9-12 September 2024 London, UK

PHYSTAT Statistics meets Machine Learning

IMPERIAL

Identifying Tau Neutrinos in IceCube

PhyStat London 2024

Philipp Eller (TU Munich / IceCube) philipp.eller@tum.de

> * special thanks to: Doug Cowen and team Matthias Thiesmayer Philipp Soldin Philipp Fürst Oliver Jannik

Part I: Physics Analysis - Identifying Tau Neutrinos -

Part II: Interpretability - Dissecting the Neural Net -

IceCube Neutrino Observatory

- Largest Neutrino Detector
 - Built into the South Pole ice
 - Instrumenting a volume of 1 km³
 - 5160 sensors (DOMs) arranged in 86 strings
- Capable of detecting neutrino interactions from GeV to PeV energies
- Upgrade of detector underway with 7 new strings
 - advanced sensors
 - new calibration hardware
 - to be deployed 2025/2026

Event Types in IceCube

Common events

Ubiquitous events

Common events

Very rare events

Tau Neutrinos

- A ν_τ CC interaction creates a τ lepton
 - Lifetime of 2.9×10^{-13} s
- If sufficiently energetic, it will travel several meters before decay (~50m / PeV)
- \rightarrow Two separate vertices:
 - First: Initial v_{τ} interaction
 - Later: *τ* decay
- → Double pulse signature

Previous Search Strategies

Double Peak in waveform

- <1 expected in 3 years of data
- 0 events observed

Phys. Rev. D 93, 022001

Double cascade reconstruction

- Using 60 high-energy-starting events (HESE)
- 1.5 signal and 0.8 background expected in 7.5 years of data
- 2 events observed → 2.8 sigma pvalue

Eur. Phys. J. C 82, 1031 (2022)

New ML method

Use waveforms of the three detector strings with the highest observed charge

Phys.Rev.Lett. 132 (2024) 15 arXiv: 2403.02516

Results

- While in 9.7 years of data we expected:
 - 6.4 tau neutrinos
 - 0.5 background events
- We find 7 events in the signal region
 - One of these seven was also identified in a previous tau analysis
 - 5 sigma p-value for this being a background fluctuation

Part I: Physics Analysis - Identifying Tau Neutrinos -

Part II: Interpretability - Dissecting the Neural Net -

Robustness Tests I

Stress-test the neural networks, to see if they could easily be fooled:

- Uncorrelated variation of the light levels at the DOM level, to mimic mis-modeled uncertainties in DOM efficiencies
- Variation of the light levels for DOMs correlated in bands of depth to mimic unmodeled ice optical property uncertainties
- varying the light levels correlated by entire strings to mimic ice birefringence uncertainty

 \rightarrow In all cases, the migration probabilities were small and consistent with the expectations from background simulations

Robustness Tests II: Adversarial attacks

→ Adding perturbations to the image in the direction of the gradient

arXiv: 1412.6572

Adversarial Attacks on Tau Analysis

Turn Signal into Background

- For 6 out of the 7 signal events, pixel values would need to be changed so drastically, that it is well outside of what is considered reasonable (>> 10%)
- One event can be turned into background by introducing conceivable changes (~3 %)
 - →This is consistent with the expected 0.5 background events

Turn Background into Signal

- Only success for one out of 634 attacked background (v_e) events
- Needed to allow for large deviations (up to 10%)

Saliency Maps

- This shows the importance of the input data on the network output
- Here it is ∂output/∂pixelvalue

(Normalized to 1)

 Large value → change in pixel value will have large impact on network output

https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html

Tau Neutrino Saliency Maps

15

Ironing them out...

Tau Neutrino Saliency Maps

17

Summary / Conclusions

ML methods allowed us to **identify astrophysical tau neutrinos in** IceCube for the first time!

- Applying CNNs to 2d arrays of waveforms from sensors on strings
- 7 signal events observed, while expecting 6.4 tau neutrinos over 0.5 background

Large efforts were undertaken to test and understand the neural nets:

- Robustness tests varying input features according to uncertainties
- Targeted adversarial attacks to migrate events between classes
 → NNs proved robust against such attacks
- Saliency maps to visualize what features the network uses to form decisions
 - Revealed that double pulse waveform signature is not that useful for signal vs. background classification
 - Rather, the overall shape of the light registered in strings and the timing between strings is important, which gives us **new and better intuition** on how to improve future searches!

Additional Material

Number of Events

	$\nu_{ au,CC}^{\text{astro}}$ [59]	$ u_{\rm other}^{\rm astro}$ [59]	$ u_{\mathrm{conv.}}^{\mathrm{atm}}$ [60–63]	$\nu_{\rm prompt}^{\rm atm}~[56,~6466]$	$\mu_{ m conv.}^{ m atm}$ [67–70]	all background
initial	$160 \pm 0.2 \ (190 \pm 0.3)$	$400 \pm 0.7 \ (490 \pm 0.8)$	580 ± 7	72 ± 0.1	8400 ± 110	$9450 \pm 110 \ (9540 \pm 110)$
final	$6.4 \pm 0.02 \ (4.0 \pm 0.02)$	$0.3 \pm 0.02 \ (0.2 \pm 0.01)$	0.1 ± 0.008	0.1 ± 0.001	0.01 ± 0.008	$0.5 \pm 0.02 (0.4 \pm 0.02)$

TABLE I. Expected number of events after initial and final set of selection criteria (including all corrections described in the text) for signal ($\nu_{\tau, CC}^{astro}$) and backgrounds, assuming IceCube's flux from Refs. [53] and (in parentheses) [56]. About 85% of the estimated contribution from ν_{prompt}^{atm} is from ν_{τ} . Signal and astrophysical background levels vary with the flux. The simulation did not include the self-veto effect [71] that would reduce the conventional (conv.) and prompt ν^{atm} backgrounds. References to associated simulation packages are given; see text for details. Errors are statistical only, arising from finite simulation samples.

Reconstructed Signal Events

Spectrum

Spatial Distribution

Classifier vs. data

Relaxed Cuts

Net 1

Adversarial Attack

Successful conversion of the one signal event to background

