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Hypothesis testing for discovery of new physics

Searches of new phenomena at the LHC
usually boil down to testing for the
presence of a signal distribution over a
background of known SM physics:

e Known physics: pp(z)
e New signal: ps(z)
e Nature: g(z) = (1 — N)pp(z) + Aps(2)

Want totest Hp: A=0vs. Hi : A >0
If one rejects Hy at a high enough

significance level, then one might proceed
to claim discovery of new physics
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Model-dependent classifier-based tests

Most of these tests are done in the model-dependent mode, where the test
statistic is optimized to have power for detecting a specific signal

Relevant datasets:
Training background: X = {X1,..., Xn,}, Xi ~ pp

Training signal: Y ={Y1,..., Ym.}, Y; ~ ps
Experimental data: W = {W4,..., W,}, Wi~ q=(1-X)pp+ Aps

Basic idea: use X and ) to find the optimal test for detecting ps

When the data space is high-dimensional, this is usually done using
machine learning classifiers:

© Train a supervised classifier to separate X’ from )
@ Use the classifier output to test for the presence of signal in W
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Testing when the signal is misspecified

To perform these tests, we need to assume that we can reliably simulate
data from both pp and ps

However, when either or both of these simulators are unreliable /
systematically misspecified / unavailable, we need to consider alternative
strategies for performing the test

Specifically, if the test is optimized for a misspecified ps, it may have little
to no power for detecting an actual signal
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Systematically misspecified signal
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Model-independent search

Here we focus on a particular variant of model-independent searches for new
physics

We assume that we have a reliable sample from p, but we do not assume
access to a training sample from ps

— Provides sensitivity for unexpected or misspecified signals

Available datasets:

Training background: X = {Xi,..., Xn,}, Xi ~ pp
Experimental data: W = {W4, ..., W,}, Wi~qg=(1-Xpp+ Aps

Task 1: We want to understand if YW shows evidence for the presence of ps

Task 2: We want to understand what A and ps look like
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Model-independent search using a semi-supervised classifier

What to do when the data space has more than just a couple of
dimensions?

— Use machine learning classifiers!

Basic idea: Train a classifier h to separate the background data X from
the experimental data W
e Under Hyp, the classifier should not be able to separate X from W

e So if the classifier is able to differentiate between these two samples,
then that provides evidence for the presence of ps

This basic strategy is closely related to work by D'Agnolo and Wulzer
(2019) and D'Agnolo et al. (2021, 2022); see also Kim et al. (2019, 2021)
for a similar approach in the two-sample testing literature
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Our contributions

In Chakravarti et al. (2023), we made the following contributions:

@ We investigate various ways of obtaining a test statistic from the
trained classifier h as well as various ways of calibrating the tests

© We propose a way to interpret h using active subspaces

© We propose a way to estimate the signal strength A\ based on h

In this talk, I'll focus on @ and ©

For more on @ , see https://indico.cern.ch/event/1148820/
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Overview of the approach
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Kaggle Higgs boson data

We explore the performance of these methods using the Kaggle Higgs
boson challenge dataset!

Simulated H — 77 events in ATLAS

Select events with two jets and only consider primitive features
(transverse momenta, MET, angles,...)

15 variables after accounting for rotational symmetry in ¢

80,806 background events; 84,221 signal events

Generate 50 “replicates” by sampling without replacement
myp, = 40,403 background events, ms = 20,403 signal events and
n = 40,403 experimental events from the original samples

We use a Random Forest as the classifier h throughout

"https://www.kaggle.com/c/higgs-boson


https://www.kaggle.com/c/higgs-boson

Power of detecting a signal

Power of detecting a well-specified signal in the Kaggle Higgs boson data

Signal Strength (1))

Model Method 0.15 0.1 0.07 0.05 003 001 0
Supervised LRT Asymptotic 100 100 96 62 18 18 6
Bootstrap 100 96 78 58 6 0 o0

Permutation 100 98 98 86 28 6 0

Supervised Score Bootstrap 64 66 74 50 18 0 0
Permutation 94 92 100 92 80 24 12

Semi-Supervised LRT ~ Asymptotic 100 98 74 38 16 6 2
Bootstrap 100 98 48 10 2 2 0

Permutation 100 98 72 38 16 6 2

Slow Perm 82 8 0 4 2 0 4

Semi-Supervised AUC  Asymptotic 100 96 78 32 14 4 2
Bootstrap 100 98 70 32 20 6 2

Permutation 100 98 68 32 20 4 2

Slow Perm 100 100 94 56 20 8 4

Semi-Supervised MCE ~ Asymptotic 100 92 60 28 14 2 2
Bootstrap 100 96 52 28 16 6 4

Permutation 100 96 52 30 14 6 6

Slow Perm 100 98 86 58 16 6 2
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Power of detecting a signal

Power of detecting a misspecified signal in the Kaggle Higgs boson data

Signal Strength (\)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 O
Supervised LRT Asymptotic 2 10 2 8 8 6 4
Bootstrap 0 0 0 0 0 0
Permutation 0 0 0 0 0 20
Supervised Score Bootstrap 0 0 0 0 0 00
Permutation 0 0 0 0 0 2 8
Semi-Supervised LRT ~ Asymptotic 100 100 100 82 18 4 4
Bootstrap 100 100 100 60 4 2 0
Permutation 100 100 100 82 18 4 2
Slow Perm 100 100 78 22 2 4 6
Semi-Supervised AUC ~ Asymptotic 100 100 100 78 16 8 4
Bootstrap 100 100 100 82 20 10 0
Permutation 100 100 100 80 20 8 2
Slow Perm 100 100 100 100 34 10 4
Semi-Supervised MCE ~ Asymptotic 100 100 100 66 24 6 4
Bootstrap 100 100 100 62 16 6 4
Permutation 100 100 100 62 14 6 4
Slow Perm 100 100 100 98 22 8 2

Signal misspecified by transforming tau_pt* = tau_pt — 0.7 (tau_pt — min(tau_pt))
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Power as a function of sample size
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Interpreting the semi-supervised classifier

Once trained, the classifier h is estimating the class probability
P(C =1|Z = z), where C is an indicator of the experimental class W

We may want to be able to analyze the trained classifier h to learn about
the properties of the potential signal

Variable importance

Signal strength

We use the active subspace of We estimate the signal strength
the classifier to identify variable \ from the classifier h using the
combinations that help separate Neyman—Pearson quantile

the signal from the background transform
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Active subspaces for interpreting the classifier

The fitted classifier surface h contains information about how the
experimental data W differs from the background data X

How do we extract this information from h?

Could look at h as a function of each input variable

But this might not reveal information contained in variable dependencies
We propose to look at the active subspace of h instead

Basic idea: perform PCA on the gradients V//;(z) to reveal those directions
in which the classifier surface changes the most
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Active subspaces for interpreting the classifier
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Active subspaces for interpreting the classifier

In practice, we look at the gradients of

H(z) := logit(h(z)) = log (E(z)/(1 - E(z)))

which are estimated by fitting a local linear regression on H(Z;) where
Zie X UW

Furthermore, we standardize the gradients by their estimated standard

—

VH(z)

errors: G(z) = ——=2=
Var(VH(z))

We then perform PCA on G(Z;): the mean of G(Z;) describes the slope of
H(z) and the principal components of G(Z;) capture the variation of H(z)
around the slope

Uncertainty estimates using bootstrapping
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Active subspaces for interpreting the classifier
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Estimating the signal strength

Given a trained semi-supervised classifier h, how can we estimate the
signal strength \?

If we know that ps(z) = 0 for some known z, then this is simple
q(z) (1 - 7r> ( h(z) )
Z) = = s
V@ =0 o " ) o

X:1<1;W><1?2n)’

for any z with ps(z) =0

Since

we obtain

However, in the model-independent setting, we may not know when
ps(z) = 0 — What to do?
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Estimating the signal strength

Need to assume inf, ps(z)/pp(z) = 0 for identifiability; assume also pp, g > 0
everywhere, for simplicity

Define the Neyman—Pearson Quantile Transform of z as:

e (A | (@) . ]
912 = P (0 = AEL) = Prc (6X) 2 012)) = P, (0X) = h(2)

Let g4 be the density function of p(Z) when Z ~ g
Then it can be shown that g4 is monotonically decreasing and
gq(1)=1—-2X

which allows us to estimate A using A = 1 — gq(1)

— We need to estimate a monotone density at its boundary
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Estimating the signal strength

In practice, we form a histogram of p(W;) and estimate gq4(1) using a
Poisson regression on bins close to 1
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Estimating the signal strength
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Conclusions

e Model-independent searches may be able to increase the sensitivity of
LHC for unexpected or misspecified signals
m Has received increased attention in recent years due to the absence of
major new signals in model-dependent searches
e Recent contributions have used classifiers to extend
model-independent searches into high-dimensional spaces
e |f the classifier appears to see something, how do we understand what
it is seeing?
e In our work?, we contributed to addressing this interpretability
question by:
© Using active subspaces to analyze the trained classifier surface
@ Proposing a way to estimate the signal strength from the trained
classifier
e Both of these could be of independent interest beyond
model-independent searches

2P, Chakravarti, M. Kuusela, J. Lei, and L. Wasserman, Model-independent detection
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Backup
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Related problems in statistics and ML

The model-independent search problem is closely related to a number of
problems studied in statistics and machine learning

Specifically, it can be seen as an example of:

© Two-sample testing (e.g., Kim et al. (2019, 2021)):
iid id . 5
Xi~p1, Yi~ p2,is p1 = pa’

@ Collective anomaly detection (e.g., Chandola et al. (2009)):

Is there a collection of data points which taken together deviate
from the anticipated data?

Notice that

model independent search = outlier detection

Each signal event is typically indistinguishable from the background on its
own; it is the collection of many signal events that defines the excess
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p-value distributions for the semi-supervised tests
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Classifier-based test statistics

Test statistics based on a classifier h that is trained to separate experimental data
from background data:

@ Likelihood Ratio Test Statistic:
LRT =27 " log (W),

where 'LZ(Z) = m _hz2) s 5 classifier-based estimate of the density ratio

¥ =q/p»
@ Area Under the Curve (AUC) Test Statistic:

0= mi - ZZJ: H{F(Wj) >F(x,-)}

Test Hy : 6 = 0.5 versus H; : 0.5 < 6 < 1.
© Misclassification Error (MCE) Test Statistic:
MCE = 5 [— Z ]I{h(X,-) > 7r}—|—; Z ]I{h(WJ) < 7T}:|, m = n/(n+mp)
i J

mp

Test Hy : MCE = 0.5 versus H; : MCE < 0.5.



Calibration of the tests

In order to control the Type | error, we need to obtain the distribution of
the test statistics under the null Hp : A =0

Notice that under the null both X and W are samples from pj,
Three approaches:

@ Asymptotics: Can derive the asymptotic distribution for each of the
test statistics; for example, for AUC, Newcombe (2006) showed that

79_0'5 ~ N

Vo(0)

(0,1),

for certain Vo(g) under the null

@ Nonparametric bootstrap: Sample with replacement from X U W and
randomly label as either X's or W's

© Permutation: Randomly permute the class labels in X U W
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In-sample vs. out-of-sample evaluations

In practice, we need to be careful with in-sample vs. out-of-sample
evaluation of the classifier h

e For each calibration method, we use half of the data to train the
classifier and the other half to evaluate and calibrate the test
statistics (sample splitting)

e For the permuation method, we also consider a variant where the
classifier is evaluated in-sample, which requires retraining the classifier
for each permutation cycle
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Classifier output
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Some options for the test:

e Counting experiment in
the highest purity output
bin

e Cut on the classifier
output; test using the
resulting signal-enriched
sample

e LRT: Use the connection
of the classifier output to
the likelihood ratio
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Model-independent searches in low-dimensional spaces

In Kuusela et al. (2012) and Vatanen et al. (2012), we used Gaussian mixture
models to first fit the background sample and then, given the background model,
fit any anomalous signal present in the experimental sample

4 4
Background
Signal .
2 2 ) o
9] N
3 o 3 o
& a
-2 -2
-4 -4
-5 0 5 -5 0 5
PCAL PCAL
(a) Background model py(z) (b) Signal model ps(z)

This approach works fine in 2—-3 dimensions but does not really scale to higher
dimensions
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Discussion: Background systematics

The aforementioned approaches assume that the training background X
comes from the true background pj

However, in practice the MC generator for X is likely to be systematically
misspecified

So the “signals” found might simply be due to background mismodeling

That does not necessarily mean that these techniques are not useful:

e Can be used to identify and characterize regions of high-dimensional
phase space where background is mismodeled

e Can be used as a pilot analysis to guide dedicated model-dependent
searches

e Can serve as a starting point for model-independent analyses
accounting for background systematics
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Discussion: Background systematics

In principle, there is no reason we couldn’t incorporate background
systematics into model-independent searches

Can learn from modeling techniques developed for model-dependent
searches: template morphing, parameterization using nuisance parameters,
two-point systematics,...

Building such systematic variations into the model-independent tests
requires developing new statistical methodology

D'Agnolo et al. (2022) is a very interesting recent contribution toward this
goal

This is one of those areas in HEP where statistical methodology is not yet
fully established
— There is room for further exciting methods development!
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Density Ratios and Classifiers

In general, given two densities p and g and samples

Xlu"'7Xan
Ylv"'ayan
. _ X1 ... Xo Y1 ... Y,
Give labels: 711 0 0
Classifier v:
p
P(u) = P(Z =1ju) = ——
()= P(Z = 1) = -2
and so
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p-value distributions for the supervised tests
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