

Modern Cosmology Opportunities & Challenges

Eleni Tsaprazi Imperial College London

PHYSTAT 2024

Outline

- Current physical model of the Universe
- Open questions
- Observations
- Numerical methods
- Statistical methods
- Summary

Cosmic chronology

non-Gaussian inflation recombination gravity (GR) cosmic largereionization ~ Gaussian primordial scale structure (decoupling) cosmic expansion density perturbations Bang Big plasma ESA / Pla<u>nck</u>

ACDM predicts this evolution after postulating specific energy densities Cosmological Principle: homogeneity & isotropy

Open questions in ∧CDM

- Initial conditions statistics
- Theory of gravity
- Accelerated expansion
- Neutrino masses

and more.

We answer these questions through **observations**.

What do the observations consist of?

What physics do we utilise to interpret these data?

How do we obtain a physical interpretation of the data?

Cosmic Microwave Background

early-time Universe

late-time Universe

Since the 20th century but 2020-: era of stage-IV surveys

An unprecedented amount of data

Reaching the limit of observable galaxies

We are limited by systematic effects rather than noise

- 37 billion astronomical sources
- 500 PB imaging
- 50 PB catalogue
- ~10⁶ real-time alerts / night (large samples of rare events)

Systematics can bias our cosmological conclusions

Probe	Systematics (indicatively)
Lensing	galaxy shape, redshift accuracy
Clustering	baryonic physics
Supernovae	astrophysics

Systematics come both from instrumental effects and our physical understanding

Our cosmological toolkit

- Cosmological observations: opportunities & challenges
- Cosmological simulations: N-body / hydrodynamical simulations

 Euclid Flagship Simulation
 FLAMINGO simulations

 Castander+24
 Schaye+23

 test observational strategies / impact of systematics
 10

Our cosmological toolkit

- Cosmological observations
- Cosmological simulations
 - N-body dark matter / hydrodynamical simulations
 - Calibrate errors / test observational strategies / impact of systematics
- Statistical methods
 - Inverse: Hypothesis testing / parameter estimation / model selection
 - Forward: given known parameters, what is the data distribution?
 - Frequentist / Bayesian
 - Compressed or full dataset

Cosmological experiments present some peculiarities.

Cosmological statistics is peculiar

- We can look back in time
- The experiments are not controlled
- Cannot be repeated
- We observe only one sky (cosmic variance)
- Observations suffer from selection effects
- We assume the **Cosmological Principle**
 - homogeneity & isotropy

Bayesian approaches are preferred

What is the probability of a hypothesis given the data?

$$p(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{x})}$$

Most powerful constraints from probe combination

Two regimes of cosmological statistics

Summary statistics are sufficient for Gaussian and isotropic fields

power spectrum

The case of 2-point statistics

2-point correlation function

Non-Gaussian and anisotropic fields have non-zero higher-order statistics

Information beyond 2-pt statistics

Villaescusa-Navarro+20

Can be distinguished through higher-order statistics

simulation

Higher-order statistics

Gaussian

How can we access higher-order statistics?

Beyond higher-order statistics

- Field-level inference: each pixel is a random variable to infer
- Forward modelling: accounting for systematic effects self-consistently

Summary

- How did the Universe evolve from the Big Bang until today?
- Unprecedented amount of observed and simulated data
- Limited by systematic effects
- Bayesian inference for 2-pt statistics and beyond
 - Likelihood-based
 - Simulation-based

Introduction to Cosmology

Bonus slides

Motivation for ACDM

Evidence for DM

- Galaxy rotational velocities
- Gravitational lensing
- Cosmic Microwave Background

0

0

• And more.

Observed vs. Predicted Keplerian

Eleni Tsaprazi - Imperial College London - PHYSTAT 2024

Weak lensing

Cosmic Microwave Background

Baryon Acoustic Oscillations: standard rulers

Euclid Consortium

- Hubble horizon: causal contact
- Inflation stretches perturbations beyond the horizon \rightarrow freeze in
- Later perturbations re-enter \rightarrow seeds of structure formation

Acoustic waves in the plasma that freeze at recombination

$$egin{aligned} \Delta heta &= rac{\Delta \chi}{d_A(z)} \ d_A(z) \propto \int_0^z rac{dz'}{H(z')} \end{aligned}$$

Shape of matter power spectrum

Gravitational waves

- Provide estimates of luminosity distance, but not redshifts
- EM counterpart \rightarrow redshift determination \rightarrow cosmology

$$E(z)=rac{H(z)}{H_0}=\sqrt{\Omega_r(1+z)^4+\Omega_m(1+z)^3+\Omega_k(1+z)^2+\Omega_\Lambda}$$

Ben Gilliland/STFC

21-cm line

- Onset of recombination: transition between hyperfine energy levels in hydrogen (spin-flip transition) \rightarrow 21-cm line
 - Mapping of 21-cm: 3D distribution of dark matter
 - \circ "Holes" in 21-cm that occur due to reionization of neutral hydrogen \rightarrow reionization

Gianni Bernardi

How are redshifts measured?

How to construct Gaussian field with a given power spectrum?

See Garrett Goon's tutorial!

 $\langle arphi_{f k}arphi_{-f k}
angle'=P(k)\langle \phi_{f k}\phi_{-f k}
angle'=P(k)\;.$

Spelled out in more detail, we will perform the following steps:

- 1. Consider a white noise field of unit amplitude: $\varphi_{\mathbf{k}}$ with $\langle \varphi_{\mathbf{k}} \varphi_{-\mathbf{k}} \rangle' = 1$.
- 2. Generate a position-space realization of the white noise, denoted by $R_{\rm white}(\mathbf{x})$. That is, $R_{\rm white}(\mathbf{x})$ is a particular map showing the values of $\varphi(\mathbf{x})$ at various positions \mathbf{x} and for which $\langle \varphi(\mathbf{x})\varphi(\mathbf{y})\rangle' = \delta^d(\mathbf{x} - \mathbf{y})$.
- 3. Fourier transform the realization: $R_{
 m white}({f x}) \longrightarrow R_{
 m white}({f k}).$
- 4. Multiply $R_{
 m white}({f k})$ by the square root of the power spectrum to create $R_P({f k})=P^{1/2}(k)R_{
 m white}({f k}).$
- 5. Fourier transform $R_P(\mathbf{k})$ back to position-space to get the desired realization: $R_P(\mathbf{x}) = \int \mathrm{d}^d \tilde{k} \, e^{i\mathbf{k}\cdot\mathbf{x}} R_P(\mathbf{x}).$