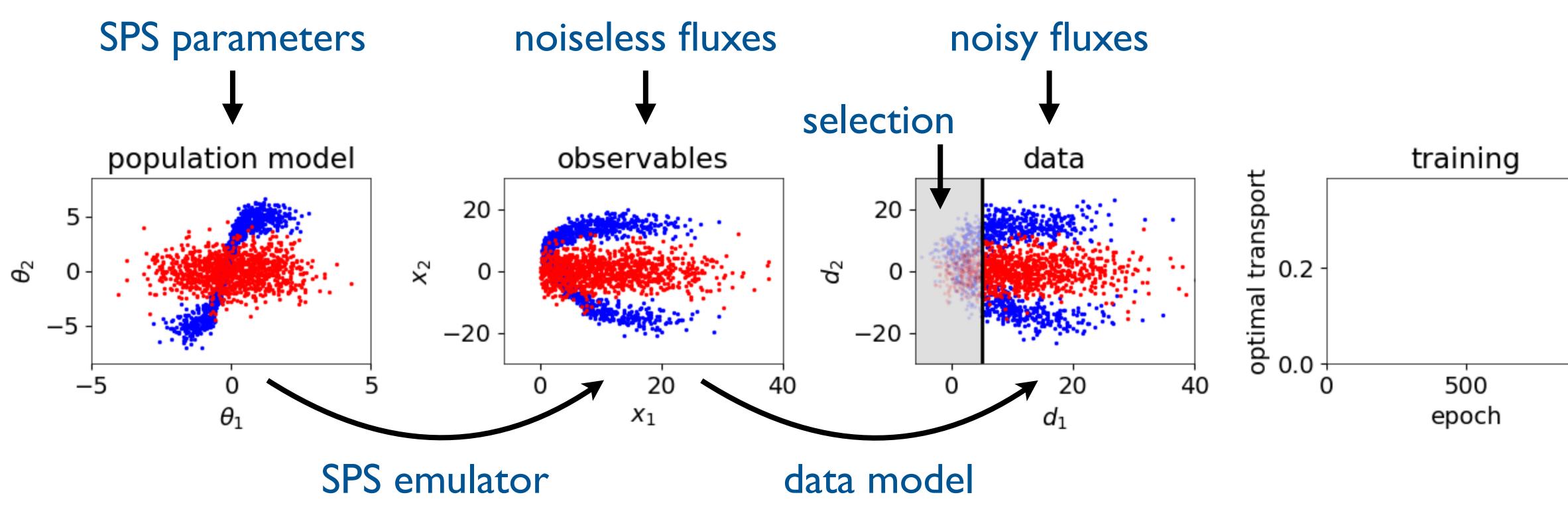


forward model of dataset = selection x data model x population model

intractable

no good parametric model

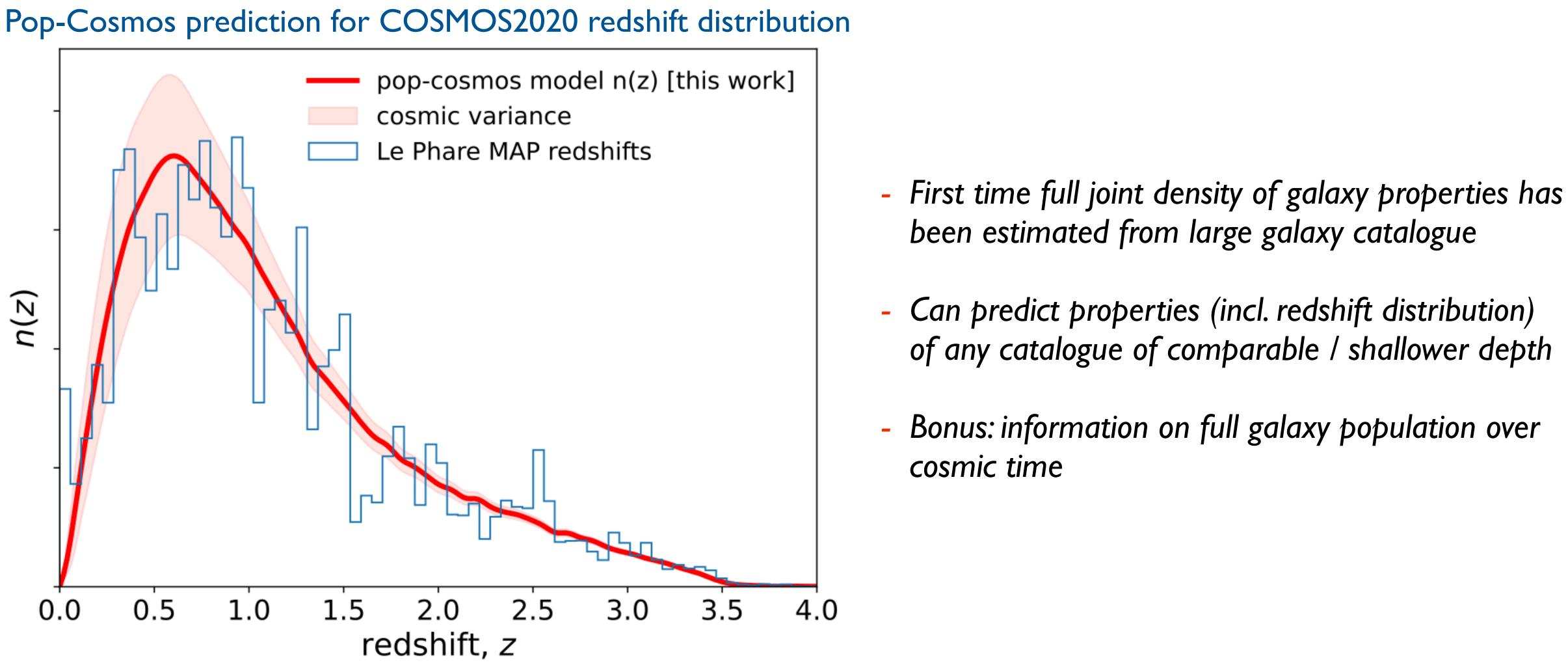
Learning the galaxy population model



Equivalent to data-driven calibration of population prior in hierarchical Bayes

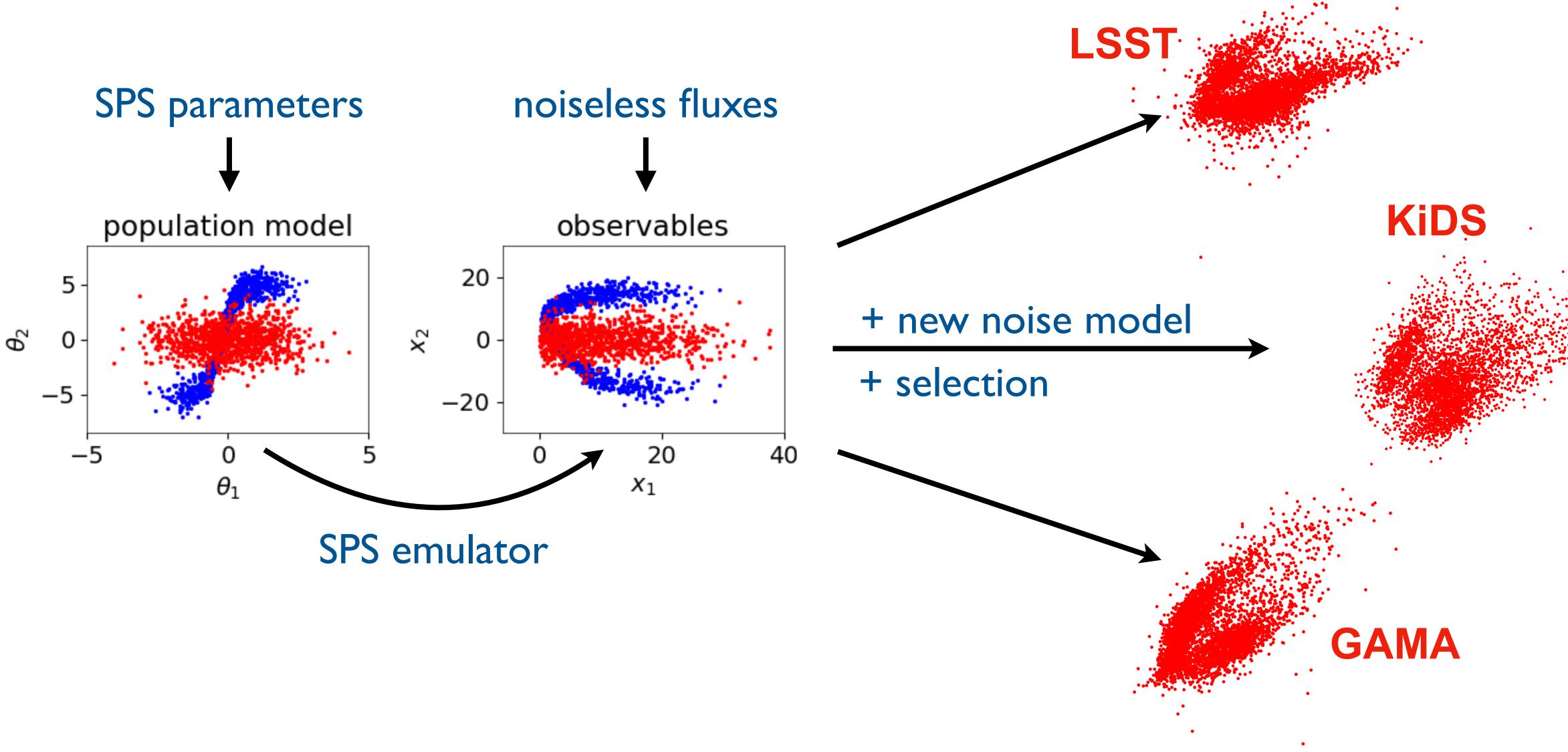
TOY MODEL SIMULATION BY JUSTIN ALSING

Pop-Cosmos: a generative model for galaxy surveys



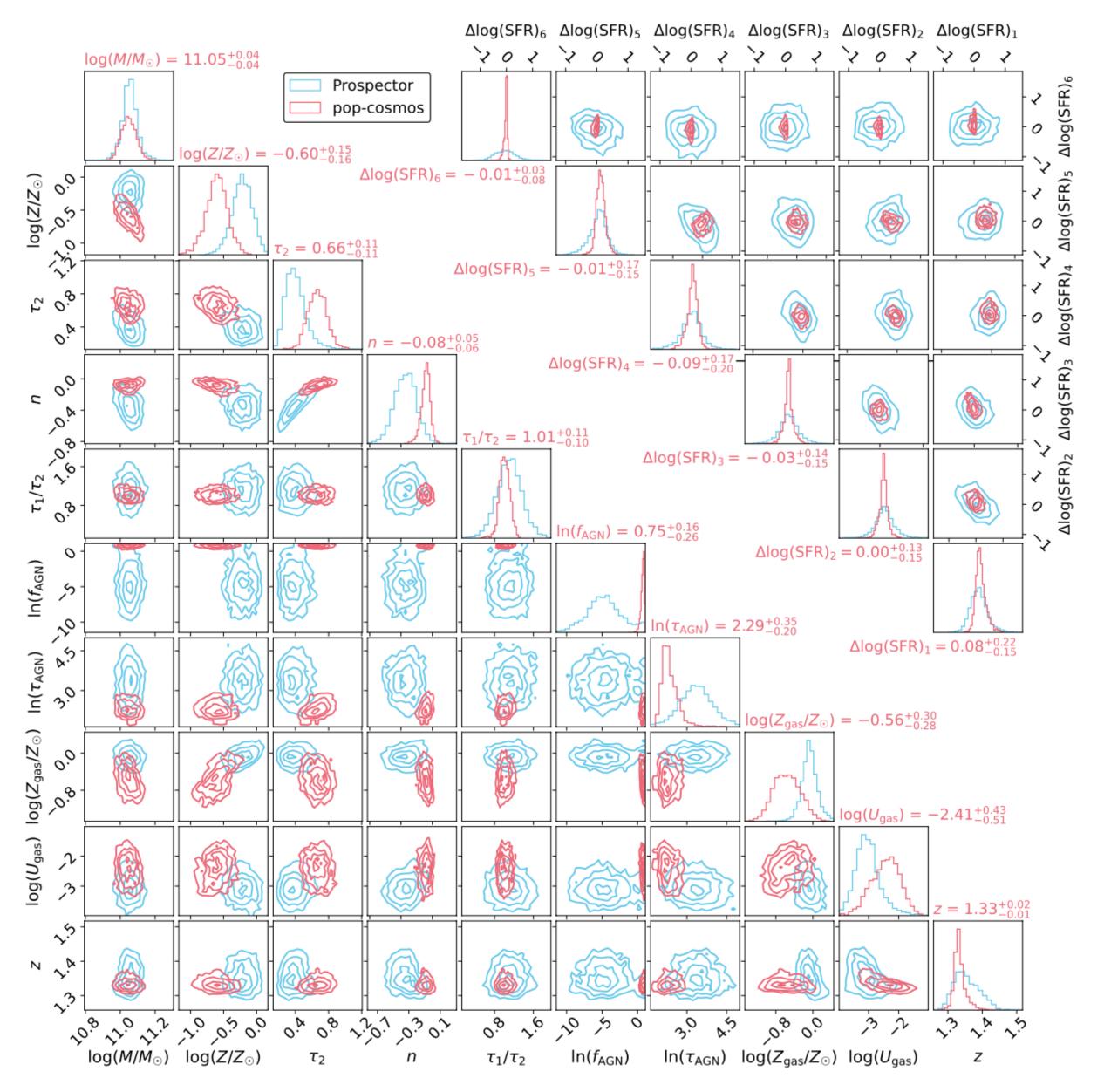
ALSING ET AL (2022, APJS), LEISTEDT ET AL. (2022, APJS), ALSING ET AL (2024, APJS), THORP ET AL (2024, APJ)

Forward-modelling other catalogues



ADAPTED FROM STEPHEN THORP

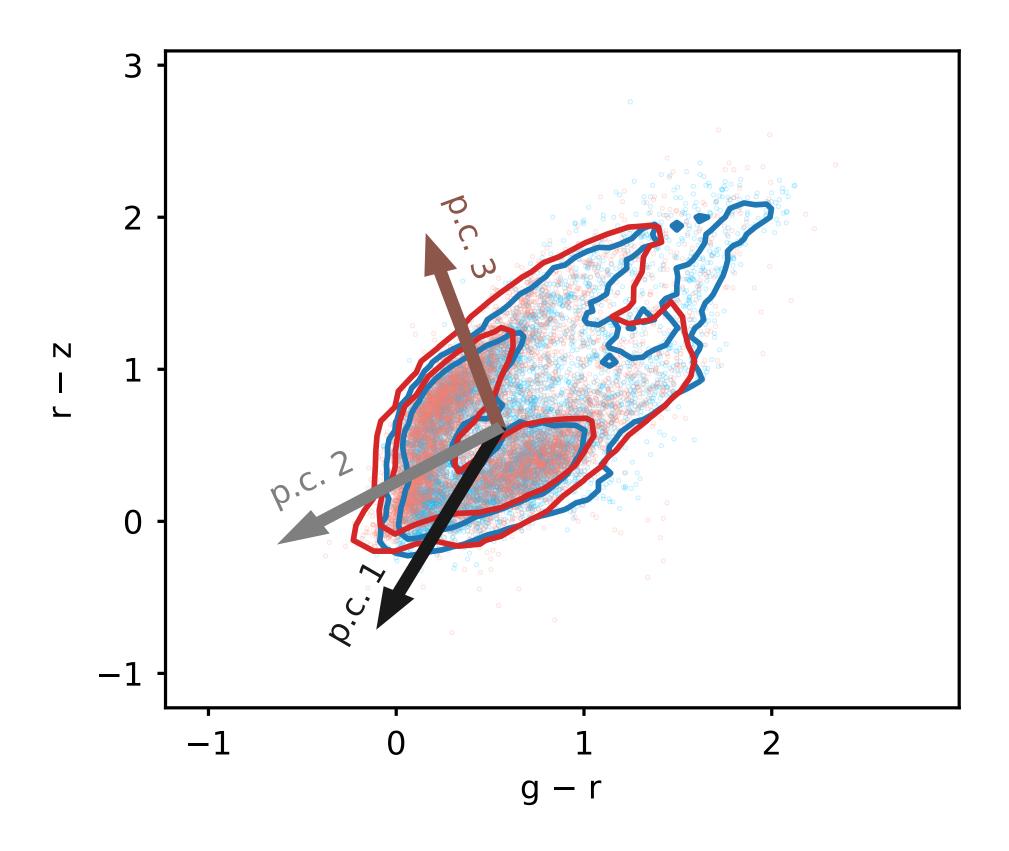
Full Bayesian SED fitting of large photometric catalogues



I5 GPU-sec / galaxy under pop-cosmos prior | 0.6 GPU-sec / galaxy under Prospector prior.

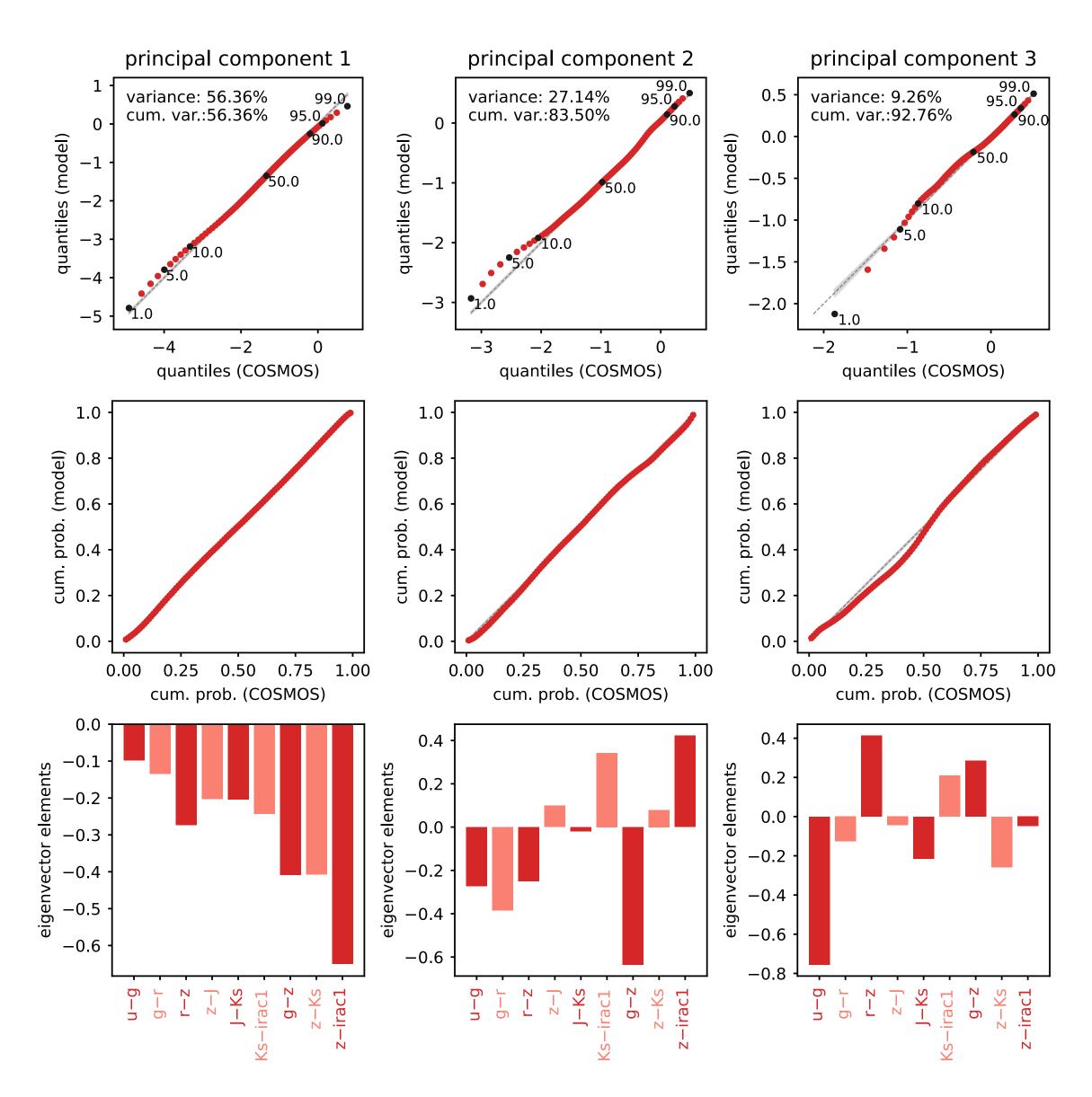
https://zenodo.org/records/13627489

- Demonstration analysis of ~300,000
 COSMOS2020 galaxies 3 x larger than previously possible under full SPS prior, with modest GPU requirements.
- Comparison: FSPS under Prospector 25 CPU-hrs / galaxy



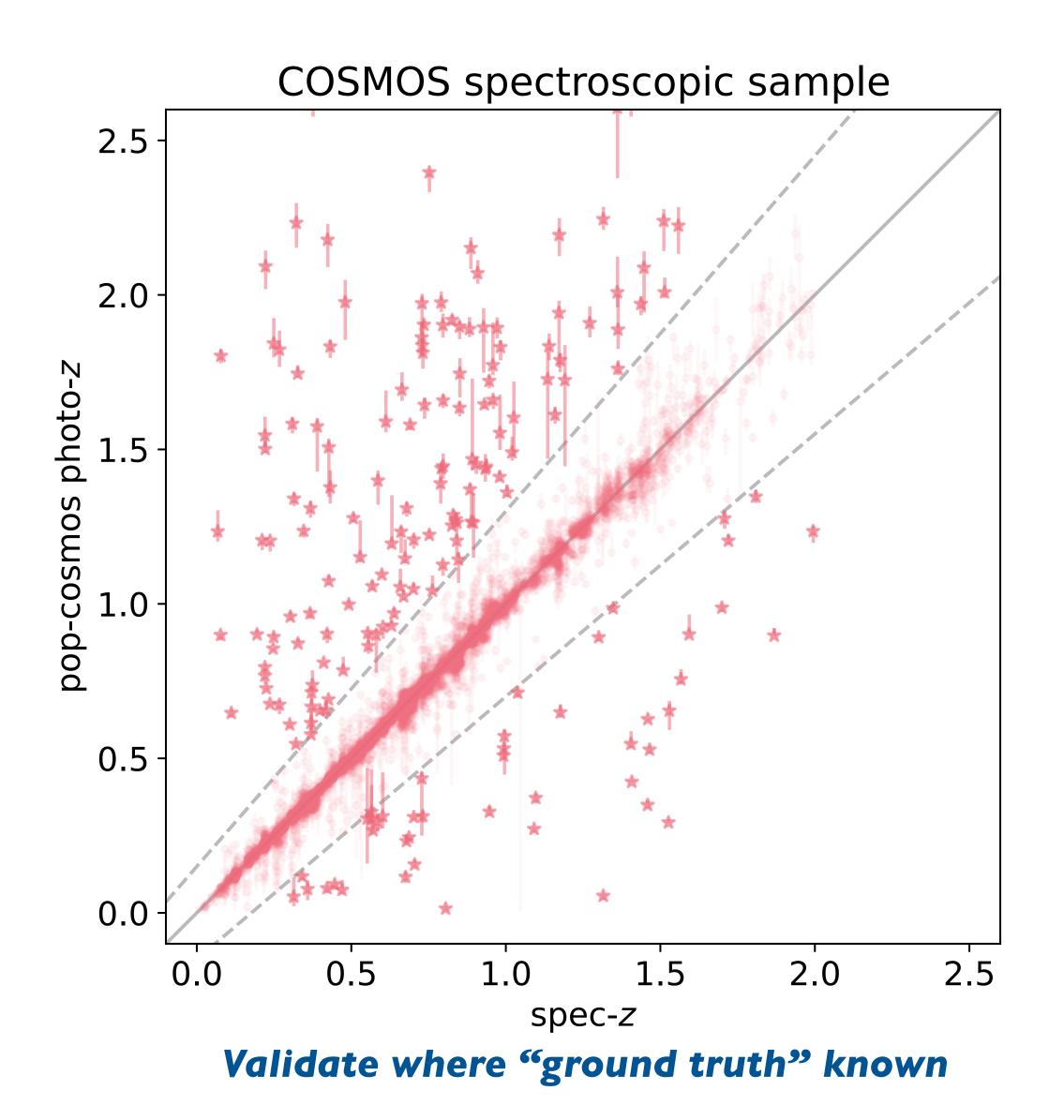
Validated using magnitude marginals, densities in colour pairs, and PP and QQ plots in PCA projections

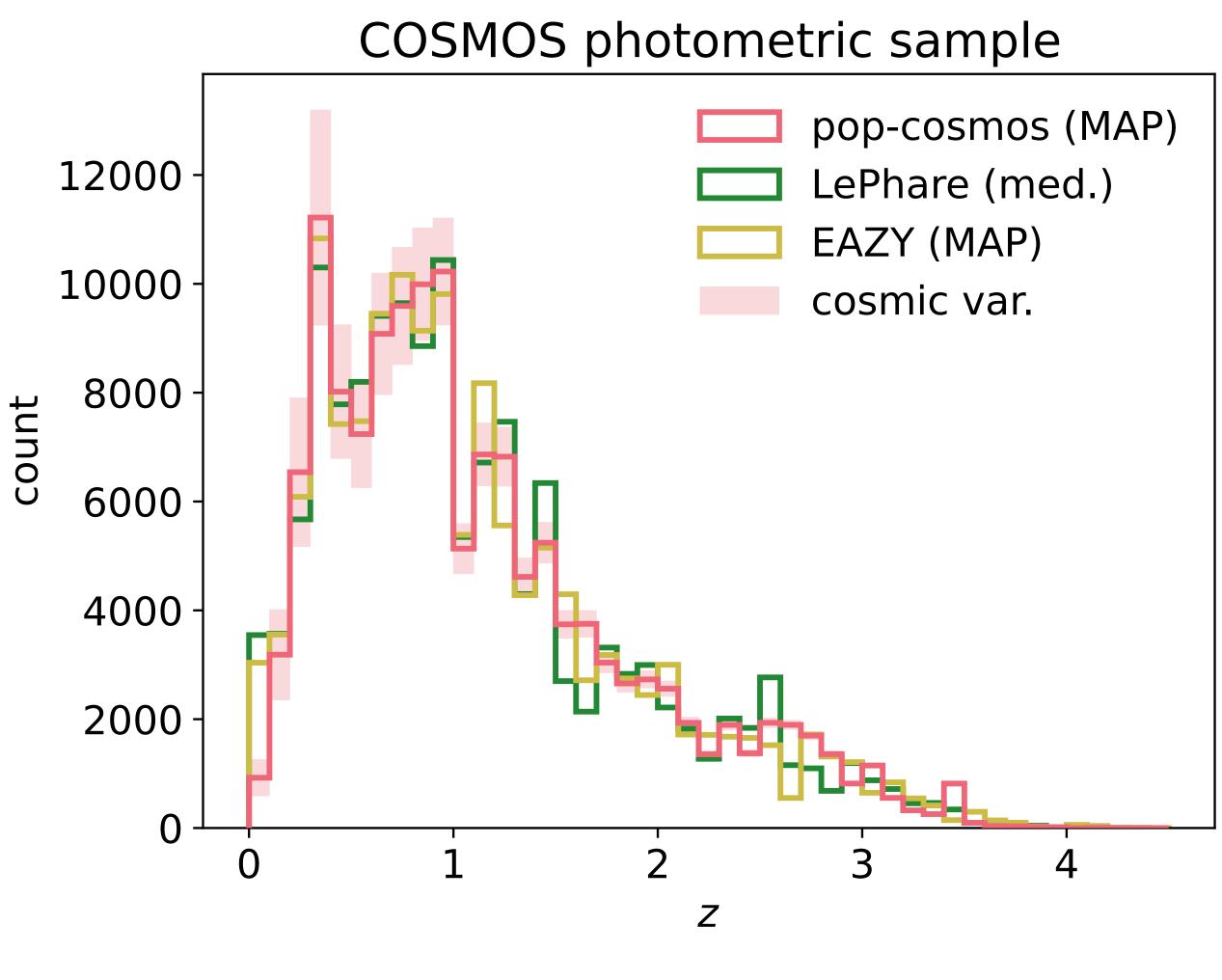
Data-space validation of high-dimensional generative model



THORP ET AL (2024, APJS SUBMITTED)

Pop-Cosmos as a prior for galaxy photo-z inference

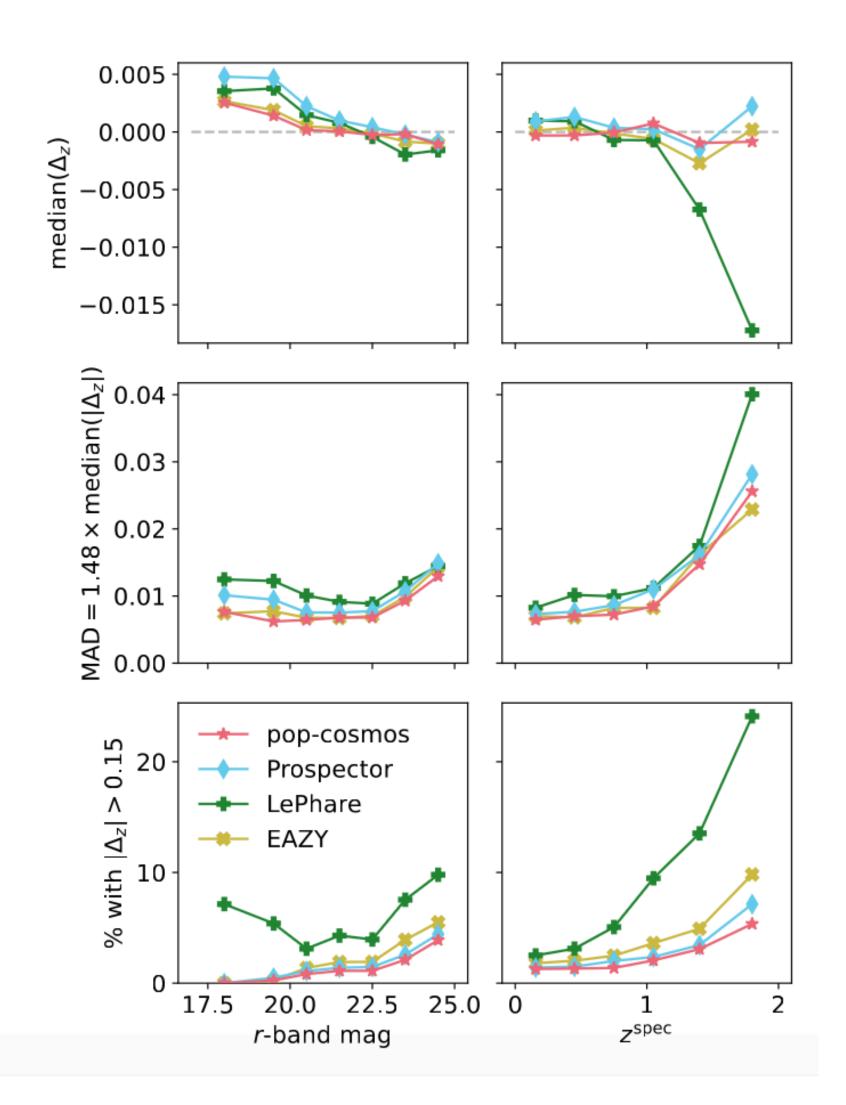




Validate against state-of-the-art

THORP ET AL (2024, APJ)

Quality of individual redshifts



less biased

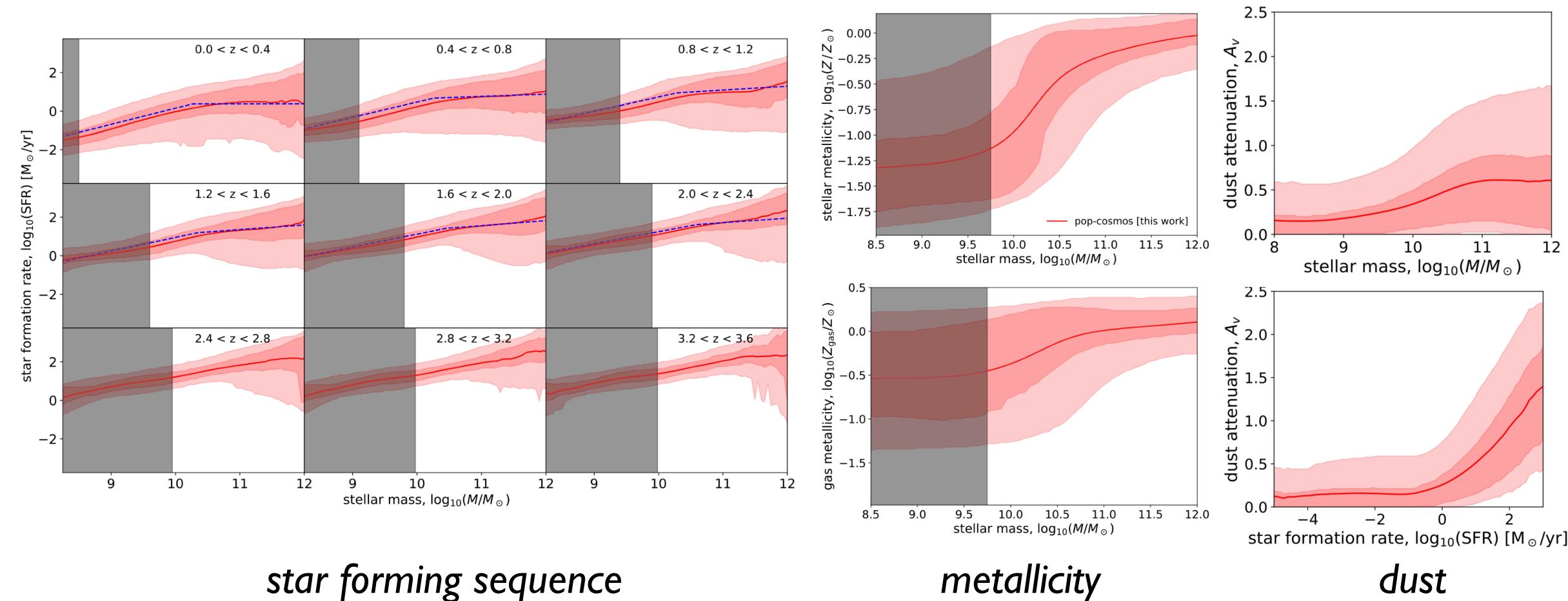
smaller errors

fewer outliers

Validate with standard domain-specific metrics

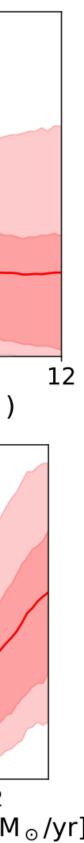
THORP ET AL (2024, APJ)

Bonus: information on full galaxy population over cosmic time

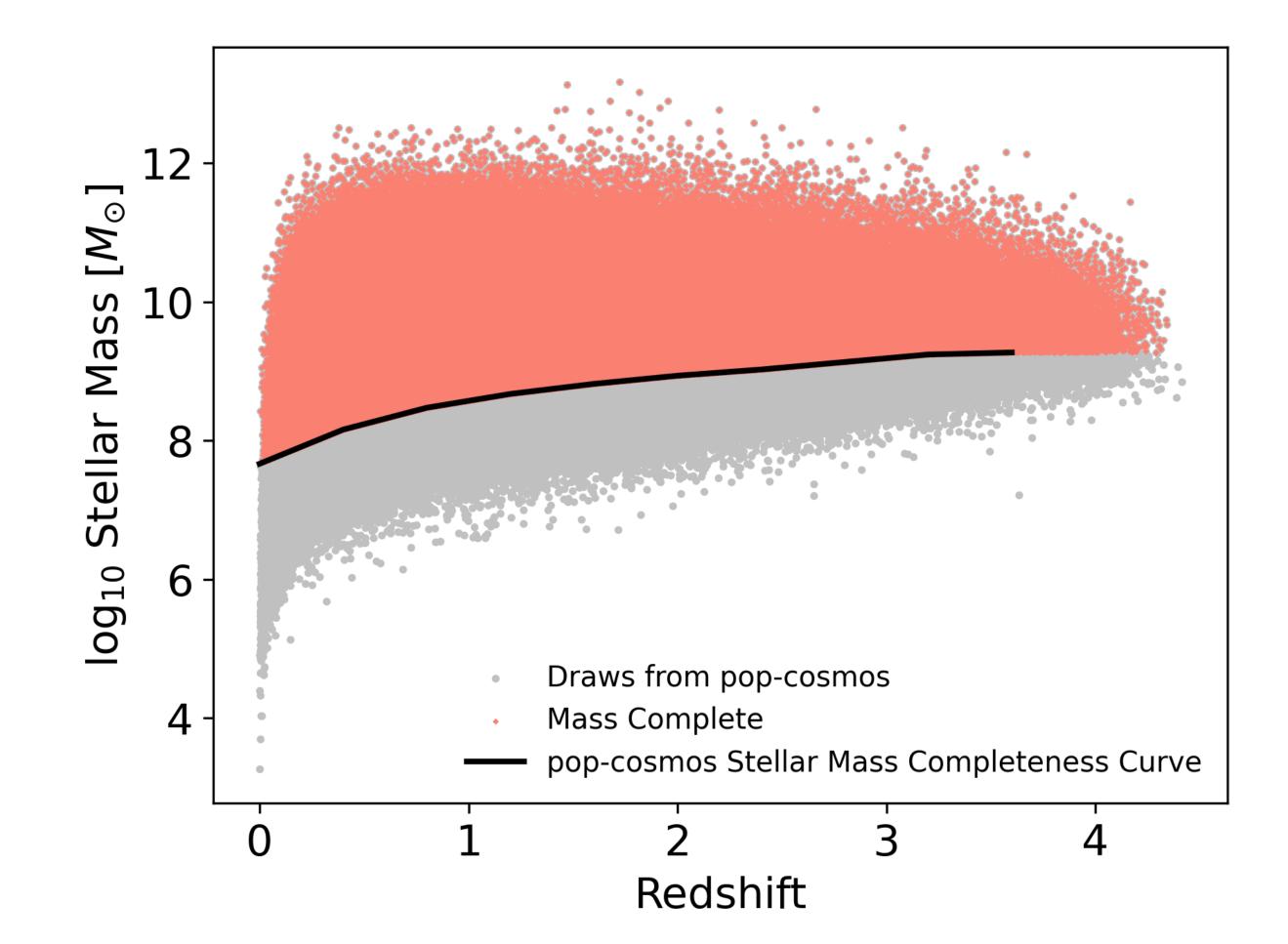


Validate against domain knowledge for key population properties in lower-dimensional projections

ALSING ET AL (APJS, 2024)



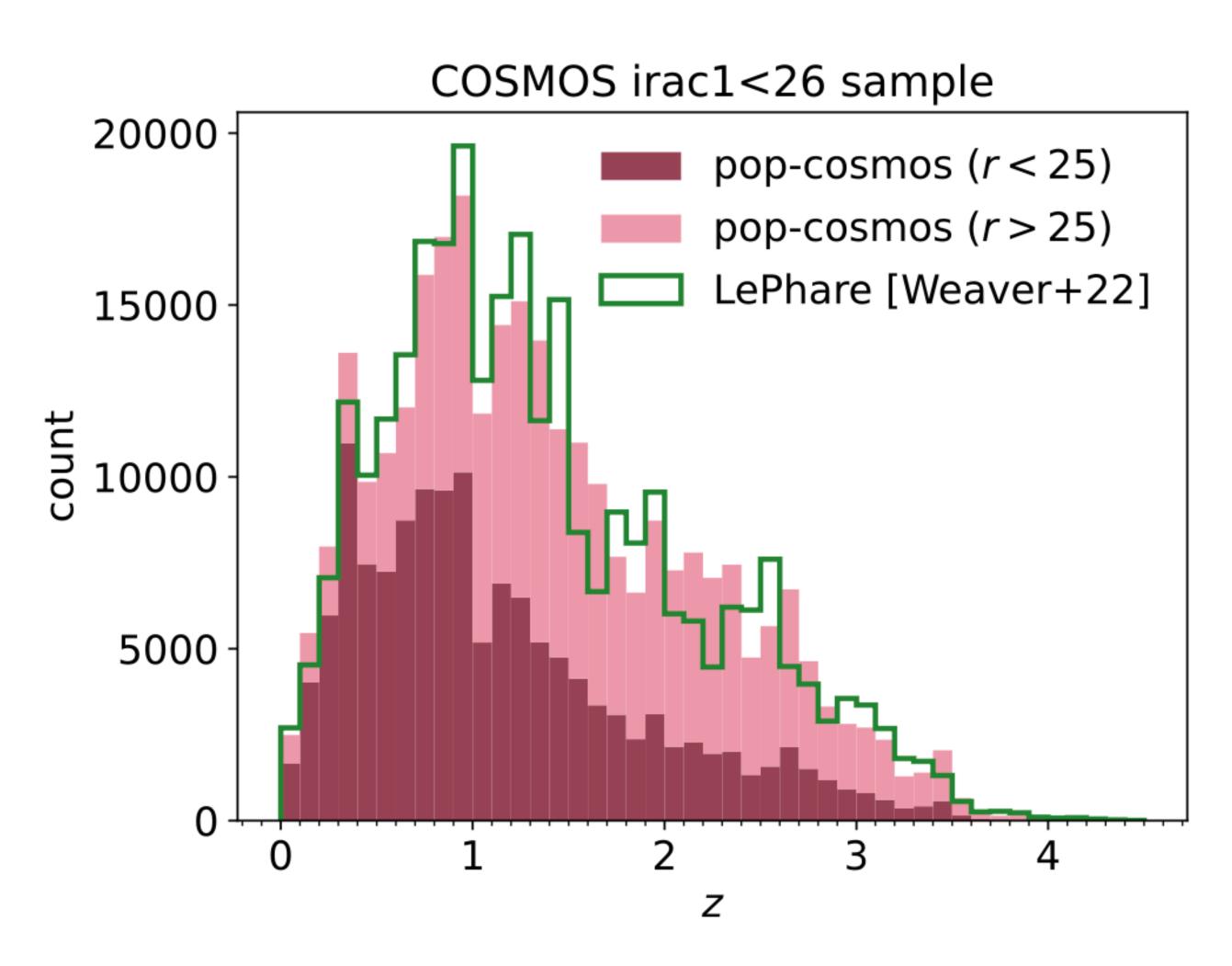
Mass-completeness of pop-cosmos



Establish explicit domain of validity for pop-cosmos so we know when we are extrapolating

DEGER ET AL (IN PREP)

Extrapolation to redshifts of IRACI<26 galaxies



Test generalisation of model to deeper selection of COSMOS2020 galaxies

THORP ET AL (APJ, 2024)

Characteristics of pop-cosmos generative model

 \checkmark Follow from explicitly enumerable set of assumptions and physical principles

predictions (deterministically/probabilistically).

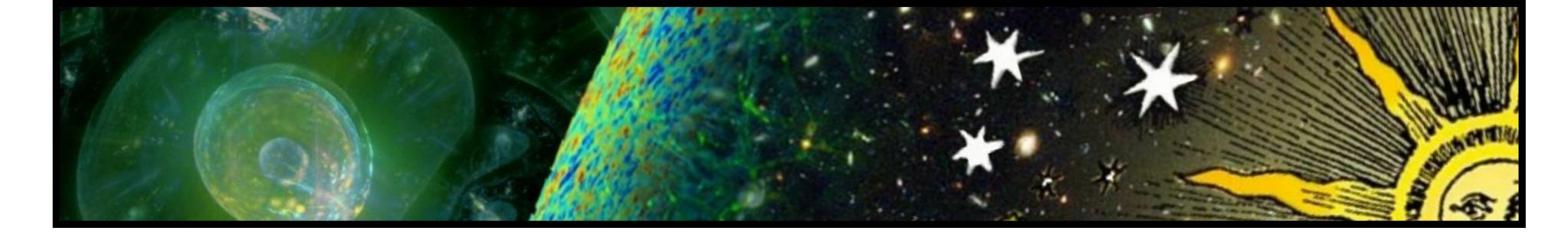
 \checkmark **Explainable** (rooted in cause-effect relationships grounded in domain knowledge.)

Generalises beyond initial domain to explain wider range of phenomena.

 \checkmark **Compresses** information: explains wide range of phenomena from minimal set of ingredients (~Occam's razor.)

V Domain of validity can be quantified explicitly.

- \checkmark Leads to mathematical models that can be solved (analytically/numerically) to yield useful



For more details

COSMOPARTICLE, <u>WWW.PENELOPEROSECOWLEY.COM</u>

67

