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Quick intro for wider audience

Generic tool of conditional generation

Concrete application to infer neutrino kinematics

Discussion
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Task: learn a model from data
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Scientists model the world
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Data Model
Evaluation 

Generalization

NatureX Y

[Leo Breiman 2001 on statistical modeling: the two cultures]

Human ingenuity [e.g. SM]

⬍

Data-learned [ML]

“SM merely a model of Nature”

Interpretability
[common sense vs.

simple physics model]

⇓
Trustworthiness



Cannot calculate P(data|theory)
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Parton Density 

Functions

Hard scattering

Showering
Hadronization



Can forward simulate P(data|theory)
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The need for synthetic data: 

MC simulation

Cannot run simulator backwards



The inverse problem: inference
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P(data|theory)

P(theory|data)

[image from 2203.07460]

https://arxiv.org/pdf/2203.07460


Sufficient test statistics?
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Project to O(1) dimension 

p(x)

Meaningful learned representation

1D < x < 100M-DNo guarantee of optimality !



Unfolding: reco → truth space
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Hard scatter Radiation Hadronization Detector

Folding

Unfolding

Unfolding allows to

• Compare at theory level

• Compare between experiments

• Data preservation: more useful data



The tool: conditional generation
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Noise
Language / images 

/ unfolded physics…

Prompt / prompt 

generator / 

encoded data

Generator

Condition



Conditional generative unfolding

12[2212.08674, see also talk by Tilman Plehn yesterday]

https://arxiv.org/pdf/2212.08674


Conditional generation

Can use this technique to generate ANY distribution in our 

simulation chain

We can simulate the target ⇒ we can train a surrogate

Including weakly interacting particles like neutrinos
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Neutrinos are special

Neutrinos don’t interact with the detector

Infer their presence from conservation of momentum in 

transverse plane

Longitudinal component unconstraint
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Learn ν 3-momentum



Why interesting?

Top quark reconstruction & measurements

Combinatorics: assign jets to partons

Interpretability: 

human-understandable distributions

15[2207.00664]

https://arxiv.org/abs/2207.00664v2


Conditional generation: ν-flows

Two components:

CINN to generate neutrino 

3-momentum

Embedding network to 

encode event information

16[2207.00664]

https://arxiv.org/abs/2207.00664v2


Learn conditional probability
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Conditional probability over neutrino momenta assuming an underlying process

Can sample from this posterior for a given observed event

[2207.00664]

https://arxiv.org/abs/2207.00664v2


ν-flows summary

Meaningful probabilistic treatment

Learning conditional density of particle-level quantities 

conditioned on reconstructed inputs 

Improve over traditional method

18[2207.00664]

https://arxiv.org/abs/2207.00664v2


Adopt to events with 2 neutrinos: ν2-flows

Conceptionally identical

Output: 6D vector

Embedding network updated to TE

19[2307.02405] 

https://arxiv.org/abs/2307.02405


ν-flows  ⇒  ν2-flows
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Update

Adapt

[Transformer Encoders & Cross Attention]

[2207.00664] [2307.02405] 

https://arxiv.org/abs/2207.00664v2
https://arxiv.org/abs/2307.02405


Reference methods
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Compare to two standard approaches (relying on hard 

assumptions on mass)

Neutrino Weighting Ellipse method

Scan eta values for both neutrinos

Choose solution which maximises a weight

Additionally scan top quark mass values to 

improve acceptance

Use observed missing momentum to constrain 

solution further

Less flexible to resolution effects but 

computationally more efficient



Kinematics
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Use truth neutrino
Everything else reco

[2307.02405] 

https://arxiv.org/abs/2307.02405


Neutrino correlations
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Both standard approaches 
prefer back to back solutions

[2307.02405] 

https://arxiv.org/abs/2307.02405


Top quark kinematics

24[2307.02405] 

https://arxiv.org/abs/2307.02405


Retain sensitivity to top mass

25[2307.02405] 

https://arxiv.org/abs/2307.02405


ν2-flows summary

• Drop-in ML solution to replace conventional approach

• Transformer + conditional normalizing flows

• Outperforms standard approaches

• Fast inference

• Mass sensitivity

• Extendable to any neutrino multiplicity & final state

• Available as off-the-shelf tool in ATLAS [TopCPToolkit]
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Relevance to discussion topics

Thanks, Louis, for giving us the 

opportunity to play the devil’s advocate !
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Why do we need this intermediate result?

• Argue one side: useful in traditional analysis approaches; 
offers additional interpretation and feeds into other 
intermediate results 
– Gain trust, human-understandable, improve downstream tasks

• Argue the other side: in a perfect ML world everything 
learned from low-level data
– Intermediate features superfluous 

• The real world = compromise
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5. Relevance of training samples

• Important to stay in-domain

– e.g. train on tt and evaluate on tt

• Simulator conveniently provides all configurations in the 

correct proportions
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6. Mis-modelling of training samples

Mismodeling impacts all MC-based training

(Standard) uncertainty estimate is necessary
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Interpretability

All inverse problems ill-defined in the sense that it is a 

many-to-one mapping which we try to invert

Can still do it – with some regularization…

Neutrino reconstruction is a version of this concept
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Why can we learn something about the ν’s?

• If nu 3-vectors were completely random

– Data would NOT allow us to measure ν’s

• There is some correlation between ν 3-

vectors configurations and “the rest of 

the event we measure” 

– Some information about ν’s can be gained
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The unknowable theoretical accuracy limit

• Or: what we can and what we cannot learn from a given 

data set

– A priori unknowable

– Since we cannot retrace and calculate every bit

• Way out: forward simulate

– Accuracy becomes empirical
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More discussion points

• Quality of learned posterior depends on:

– How good is the generative model

– How much information is in our data [unknowable]

– How well is it encoded for the conditioning

• Which one is the bottleneck?

• Where does the heavy lifting happen?

• Train end-to-end or train data-encoder separately?
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Conditional generation in SSL context

35
Example: variation of masked particle modeling [2401.13537]

Inputs Inputs

Encoder

Generator

Condition

Split

https://arxiv.org/abs/2401.13537
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