Impressions

PHYSTAT: Stats Meets ML

Lukas Heinrich, 12. Sept. 2024

11 Dec 2023

Bayesian Methodologies with pyhf

Matthew Feickert!:*, Lukas Heinrich?**, and Malin Horstmann?»***

' University of Wisconsin-Madison, Madison, Wisconsin, USA
2Technical University of Munich, Munich, Germany

Abstract. bayesian_pyhf is a Python package that allows for the par-
allel Ravogian and froonontict ovalunation af mnltichannol hinned cta

Profile Likelihoods in Cosmology:
When, Why and How illustrated with ACDM, Massive Neutrinos and Dark Energy

Laura Herold,* Elisa G. M. Ferreira,> and Lukas Heinrich?

IDepartment of Physics and Astronomy, Johns Hopkins University,
3400 North Charles Street, Baltimore, Maryland 21218, USA

“Kavli Institute for the Physics and Mathematics of the Universe (WPI),




My 5-D 14-Dimensional Outline

To deal with a 14-dimensional space,
visualize a 3-D space and say

S
S L

W fourteen' to yourself very loudly.

- Gesﬁr‘zezf Hinten —

. ' l(\ % ) Everyone does it.
. h
3

AZ QUOTES




Stats Meets ML?




Stats Meets ML?

David Pfau

Whenever people say "statistics and machine learning are the same
thing" just know that not a single person in machine learning knows (or
cares about) any of this.

@ Prof Lennart Nacke, PhD &

How | pick the right statistical test for my experimental variables

Common Statistical Tests
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HEP (and others) & ML: deeply related
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reconstruct high level concepts
from low-level, high-dim data




HEP (and others) & ML: deeply related

street style photo of a woman selling pho This is a picture of Barack Obama.
at a Vietnamese street market, His foot is positioned on the right side of the scale.
sunset, shot on fujifilm High-Level The scale will show a higher weight.

Concept
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reconstruct high level concepts
from low-level, high-dim data
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ML Wild West

A focus of the last years is to “to learn the technology” - build up
technical capability around this new set of “new numerical tools” (Tilman)

We have gotten very good at this

an funny drawing of cowboys and cowgirls taming an artificial

Deep generative models

intelligence
4 4 w
B-VAE Hierarchical < ] > Diffusion Probabilistic
VAE | Model
Variational ' ' . .
Autoencoder Diffusion Model
: Conditional Flow
VQ-VAE matching Matching
3
\ 4 y
~ )
v
Wasserstein GAN Normalizing Flow Continuous NFs
Generative Maximum-likelihood
Adversarial Network Models
LS-GAN Relg%iftic Autoregessive Transfomer (GPT)
\_ J \_ J

(Ramon)



ML: Eierlegende Wollmichsau?

A picture of a Eierlegende Wollmichsau

) The "Eierlegende Wollmilchsau" (German for "egg-laying wool-milk-sow") is a humorous

metaphor used to describe something that is supposed to do everything, typically in an

exaggerated and impossible way. It represents a creature that lays eggs, produces wool, gives

milk, and functions as a pig.

I'll create a whimsical and surreal image of this fictional creature combining elements of a pig,

sheep (for wool), cow (for milk), and hen (for eggs), in a humorous and exaggerated style.

Generating this now!

(Ramon)

Here is a whimsical representation of the "Eierlegende Wollmilchsau," capturing the fantastical

nature of this humorous creature. Let me know if you'd like any changes!




Where can a Statistical Point of View help?

ML is an extremely empirical science. In many ways it’s successful
because it ignored theory to some extent

But once we tame this new technology maybe stats can in some ways
help us tame ourselves.

under-parameterized over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

-~ [Training risk:
B P . _interpolation threshold

\

but e.g. interestingly, this just re-discovered some old statistics
- is this the Feldman-Cousins of ML? ;)
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Where iIs the Statistics ?

Statistics

S

use stats to create, discuss the
foundations, language, theory of ML

Physics
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Where iIs the Statistics ?

use ML to essentially implement the
statistics workflow

Physics

11



Where iIs the Statistics ?

Statistics

let’s learn
hey physics, to do stats you a good summary
need a good summary statistic of the data

Physics

12



Where iIs the Statistics ?

Our Delusion of Grandeur (or not?)

Statistics

Al4Science, sure.

original PHYSTAT credo: But even better: Science4Al !

maybe our problems in limit-setting,

_ The rigor in science is a challenge
are actually research problems in stats?

even for state of the art ML

Motivation
P h - Why GWs need ML Increasing event rate Large-scale analyses
ysics —_—
02 | o3 'Ab
100 Time (days) 700
Why ML needs GWs

|Strict requirements for accuracy,

(M a x) lreliability and interpretability

&Complexity of GW data

= GW data analysis pushes existing ML past its limits

Maximilian Dax
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Anomaly Detection

Statistics can help bring clarity to how we frame ML use-cases
where do we want statistical power ?

What's the right way to perform anomaly detection?

Proposition (informal): No method can guarantee performance better than

T h i S i S t h @ key i N A D - random guessing without assumptions on the out-distributions.

4
= 0.8 1 p(pp(x))
Are we ready to do it? g / o)
. 0.6 1
= 9 : ,;?_' ‘ rgp(x))
If yes in what language* o/ A
e e p(x)
-2 q(x) | 0.2 =
- ( )
e R | Lily
-2 0 2 4 -15 -10 -5
7 =, y 7 Y 4 Lily H. Zhang, Mark Goldstein, Rajesh Ranganath.
Need to sp CCIfy out dIStr’butlons Oflntel’est. “U:derstanadiﬁg inlure(s)ins(t)eut-ofifiZtribitfn N

Detection with Deep Generative Models.” ICML 2021.

Ultimately goes back to what we learn in Stats Intro:
there no universal most powerful test

14



Anomaly Detection

Statistics can help bring clarity to how we frame ML use-cases
where do we want statistical power ?

September 10", 2024

The problem of model selection

How to define the family of universal approximants?

” <
5 5 g _ fx,w) = log [n(x D) ] (_"?
This 1s the key In AD: G| R) w
Are we ready to d O it? © Trade-off between expressivity and specificity is required
. - »  Model selection: hyper-parameters choice poses hard constraints.
If yes | n Wh at Ia n g u ag e? » Regularization is a powerful form of inductive bias (e.g. smoothness) affecting

the learning dynamics

(Gaia)

G. Grosso | gaia.grosso@

Challenge to Theorists:
How do we specify theories we care about without specifying the Lagrangian ?
(History: GUT Theories — Simplified Models — ???))



Bump Hunts

“Bump hunts” are doing exactly this: We specify a equivalence
class of theories that share a very vaguely defined feature

Sculpting problem A" TheOrieS

Example: Protected variable: Mass, Cut: Classifier output h > 0.5.

Distribution of Mass Distribution of Mass after Cut
Density of Mass Density of Mass given h > 0.5

12 Class Class
. Signal . Signal
Background 10- Background

8_
2 =
£ £
c c
a a

5 o
4- 1
0 0

Theories with a resonance
at mass M (irrespective of the rest)

16




Anomaly Detection + Reinterpretation

The Story from Simplified Models Repeat: we give up power for
any one specific theory: Effective in Multiple Testing Scenarios

best performance
on my hyperspecific

Power
theory

>
Theory

middling performance
but on many theories!




Reminder of Motivation of Profile L’hood

Profile Likelihood is designed to have ~ roughly equal power for all
alternatives that are “equally far away” from the null. It’s a specific choice
and we could make other once

—»

Null Theories

18



Anomaly Detection

Statistics can help bring clarity to how we frame ML use-cases

To me a useful experimentalist framing N
(and a Q | ask often) \O

You have 5 AD algorithms, but only “TCMs = Gcodvess izt |
100 Hz of Bandwidth In the Trigger

')

é 150
= = = Deploy New New Deplo
How do you decide which one to deploy? I Y Mo e M B M |
9 patataking | """ | Datathking | "% | Datataking e
If the answer involves any reference g |
to performance on simulation, we —

WY Al A bk a9 40 4l a® A9 0 Y
ol R R R I G I A A O A

Time —_—

essentially made a choice in theory space

Big jJump In technical readiness in extreme environments:
Confident we can implement any answer we come up with



Amplification?

Can you really create information out of nothing? No, so what’s going on?

2. Generative models for many fast simulations from few full ones.
What do we gain by using ML to learn from a few fully simulated events how to generate a large number of
events quickly?

For example, we believe some (x,y) data should lie on a straight line and are interested in the gradient. With
difficulty we do a full simulation of 4 (x,y) points. Our ML procedure learns from these 4 points how to generate
new data, and produces 1000 new (x,y) pairs. The statistical uncertainty on the gradient is greatly reduces, but
there is a large systematic related to the particular choice of the initial 4 points. Is there anything that we can
useful we can learn from the larger sample? Are generative methods different from this in some subtle way?

20

Surrogate Models

Collider or Synthetic data

used in analysis

classical Training Data Set Surrogate Model
simulation

Few samples Many samples

Does this even make sense?
Evis

218k Geant4

0.15 1= 1k Geant4 107 e |
0.10 4~ VAE-GAN . Scaling of
0.05 - 102 T difference to
9 . ———  ground truth with

1k—1000k resolution again
218k validation better for the

showers .
Ceanta generative model.

600 800 1000 10~5 —— VAE-GAN

E..MeVl @ 3 ———T—T——T
vis [MeV] 4 16 64 256 1k 4k 16k

Bieringer, .., GK et al 2202.07352 n




Amplification?
Can you really create information out of nothing? No, so what’s going on?

Space of Densities

21




Amplification?
Can you really create information out of nothing? No, so what’s going on?

Space of Densities

— »

Training Sample: N =6

A simple density estimation technique: histogram
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Amplification?
Can you really create information out of nothing? No, so what’s going on?

Space of Densities

Training Sample: N =6

A simple density estimation technique: histogram
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Amplification?
Can you really create information out of nothing? No, so what’s going on?

Space of Densities

L

Training Sample: N =6

A simple density estimation technique: histogram
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Amplification?
Can you really create information out of nothing? No, so what’s going on?

Space of Densities

Training Sample: N =6

A simple density estimation technique: histogram

25



Amplification?

If we repeat this many times we can see how this density estimator fares

Unbiased: We sample from the real thing

High-Variance: with few samples, the estimate is
all over the place from sampling variance Px

What we usually call “MC Stat Error”

26




Amplification?

Nobody forces us to use mere histograms. A frequent idea that comes
up: couldn’t we do some other type of density estimate?

KDE of 6 samples: This is a density model and generative model!
(like a pre-historic normalizing flow)

27



Amplification?

You can now sample quickly (call it “fast simulation”) basically an infinite
number of samples from the KDE

histogram of
training data

density from trai
+ KDE

Ing data
A
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Amplification?

You can now sample quickly (call it “fast simulation”) basically an infinite
number of samples from the KDE

histogram of
training data

density from trai
+ KDE

Ing data
A
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Amplification?

You can now sample quickly (call it “fast simulation”) basically an infinite
number of samples from the KDE

histogram of
training data

density from trai
+ KDE

Ing data
A
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Amplification?
How do we characterize this estimator?
Biased: this depends basically depends on

which training data + hyperparameters
(bandwidth, etc)

Zero-Variance: if we can draw an infinite
amount from this we can make it arbitrarily small

31



Amplification?
So how do the two compare?

sampling from Geant sampling from generative model
converges to true zero MSE converges to its inherent bias

Number of Drawn Samples

32



Amplification?

So how do the two compare?

sampling from Geant sampling from generative model
converges to true zero MSE converges to its inherent bias

but this sampling is much faster!
shrink time scale!

Time / Resource

33



Amplification?

So how do the two compare?

sampling from Geant sampling from generative model
converges to true zero MSE converges to its inherent bias
Amplification? but this sampling is much faster!

With a real density model shrink time scale!

| don’t even need to sample 1\
(Flow, KDE, ...)

Time / Resource

You can reach same “MSE” in shorter (or zero) time...

34



Amplification?
In a way this just the bias-variance tradeoff. We trade off

* a zero-bias ~high-variance strategy (samples from G4 + naive histograms)

 biased, ~zero-variance strategy (density estimate trained on
few samples e.g. KDE, Flows, GANSs, ... )

Amplification?

‘ \
y )
\__/

3 ———

— >
Time / Resource

You can reach same “MSE” in shorter (or zero) time...
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Amplification?
In a way this just the bias-variance tradeoff. We trade off

* a zero-bias ~high-variance strategy (samples from G4 + naive histograms)

 biased, ~zero-variance strategy (density estimate trained on
few samples e.g. KDE, Flows, GANSs, ... )

| , |
But it’s a bit apples to oranges
few G4 I fancy density est many G4 I non-regularized
samples (KDE, GenAl + « samples, Flows) VS. samples density estimate

biased, no-variance unbiased, high-variance

Amplification only happens iIf you use a fancy density estimate on few
samples to compare to a dumb density estimate with many samples

36



Amplification?
This is a one-time gain. You can benefit from regularization once. But

there is no general rule where 1 GenAl event = 1/100 Geant Event
(i.e. if GenAl were 100x faster you would gain)

With a fixed generative model, you will never reach the true distribution
no matter how many samples you draw. With Geant4 you will.

37



Interpretability & Control

We don’t only want to tame us but also the networks - or “understand” them.

But what are they learning??

Why might we want ML to be “Interpretable”?
Or exp)l;inablf trustworthy, safe, robust, aligned, helpful, transpaI?ent, .. (J eSse) A l/ m O de IS are Wro n g

Scientific Reasons: Could be working in non-asymptotic regime b Ut some are us EfUI

Training data might be biased in some way

Result could depend on poorly modeled features
Limited ability to perform independent validation
Need for compact symbolic expressions

Desire to generalize away from specific context

Sociological Reasons: Skeptical of algorithmic/statistical/computational reasoning
Need to explain decisions to external stakeholders
Desire to manage risks from unforeseen outcomes

All valid reasons, but suggest imperfect specification of our initial goals! George E.P. Box

Jesse Thaler (MIT, IAIFI) — Interpretable Machine Learning for Particle Physics I5

It’s a lot about retaining control in an uncertain world, when you don’t trust the process

Not new: “Bayesian Workflow” / Iterative Model Building etc is a lot about understanding
a system. If we’d trust the model / process we would just run MCMC and be done



Interpretability & Control

When you trust the process & underlying tools we’re fine w/o interpretability

Example: Likelihood-Ratio
Estimation when you have a
simulator you trust

“What is the machine learning?”

For this loss function, an estimate of the likelihood ratio
derived from sampled data and regularized by the
network architecture and training paradigm

“But | want to understand what it has learned!”

Do you really expect the
likelihood ratio to take on a
particularly nice functional form?

€€ »»

Jesse Thaler (MIT, IAIFl) — Interpretable Machine Learning for Particle Physics

39




Statistical model

Performance under Intervention

What we do want to understand: how does ML react to distribution shift

e.g. from interventions (Sherpa — Herwig, etc)

A lot of literature (Causal Inference) that we don’t use

Causal model

do(I3)

©@®

/
=

I

©© s

e

P;-O(Il)

2102.11107

Does a New Drug Improve Health Outcomes?

Causal Inference:
@ Split subjects: treatment (A = 1) and control (A = 0) group.

@ What if treatment group differs systematically from control group, e.g.,
in terms of x.

?
Ptreatment (X) = Peontrol (X)

@ Randomization is the gold standard, not always possible.
Propensity Scores:
@ Rosenbaum and Rubin (1983) define propensity scores:

e(x) = P(A =1|x).
@ Demonstrate that e(x) is a balancing score:

Ptreatment (X|€(X)) = Pcontrol (X|€(X)).

eeeeeeeeeeeeeee

(Maximilian)



Inductive Bias: A Physicists’ Love Affair

Two ways to think about it

Learnable Parameters

&

Jo(r(8)x) = 1,(8)f (%)

Physics Computation ML modules

Statics . Dynamics

(enforce symmetries etc) mix physics + ML workflow,
keep control over data flow



Inductive Bias: A Physicists’ Love Affair

First, give the belt two full twists.

1 :
¥ :
o' .
Yeys + : + |
s Vo v ‘

Geometric algebra Equivariant Transformer
representations layers architecture .
Spinor state
R =
Ll i ; p/—///
Strong performance Scalable
\ on diverse problems to thousands of tokens End of belt has been rotated by 0 deg Path through SO(3)

42



Soft Symmetries

Another version of Control / Interpretability: Force Behavior onto ML

E f ° f ° I ‘f‘ . . . . G. Louppe, M. Kagan, K. Cranmer,
nTorcing rairness on a cilassitier Learning to pivot with adversarial networks arXv:161.01046
_ " _ o normal training adversarial training
ROC Split (during training of ML model) Post integration methods Typically classifier f(x) trained to minimize loss L. o |
. . . . . ° o . oy . 0.9 25 I'E | 0.84
e Iterative algorithm trains classifier to satisfy EOP e Train classifier R with mass as input want classifier output to be insensitive to systematics 05 . B | 072
. , , , (nuisance parameter v) 0.7 | e (B
e Divide Mass into bins and determine AUC e Integrate out mass P R N o.60
: * introduce an adversary r that tries to predict v based ' Lo v=0
e Sample events from with p;= 2(1-AUC)) . y ¥ s 1 e o8
RP(.XI) = R(Mﬂ ,X) P(M;m) de‘ Oﬂf. 0.4 0.36
Trai del I d 0.0 ' 0.0
e Train model on new sample and repeat o E
. . ® setup as a minimax game: -0.5 . -05 024
o 10 o 10 e Effective, but strong impact on P 9 o
¢ | Before € [ After - Performance “100-05 0.0 05 1.0 01 12005 00 05 10 15 20 °?
:‘5 0.8 . § 0.8
a 4 Vg a . . . A A . 4.0 4.0
E E e Helpful, if the correlation is small 0f,0, = argminmax E(0y, 0,.). L[ PUOT v ) Sl [ PUOT v )
os- 7 4 h " from the beginnin br  Or le= ptsx0)l v=0) = 0l v
7 s _ 9 9 3.0H ) p(f(X)| v=-1 ) 301 p(f(X)| v=-1 )
—— Interval 0: AUC = 0.81 ,/ »’/ —— Interval 0: AUC = 0.70 1/ EA(Of’ 07-) - Ef (ef) o AET (ef, 07-) 2.5¢
— pACTes ur f 0 Tt e See Purvasha’s talk for more =
— Interval 3: AUC =062 | | /’ —_ Ime:va:i :ﬂg-gig ] . . :é: 2.0+
B T /[ e sophisticated methods! =
: toal 7 AUG - 062 orf Iteval 7 AUG - 070 Lo
047 0.2 04 06 08 1.0 L R—" 0608 10 ’ 0.5
False Positive Rate False Positive Rate
0980 02 04 06 08 1o 98002z 04 06 08 1o
f(X) AX)

(Oliver) (Kyle)
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Dynamics: Control over the Data Flow

Two ways to do optimal observables

4 (xreco | 0) = Idthd p (xhard | 9) P (xreco | xhard) e(xhard) p (x ‘ 9)
| NN(x, 0) x ———
¢ / / \ ;
Efficient MC integration Theory knowledge Transfer function Acceptance function p O (X)
importance sampling: diff. cross-section density estimation: learn with simple
Normalizing Flow 1 do(a) Normalizing Flow classifier network
Xhard ~ P (xhard |xrecov 9) o‘(a) dxhar q + Transformer

A lot of ML tied together by domain knowledge

why should you ever do MEM after we got SBI?

— maybe to have a fuzzy feeling of control

— 1o separately debug each piece

— the fuzzy feeling is very expensive - how much do we care?



Extreme Version of Dynamics

end-to-end gradient based optimization: SANNT, neos, Inferno, ....

Interesting parallel to foundation models: pretrain a initial analysis
w/0 systematics, finetune later e2e in-situ w/ full physics context

Changes to the training procedure summarized

. . CENNT
Use CE pretraining achieving:
® Process separation [ Systematics ~ Data } Backpropagation
® Good starting point for SANNT T — ; —
[ Neural Network ] [ CE J ur r rs «’ A
Main difference: SANNT vs. CENNT : T f VRN |

® Changed training objective

{ Histograms }

® Added information about systematic
variations to the training

Physics
| 4 Objective

Effects from added A
000

PHYSTAT: Statistics meets Machine Learning




DOM number

IS
U

DOM number

B
19}

N
9y}

w
o

w
9}

N
(]

n
o

N Ul
U1

Qstr. = 6.0e3 p.e.

10*

100 |

p.e.

w
O

w
u

IS
o

46

100 200 300
time/3.3 ns

ntuitive & Interpretable is what you are used to
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(a) Xi versus Xz, F(Xl,Xz) versus Xi and E(Xl,Xg) versus X

Classifier Output Surface

Gradient along X,
o

. 2 1 0 1 2
Gradient along X4

(b) Smoothed
Classifier Surface

(c) PCA of the
Standardized Gradients

(Tobias, Mikael, Philipp, Pierre, etc)



Simulation-Based Inference

Statistics always had a nice quality: a common language to tie together
many different fields that are driven by data, irrespective of the detalls

Version 1: “Pen & Paper” Statistics

T g Graphical g Implicit
Paper Models Models

Histogram of LLR

00 01 02 03 04 05 06

Predicted state Optimal state Measurement
estimate estimate 0 5 10 15

sampled values o f LLR values

Conjugate Priors, Kalman Filters, ... Distribution-free Tests, Asymptotic (Wilks’),etc..

Bayes Frequentist
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Simulation-Based Inference

Statistics always had a nice quality: a common language to tie together
many different fields that are driven by data, irrespective of the detalls

Version 2: Principled, Heavy Compute Stats

Pen &
Paper

Bayesian Hierarchical Modelling of Conditional Densities

@ Population level distribution within bin b:

5

=1,...,n7p

Fzilxi)

4

&

(Maximilian)

p(up> 76 Kamy) o< P(ttb, 0b) | | N(ilp, 72 + B).
i

indep.
Zilup, op -~ N(up,os),

with redshift population variance o7.
@ Object level:

(6)

indep. A
ZilXi m’gp N(é’ia Tiz)a (7)

Gaussian replacement of conditional
density estimates.

@ With X, = {£, 7i} %, obtain the (joint) marginal posterior

eeeeeeeeeeeeeee

(8)

g Graphical
Models

g [mplicit
Models

The HistFactory mode 3 /G

 HistFactory is a statistical model for binned template fits (CERN-OPE]|

> prescription for constructing probability density functions (pdfs) fro D/— 3

> covers a wide range of use cases (and can be extended if needed)

> here: primary observables are 7, auxiliary observables are a

unconstrain '
icti df
parameters, e.g. POI prediction (s P \D
over sa

v . }
p(i,d | k,0) = H Pois(n; | vi(k, 0)) - ch(aj | 6)
J

48 (Alex, Kyle)



Simulation-Based Inference

Statistics always had a nice quality: a common language to tie together
many different fields that are driven by data, irrespective of the detalls

Version 3: Implicit Models aka Simulation-based Inference

T g Graphical g Implicit
Paper Models Models

Parameters 6 2=\

.l 0,
l Observables 1422:"" ,3@% - .....
| is defined implicitl _ G
 Model is defined implicitly as >z —s G o)y
| 21 e ratio
a black box sampler smuzor | R " angminlg] — #el0) —— | |
. . Latent 2 Augmented data 0.
* Fast, approximate amortized
| 1. Simulation | | 2. Machine Learning | | 3. Inference |
Inference
Z‘(;Tng glc?lci”: EXt?Ct Use this information to Limit setting with
additional Information train estimator for likelihood ratio standard hypothesis tests

from simulator
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Simulation-Based Inference

(also see Gilles’ Talk)

Results

Fits on Simulated Experimental Data Binary black holes
* Sensitivitieg
Discussion
No-oscillation I
o sweol  FCMLC Pros and Cons DINGO
_.| Preliminary
o * Pro: The SBI approach is much faster than traditional fitting methods.
* With a NN and a NF trained, posterior density estimation takes ~5 minutes and can run in a Jupyter notebook. . .
05 _ _ o _ + Inference in seconds to minutes
2 * Together with generation of MC data, training, and FCMLC evaluation, ¥2.5K CPU hours ) )
g " : * By comparison, Feldman-Cousins takes 510K CPU for the experiments considered in this work. using pre-tramed networks
) * * Pro: Runtime of FCMLC is ~constant with respect to the inclusion of more experiments. (1OOOX speed up)
i 2 COMLE 5,08 CR * Pro: SBl does not assume Gaussian uncertainties, and it is straightforward to set up simulations to capture
= ;5:5%3935?/ o this. Extremely good agreement with
%0 25 20 -1 * Con: Hyperparameter optimization can further extend the overhead of FCMLC. standard Samplers
log1o Y|
e Con: FCMLC is sensitive to the way in which you generate your MC data.
m * Con: FCMLC's posterior density and Feldman-Cousins answer slightly different statistical questions. -  Likelihood-free
Maximilian Dax

Dax+ (PRL 2021)
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( ' I ) ?__I'_‘I__Y__S_I_AT Feldman-Cousins’ ML Cousin (Villarreal)

Not better, but much much faster. Interesting Observation:

SBI useful even in not likelihood-free settings, just as a fast amortized inference
— are there principled ways to do L’hood-full SBI? (Gradients, L’hood, etc..)
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Tooling,

Differentiable & Probabilistic
Programming bridge the gap
between “black box” simulators

and graphical models

High-dimensional model comparison for cosmology

""
,"/ Emulation (CosmoPower-JAX)
'iﬂ +
piras and Spurio Mancini, 2023 Differentiable and probabilistic programming
+
Scalable sampling (NUTS)
+
Decoupled and scalable evidence (harmonic)

HARMONIC

(Piras et al., 2024) arXiv:2405.12965

Alicja Polanska 20

)

PYRO

Deep Universal Probabilistic Programming

ooling Tooling

1907.03382

Etalumis: Bringing Probabilistic Programming to Scientific
Simulators at Scale

Atilim Giines Baydin Lei Shao Wahid Bhimji
University of Oxford Intel Corporation Lawrence Berkeley National
Laboratory
Lukas Heinrich - — el
CERN
N | Trace recording and control >
5 Andreas Munk
e\ University of British Columbi
oy . END

o Gilles Louppe Probabilistic .
< University of Liége Inference engine
o~ Philip Torr
N University of Oxford
— e p P x Call
8 Lawreng result
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Speeding things up with neural emulators

PCAbasis PCA basis
coefficients functions
qx,i

AT Emulated spectrum
J
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SPS parameters, @

magnitudes, ™ (

\i

w={Wj;,b;,Wy, by,...,W,,b,}

network weights and biases

w = {Wy,b;,Wy,by,...,W,,,b, }

Emulating spectra Emulating photometry

16-parameter SPS model | sub-percent accuracy | factors x 1074 speed-up | differentiable

ALSING, PEIRIS, LEJA, HAHN, TOJEIRO, MORTLOCK, LEISTEDT, JOHNSON, CONROY (APJS, 2020)

(Alicja)

(Hiranya)

51

uc - WrWtds (@13 TeV)

Parametrize with NN Normalizing Flow

4 Fully differentiable version available

[2212.06172, 2311.01548, 2408.01486]
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Simulation-Based Inference

Slowly, but surely: we are actually doing this in HEP. Step change soon?

#SBl analyses at LHC: 0 = 1 . How will we ensure 1 —N is easier?

Neyman Construction

p(416))

(416)~

Reject
*
T
S

« To build confidence intervals for 8, we need to ‘invert the hypothesis test’
« Generate pseudo-experiments (‘toys’) and determine 1o & 20 Cl as a function of

Relect

Estimated with pseudo-experiments

Can look wavy when away from asymptotic regime

-

37

/
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a frequentist’s dream:
a non-boring Neyman
Construction

(Aishik)



How much Statistics can we cram into ML

Statistics: Data — Insight

(hard codes prior)

(can adjust prior but expensive)
. . statistical
Pipeline result Data Neural Llikelihood Est. Lhood McMC | Posterior

// (high-level parametrization)

how much of this is ML, how much is Stats
Learning to Profile
Learning to Profile (Neural Profile Esitmation?) Profile Curve

How much do we trust the process ?
Where, how many inspectable intermediate steps do we want?
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Getting Rid of the Simulator: Unfolding

Reminder that HEP is always also a social enterprise. Core question: what’s
the format. ML allows is to go beyond histograms and into full phasespace
but in which direction? If folding becomes trivial, what does this mean?

Example:

Proton collisions
@ . 0
0 O ,\ :
‘ Y" - | \
L =7

FastSim
p(R|T)
‘ Reconstructed particles, R

N e

Statistical analysis

Figure 1. Classical simulation pipeline in particle physics: collision simulation generates truth particles T, detector simulation
produces high-dimensional signals H, and reconstruction algorithm recovers truth input from detector readout as reconstructe
articles R. Proposed fast simulation skips detector simulation and reconstruction, directly obtaining reconstr

p
the truth.

(Vini)

p(xreco | Xpart)

2211.064006

Psim (Xpart)

N2

Psim (Xreco )

Unfolding

Benefits of Unfolding:

Drawbacks of Unfolding:

e Facilitate the comparison between e Unfolding is a lossy procedure and

theory predictions and
measurements
e Facilitate the comparison between

unfolding inference

may lead to larger uncertainties to
the final measurement

See also:

y
N

forward inference

5 X
punfold( part) Unfolding with combine

duction to unfolding

P(Xpart | Xreco)

I, 4

<
N

>  Pdata(Xreco)
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(Tilman)



Summary

We’re very good at learning new ML methods and finding a way
to move them closer to production

Classic Statistics can give us guidance —
towards what’s possible in principle :

Interpretability is largely about trusting \ /

a process & convincing ourselves

PhyS|cs

Domain Knowledge helps until it doesn’t (bitter lesson?)

SBI as a 3rd-wave of statistical methodology / common language between sciences
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