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Outline

In this talk, I’ll make some selected remarks on the following topics:

1 Interpretability

2 Model-agnostic searches / anomaly detection

3 Unfolding with ML

4 Generative models

5 Simulation-based inference

Disclaimer: This will not cover everything we’ve seen during the workshop.
Also, this will be more about adding thoughts / context / discussion
points and less about reviewing the talks.
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Interpretability

What is interpretability and why do we need it?
→ “Warm, fuzzy feeling that you understand what your NN is doing” (J. Thaler)

Do we always need interpretability?

Consider some really complex parametric model p(x |θ)
Imagine that you’re able to find the MLE θ̂ but it is some really messy
function of x
Usually at this point we’re happy without starting to ask what features of x
the MLE is picking up

Similarly in ML we usually understand from the loss function what the neural
network is asymptotically learning (class probability, likelihood ratio, score,
conditional mean,...)

Do we always really need to understand what features the NN is picking up in
those cases?

But in certain use cases interpretability seems highly desirable

For example, in model-agnostic searches / anomaly detection we would like to
understand what the NN is seeing in the high-dimensional feature space
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Interpretability

How realistic is interpretability?

Notice that interpretability is really hard even in classical linear regression

y =
∑p

j=1 βjxj + ε

There are many ways to assess whether each βj should be in the model
(depends, e.g., on the order in which you consider the βj ’s and whether
you add or remove them from the model)

But still simple regression models at least feel less “black boxy” than
complex neural nets

Suggestion: Additive models

y =
∑p

j=1 fj(xj) + ε,

where fj ’s are splines, are often recommended as a good compromise
between interpretability and model flexibility
→ Perhaps it would make sense to fit an additive model to the output

of a trained NN to interpret the NN?
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Interpretability

Notice that in the absence of controlled / randomized experiments, any
standard interpretability method merely reflects correlations between the
inputs and outputs

But: correlation 6= causation

Causal inference is a subfield of statistics attempting to establish rigorous
causal relations between covariates (inputs) and responses (outputs)

Could these be the ultimate tools for interpretability?

Perhaps a topic for a future PhyStat seminar?
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Hypothesis testing for discovery of new physics

Searches of new phenomena at the LHC
usually boil down to testing for the presence
of a signal distribution over a background of
known Standard Model physics:

Known physics: pb(z)

New signal: ps(z)

Nature: q(z) = (1− λ)pb(z) + λps(z)

Want to test H0 : λ = 0 vs. H1 : λ > 0

If one rejects H0 at a high enough
significance level, then one might proceed to
claim discovery of new physics
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Landscape of model-agnostic methods
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Related problems in statistics and ML

The model-agnostic search problem is closely related to a number of
problems studied in statistics and machine learning

Specifically, in many cases it can be seen as an example of:

1 Two-sample testing (e.g., Kim et al. (2019, 2021)):

Xi
iid∼ p1, Yi

iid∼ p2, is p1 = p2?

2 Collective anomaly detection (e.g., Chandola et al. (2009)):
Is there a collection of data points which taken together deviate
from the anticipated data?

Notice that

model-agnostic search 6= outlier detection

Each signal event is typically indistinguishable from the background on its
own; it is the collection of many signal events that defines the excess
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How to be model-agnostic for both signal and background?

New idea in arXiv:2409.06960: apply an event-level low-pass filter
(smearing) and neural density ratios to find data-driven signal regions in a
model-agnostic way in a high-dimensional feature space
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We learn γ by training Z3b vs. Z4b and γ̃ by training Z3b + E vs. Z4b + E
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Unfolding with machine learning

A major development in the past few years: using machine learning to help solve the
unfolding problem

Two main approaches:

1 OmniFold (Andreassen et al., 2020): iteratively reweight particle-level MC events
using classifier-based density ratios

2 Generative unfolding (Bellagente et al., 2020; Backes et al., 2024): Train a generative
model to sample from p(X = t|Y = s); iterate to reduce dependence on pMC(X = t)

Benefits of ML-based unfolding:

Does not rely on binning
Provides event-level unfolded results
Can handle (moderately) high-dimensional phase spaces
Does not need a separate estimate of the response kernel k(s, t) = p(Y = s|X = t)

Open question: What kind of regularization do these methods impose on the unfolded
solution?

Conjecture: The regularization is implicitly in the structure and training of the neural
networks
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Generative models

The basic idea in all ML generative models is to train a neural model to map from a
latent variable z generated from some tractable distribution (usually N(0, I )) to the
data distribution

(Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/)
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Generative models

My take on the active (and converging?) discussion around generative models:

Q: If I train a generative model with n data points and use it to sample m data
points with m > n, have I gained anything? (“GANplification”)

A: A cautious “yes”. The information content is still that of n data points but the
generative model has a built-in inductive bias. To the extent that the inductive
bias is a close enough reflection of reality, the larger sample can be more useful
than the smaller sample.

Q: How to quantify the uncertainty of these generative models?

A: Perhaps best viewed as a combination of aleatoric and epistemic uncertainty?
BNNs suggested as a potential way to account for both.

−3 −2 −1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

density.default(x = data)

N = 10   Bandwidth = 0.6218

D
en

si
ty
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Generative models

Q: How to validate a generative model?

A: Train a classifier to separate the generated data from the training data. Just
keep in mind that this is a high-dimensional two-sample test and there does not
exist a test that has high power for every possible departure from the null.

For validation of conditional generative models, see talk by J. Linhart at
PhyStat-SBI:
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Simulation-based inference

Simulation-based inference (SBI) makes inferences about a parameter of
interest θ given data x from a parametric model

x ∼ Fθ

when Fθ is only available as a simulator

Ingredients:

Sample of parameters: θ1, . . . ,θn ∼ p(θ)

Corresponding simulations from the model: xi ∼ Fθi , i = 1, . . . , n

Observed data: xobs

Task: Infer θ that generated xobs (i.e., produce point estimates,
confidence sets, credible sets, posteriors, hypothesis tests, etc.)

Key insight: Machine learning enables us to do this with very
high-dimensional x
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Which test statistic to use?

“Likelihood ratio is not guaranteed to be optimal for simple vs. composite tests.
Are there benefits from considering some other test statistic?”

Waldo (Masserano et al., 2023) uses the following test statistic:

τWaldo(D;θ0) = (E[θ|D]− θ0)TV[θ|D]−1(E[θ|D]− θ0)

Benefits:

Many SBI methods already produce E[θ|D] and V[θ|D]

Can take advantage of prior information without losing frequentist validity

[Masserano et al. (2023)]
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SBI for spatial statistics

“Is there a more general notion of SBI?” → Yes!

In recent years, there has been an explosion of interest in SBI / neural inference /
amortized inference for purely statistical models especially in spatial statistics:

Neural prediction for spatial models (Gerber and Nychka, 2021; Lenzi et al., 2023;
Sainsbury-Dale et al., 2024)

Neural likelihood for spatial models (Walchessen et al., 2024)

Neural prediction with censored observations (Richards et al., 2023)

Neural prediction with irregularly spaced observations (Sainsbury-Dale et al., 2023)

Figure: Neural prediction for satellite sea surface temperature using locally
stationary Gaussian processes (Sainsbury-Dale et al., 2023)
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Backup
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SBI for purely statistical models

Purely statistical models (“spherical cows”) vs. mechanistic simulators:

Domain Purely statistical model Mechanistic simulator
Oceanography Gaussian process regression of Data assimilation with

irregularly sampled observations general circulation models
Epidemiology ARIMA time series models Compartmental models
Finance Stochastic volatility models ??
Particle physics ?? MC generators

Figure: Spatio-temporal interpolation of subsurface ocean temperature anomalies using
moving window-based locally stationary Gaussian processes (Kuusela and Stein, 2018)
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The statistical fundamentals have not changed

While SBI has enabled inference in many previously intractable settings, it
is important to keep in mind that it cannot circumvent fundamental
limitations of statistics:

Cramer–Rao lower bound: Var(θ̂) ≥ 1
I (θ) , where I (θ) is the Fisher

information

Uniformly most powerful tests do not exist in general

Sufficient statistics only exist in exponential families

Goodness-of-fit tests place power on specific alternatives

...
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Two notions of coverage

When validating SBI techniques (or inferential procedures more generally),
a common desideratum is the coverage of an interval estimator [θ(x), θ(x)]
of θ (for simplicity, let’s take θ to be scalar here)

It’s good to keep in mind that there are two different notions of coverage
that often get mixed up:

Marginal coverage: Px ,θ(θ ∈ [θ(x), θ(x)]) = 1− α, where both θ and x are
random inside the probability statement

Conditional coverage: Px |θ(θ ∈ [θ(x), θ(x)]) = 1− α, for all θ, where x is
random but θ is fixed inside the probability statement

Even though these look similar, these are fundamentally different notions of
what we mean by “uncertainty”

Marginal coverage is easier to achieve but is a weaker notion (in fact,
conditional coverage implies marginal coverage but the reverse is not true)
Marginal coverage only makes sense if it is sensible to think of θ as being
random
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