

Modern Cosmology Opportunities & Challenges

Eleni Tsaprazi Imperial College London

PHYSTAT 2024

Outline

- Current physical model of the Universe
- Open questions
- **Observations**
- Numerical methods
- Statistical methods
- **Summary**

Cosmic chronology

ESA / Planck plasma ~ Gaussian primordial density perturbations non-Gaussian cosmic largescale structure gravity (GR) cosmic expansion inflation recombination (decoupling) Big Bang reionization

ΛCDM predicts this evolution after postulating specific energy densities Cosmological Principle: homogeneity & isotropy

Open questions in ΛCDM

- Initial conditions statistics
- Theory of gravity
- Accelerated expansion
- Neutrino masses

and more.

We answer these questions through **observations**.

What do the observations consist of?

What physics do we utilise to interpret these data?

How do we obtain a physical interpretation of the data?

Cosmic Microwave Background

early-time

universe late-time l Universe

Since the 20th century but 2020-: era of stage-IV surveys

An unprecedented amount of data

Reaching the limit of observable galaxies

We are limited by systematic effects rather than noise

Systematics can bias our cosmological conclusions

Systematics come both from instrumental effects and our physical understanding

Our cosmological toolkit

- Cosmological observations: opportunities & challenges
- Cosmological simulations: N-body / hydrodynamical simulations

Eleni Tsaprazi - Imperial College London - PHYSTAT 2024 10 Euclid Flagship Simulation FLAMINGO simulations Castander+24 Schaye+23 Schaye+23 test observational strategies / impact of systematics

Our cosmological toolkit

- Cosmological observations
- Cosmological simulations
	- N-body dark matter / hydrodynamical simulations
	- Calibrate errors / test observational strategies / impact of systematics
- Statistical methods
	- Inverse: Hypothesis testing / parameter estimation / model selection
	- Forward: given known parameters, what is the data distribution?
	- Frequentist / Bayesian
	- Compressed or full dataset

Cosmological experiments present some peculiarities.

Cosmological statistics is peculiar

- We can look back in time
- The experiments are not controlled
- Cannot be repeated
- We observe only one sky (cosmic variance)
- Observations suffer from selection effects
- We assume the **Cosmological Principle**
	- homogeneity & isotropy

$$
\circ \quad _{sky} = _{stat}
$$

Bayesian approaches are preferred

What is the probability of a hypothesis given the data?

$$
p(\boldsymbol{\theta}|\mathbf{x}) = \frac{p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{x})}
$$

Most powerful constraints from probe combination

Two regimes of cosmological statistics

Summary statistics are sufficient for Gaussian and isotropic fields

power spectrum

The case of 2-point statistics

2-point correlation function

Non-Gaussian and anisotropic fields have non-zero higher-order statistics

Information beyond 2-pt statistics

Villaescusa-Navarro+20

Can be distinguished through higher-order statistics

Higher-order statistics

How can we access higher-order statistics?

Beyond higher-order statistics

- Field-level inference: each pixel is a random variable to infer
- Forward modelling: accounting for systematic effects self-consistently

Summary

- How did the Universe evolve from the Big Bang until today?
- Unprecedented amount of observed and simulated data
- Limited by systematic effects
- Bayesian inference for 2-pt statistics and beyond
	- Likelihood-based
	- Simulation-based

Introduction to Cosmology

Bonus slides

Motivation for ΛCDM

Evidence for DM

- Galaxy rotational velocities
- Gravitational lensing
- Cosmic Microwave Background

 \mathcal{O}

Ó

And more.

Observed vs. Predicted Keplerian

Eleni Tsaprazi - Imperial College London - PHYSTAT 2024

Weak lensing

Cosmic Microwave Background

Eleni Tsaprazi - Imperial College London - PHYSTAT 2024

Chandrasekhar limit → standard candle

Baryon Acoustic Oscillations: standard rulers

Euclid Consortium

- Hubble horizon: causal contact
- Inflation stretches perturbations beyond the horizon \rightarrow freeze in
- \bullet Later perturbations re-enter \rightarrow seeds of structure formation

Acoustic waves in the plasma that freeze at recombination

$$
\Delta \theta = \frac{\Delta \chi}{d_A(z)}\\[2ex] d_A(z) \propto \int_0^z \frac{dz'}{H(z')}
$$

Shape of matter power spectrum

Gravitational waves

- Provide estimates of luminosity distance, but not redshifts
- \bullet EM counterpart \rightarrow redshift determination \rightarrow cosmology

$$
E(z)=\frac{H(z)}{H_0}=\sqrt{\Omega_r(1+z)^4+\Omega_m(1+z)^3+\Omega_k(1+z)^2+\Omega_\Lambda}
$$

Ben Gilliland/STFC 30

21-cm line

- Onset of recombination: transition between hyperfine energy levels in hydrogen (spin-flip transition) \rightarrow 21-cm line
	- Mapping of 21-cm: 3D distribution of dark matter
	- \circ "Holes" in 21-cm that occur due to reionization of neutral hydrogen \rightarrow reionization

Gianni Bernardi

How are redshifts measured?

How to construct Gaussian field with a given power spectrum?

See Garrett Goon's tutorial!

 $\langle \varphi_{\mathbf{k}} \varphi_{-\mathbf{k}} \rangle' = P(k) \langle \varphi_{\mathbf{k}} \varphi_{-\mathbf{k}} \rangle' = P(k)$.

Spelled out in more detail, we will perform the following steps:

- 1. Consider a white noise field of unit amplitude: φ_k with $\langle \varphi_k \varphi_{-k} \rangle' = 1$.
- 2. Generate a position-space realization of the white noise, denoted by $R_{\text{white}}(\mathbf{x})$. That is, $R_{\text{white}}(\mathbf{x})$ is a particular map showing the values of $\varphi(\mathbf{x})$ at various positions x and for which $\langle \varphi(\mathbf{x})\varphi(\mathbf{y})\rangle' = \delta^d(\mathbf{x}-\mathbf{y}).$
- 3. Fourier transform the realization: $R_{\mathrm{white}}(\mathbf{x}) \longrightarrow R_{\mathrm{white}}(\mathbf{k}).$
- 4. Multiply $R_{\text{white}}(\mathbf{k})$ by the square root of the power spectrum to create $R_P({\bf k}) = P^{1/2}(k) R_{\rm white}({\bf k}).$
- 5. Fourier transform $R_P(\mathbf{k})$ back to position-space to get the desired realization: $R_P(\mathbf{x}) = \int d^d \tilde{k} e^{i\mathbf{k}\cdot\mathbf{x}} R_P(\mathbf{x}).$