

Types of ML in Particle Physics

Dr. Jonathon Langford 9th September 2024

PHYSTAT: Statistics meets Machine Learning

Particle physics and big data

LHC proton-proton collision and the collision collision collision collision collision collision collision collision

- Astronomically large: ~500 Tb of data produced by CMS per-second
	- \circ After real-time filtering of collisions (trigger) \rightarrow Tens of Pb per-year saved offline for further analysis
- **Extremely diverse:** plethora of detector technologies with different geometry/readout
- **Well understood:** small uncertainty in the data
- **Well structured:** significant effort in making datasets easier to work with
- **High-fidelity/quality simulation:** provides "truth"

Jonathon Langford **Types of ML in Particle Physics** 1999/24 22 22

Particle physics and big data

Jonathon Langford Types of ML in Particle Physics 9/9/24 3

LHC proton-proton collision and the collision collision collision collision collision collision collision collision

Ideal playground for Machine Learning initiatives

Jonathon Langford **Types of ML in Particle Physics** 1997 1998/24

Jonathon Langford **Types of ML in Particle Physics** 1999/24 5 and 1999/24 5 and 1999/24

Jonathon Langford **Types of ML in Particle Physics** 1999/24 66 and 1999/24 66 and 1999/24 66 and 1999/24 66 and 1

Monte-Carlo simulation

- [Theory \rightarrow observables] is described by highly-intractable likelihood
- Use high-fidelity MC simulation of each stage of collision event

$$
L(x | \vec{\alpha}) = \int dz_d \int dz_s
$$

Jonathon Langford Types of ML in Particle Physics 9/9/24

High dimensional integral over latent variables

 $\mathrm{d}z_{p}\,p(x|z_{d})p(z_{d}|z_{s})p(z_{s}|z_{p})p(z_{p}|\vec{\alpha})$

Observables e.g. reconstructed energies, momenta and angles of all final state particles

- Provides "truth" for inference on real data
	-
- Labelled collisions for supervised learning

Fundamental physics **parameters of interest** e.g. Higgs boson mass

○ Accurate simulation is crucial to avoid bias (calibration)

ML in particle physics

Jonathon Langford **Types of ML in Particle Physics** 8 8 8 9/9/24 8 8 9/9/24 8 8

- **Disclaimer:** collider, CMS, experimental Topics: [Neutrino Physics & ML workshop, ETH \(2024\)](https://indico.phys.ethz.ch/event/113/overview) [Theoretical HEP & AI talk, EuCAIFCon \(2024\)](https://indico.nikhef.nl/event/4875/contributions/21152/attachments/8268/11791/EuCAIFcon2024-Schwartz.pdf) [Latest ML developments for LHCb, EP-IT seminar \(2024\)](https://indico.cern.ch/event/1433541/) [DM direct detection \[arXiv:2406.10372\]](https://arxiv.org/abs/2406.10372)
	- Object identification & reconstruction
	- Event classification
	- Simulation (generative)
	- Inference
- Try to keep relevant with mostly new applications/results

Object identification & reconstruction

Jonathon Langford **Exercise Construction Construction Types of ML** in Particle Physics **1990 1999 1999 1999 1999**

Jet classification

Jonathon Langford Types of ML in Particle Physics 9/9/24 10

- Jet constituent particles produce patterns of "hits" as they traverse detector
	- Essentially a pattern recognition problem
	- Has become a huge frontier in ML over last years (see [ML4Jets\)](https://indico.cern.ch/event/1253794/timetable/#20231106.detailed)

● Jet = spray of particles (cone) produced by hadronization of a quark/gluon when ejected from high-energy collision

 \bullet Jets come in different "flavours" \rightarrow different substructure

Jet representations

● Evolution of representations:

Image-based (CNN) Difficult to combine non-additive quantities, very sparse (>90% pixels are blank)

Sequences (RNN) Can include any kind of constituent feature, no issues with sparse data, sorted list e.g. decreasing pT

Jonathon Langford **Types of ML in Particle Physics** 11 11 12 12 12 14 15 16 17 17 17 18 17 18 17 18 19 18 18 19

Point/particle cloud (GNN) Unordered list is permutation invariant, no issues with sparse data

Ten types of jets viewed as particle clouds Coordinates = Direction of flight Size = Energy Shape = Particle ID Solid/Hollow = Charged/Neutral Blueness = Displacement from IP [arXiv:2202.03772](https://arxiv.org/pdf/2202.03772)

Jet classification

- Huge advances by using low-level information with **Graph Neural Networks** (e.g. [ParticleNet](https://cms-ml.github.io/documentation/inference/particlenet.html) in CMS, [GN1/GN2](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/) in ATLAS)
- Now **Transformers** (e.g. [ParT](https://arxiv.org/pdf/2202.03772)): "attention" gives more weight to certain jet constituents

- -

Jonathon Langford **Types of ML in Particle Physics** 199/24 12

Impact of improved jet classification

- Translates to significant improvements in particle physics measurements/searches
	- \circ Search for boosted HH \rightarrow bbVV \rightarrow bb4q
	- Global particle transformer (GloParT) classifier to identify boosted VV→4q

[\[CMS-PAS-HIG-23-012\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-23-012/index.html)

Jonathon Langford **Types of ML in Particle Physics** 13 and 13

All-in-one algorithms

- Unified particle transformer for small-radius (AK4) jets: UParT
	- Simultaneously identify heavy-flavour (b, c), identify hadronically decaying tau-leptons, identify s-jets, regress jet energy, estimate jet energy resolution

Jonathon Langford Types of ML in Particle Physics 9/9/24

[\[CMS-DP-2024-066\]](https://cds.cern.ch/record/2904702/files/DP2024_066.pdf)

All-in-one algorithms

- Unified particle transformer for small-radius (AK4) jets: UParT
	- Simultaneously identify heavy-flavour (b, c), identify hadronically decaying tau-leptons, identify s-jets, regress jet energy, estimate jet energy resolution

● **A** word of caution…

Jonathon Langford Types of ML in Particle Physics 9/9/24

[\[CMS-DP-2024-066\]](https://cds.cern.ch/record/2904702/files/DP2024_066.pdf)

- Challenging to calibrate sophisticated jet-taggers
	- Trained with simulation → learn modeling-specific details. Systematic uncertainties!
- o Evploinsbility/interpret ○ Explainability/interpretability: what makes this particular jet Type-X like?
- perturbed data ● Cover such topics this week

Event classification

Jonathon Langford **Types of ML** in Particle Physics 9/9/24 16

Event classification

- **Common task:** identify collisions of interest ("signal") from "background"
	- Traditionally used (sequential) selection cuts to increase signal purity
	- Now use Multivariate ML algorithms based on high-level features
	- E.g. Boosted Decision Trees (BDT), Deep Neural Network (DNN)
- Output provides powerful summary to "cut" or fit directly

Jonathon Langford Types of ML in Particle Physics 9/9/24

XGBoost

[\[JHEP 07 \(2021\) 027\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-015/index.html)

 E vents/ (0.017)

Data/MC

Event classification

Jonathon Langford Types of ML in Particle Physics 9/9/24

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

- \bullet No labels \rightarrow Learn directly from data
- Anomaly metric: compare input, x, to **Decoder**(**Encoder**(x))
	- If large difference then event has low Prob(bkg)

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

- No labels \rightarrow Learn directly from data
- Anomaly metric: compare input, x, to **Decoder(Encoder(x))**
	- If large difference then event has low Prob(bkg)
- ATLAS apply AE to physics-informed representation (rapidity-mass matrix)
	- \circ For searches involving different object pairs: j+j, j+b, b+b, j+e, b+e, j+ γ , j+ μ , b+ μ , b+ γ

[\[PRL 132 \(2024\) 081801\]](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.132.081801)

(a)
$$
mx_1(j_N)
$$
 $m_T(\mu_1)$ $m_T(\mu_2)$ $.... m_T(\mu_N)$
\n(b) $....m(j_1, j_N)$ $m(j_1, \mu_1)$ $m(j_1, \mu_2)$ $....m(j_1, \mu_N)$
\n(c) $....m(j_2, j_N)$ $m(j_2, \mu_1)$ $m(j_2, \mu_2)$ $....m(j_2, \mu_N)$
\n(d) $....$ $....$ $....$ $....$
\n(e) $....$ $....$ $....$ $....$
\n(f) mx_j $m(j_N, \mu_1)$ $m(j_N, \mu_2)$ $....m(j_N, \mu_N)$
\n(g) $....h(\mu_1, j_N)$ $e_T(\mu_1)$ $m(\mu_1, \mu_2)$ $m(\mu_1, \mu_N)$
\n(h) $....$ $....$ $....$
\n(i) $....$ $....$ $....$
\n(ii) $...$ $...$ $...$
\n(i) $....$ $....$ $...$
\n(iv) $h(\mu_N, j_N)$ $h(\mu_N, \mu_1)$ $h(\mu_N, \mu_2)$ $\delta e_T(\mu_N)$

Jonathon Langford Types of ML in Particle Physics 9/9/24

What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**

[\[PRL 132 \(2024\) 081801\]](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.132.081801)

$$
m_T(j_N) \t m_T(\mu_1) \t m_T(\mu_2) \t \t \ldots m_T(\mu_N)
$$

\n
$$
m(T_1, j_N) \t m(j_1, \mu_1) \t m(j_1, \mu_2) \t \ldots m(j_1, \mu_N)
$$

\n
$$
m(j_2, j_N) \t m(j_2, \mu_1) \t m(j_2, \mu_2) \t \ldots m(j_2, \mu_N)
$$

\n
$$
m(T_2, j_N) \t m(j_2, \mu_1) \t m(j_2, \mu_2) \t \ldots m(j_2, \mu_N)
$$

\n
$$
m(T_2, j_N) \t m(j_N, \mu_1) \t m(j_N, \mu_2) \t \ldots m(j_N, \mu_N)
$$

\n
$$
m(\mu_1, j_N) \t e_T(\mu_1) \t m(\mu_1, \mu_2) \t m(\mu_1, \mu_N)
$$

\n
$$
m(\mu_2, \mu_N)
$$

\n
$$
m(\mu_2, j_N) \t m(\mu_1, \mu_2) \t \delta e_T(\mu_2) \t m(\mu_2, \mu_N)
$$

\n
$$
m(T_2, j_N) \t m(\mu_N, \mu_1) \t m(\mu_N, \mu_2) \t \delta e_T(\mu_N)
$$

Anomaly detection in real-time

Selects *unique* events, preference for high multiplicity

Jonathon Langford Types of ML in Particle Physics 9/9/24

- What if we don't know what the signal looks like a-priori?
	- If we don't consider this in the trigger (online filter), **we lose data before we even begin**
	- Apply anomaly detection algorithms online e.g. AXOL1TL

Anomaly detection in real-time

Selects unique events, preference for high multiplicity

- What if we don't know what the signal looks like a-priori?
	- If we don't consider this in the trigger (online filter), **we lose data before we even begin**
	- Apply anomaly detection algorithms online e.g. AXOL1TL

Jonathon Langford **Types of ML in Particle Physics** 1999/24 23

Anomaly detection in real-time

Jonathon Langford Types of ML in Particle Physics 9/9/24

Demonstrated successful running in L1T (2024)

Jonathon Langford Types of ML in Particle Physics 9/9/24 25

Simulation (generative)

Simulation is painful!

• Can we use ML to short-cut parts of the simulation chain?

Jonathon Langford **Types of ML in Particle Physics** 1997 1998/24

Faster simulation

Deep **generative models** for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4

Jonathon Langford Types of ML in Particle Physics 9/9/24

```
[CSBS 8, 7 (2024)]
```


Faster simulation

- Deep **generative models** for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4
	- Generation time reduced by up to two orders of magnitude, very small memory footprint (5 Mb)

Jonathon Langford Types of ML in Particle Physics 9/9/24

[\[CSBS 8, 7 \(2024\)\]](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2020-04/)

Shower shape variables (lateral shower width)

Room for improvement, VAE outperforms particularly for high pT photons

Better simulation

- Better our simulation reflects real data \rightarrow more accurate inference (i.e. less bias, reduced systematic uncertainty)
	- Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach
	- ML approaches promise high-dimensional, unbinned calibration
- Example: "One Flow to correct them all" [\[arXiv: 2403.18582\]](https://arxiv.org/pdf/2403.18582)

Jonathon Langford Types of ML in Particle Physics 9/9/24

Normalising flow architecture

Map both simulation and data to share distribution, conditioned on boolean

Morph simulation to data

Flip boolean switch, quantiles are preserved

Better simulation

- Better our simulation reflects real data \rightarrow more accurate inference (i.e. less bias, reduced systematic uncertainty)
	- Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach
	- ML approaches promise high-dimensional, unbinned calibration
- Example: "One Flow to correct them all" [\[arXiv: 2403.18582\]](https://arxiv.org/pdf/2403.18582)

Jonathon Langford Types of ML in Particle Physics 9/9/24

 p_1

Inference

Jonathon Langford **Types of ML** in Particle Physics 9/9/24 31

Unfolding

- **Unfolding:** reconstruct "true" distribution of a physical quantity from measured (i.e. smeared) data
	- Limited to small number of observables and present as differential cross section in predetermined bins

[\[Phystat Conference on Unfolding 2024\]](https://indico.cern.ch/event/1357972/)

Fraction of "truth" bin i lands in reco bin j

Jonathon Langford **Types of ML in Particle Physics** 1999/24 32

Unfolding with omnifold

- **Unfolding:** reconstruct "true" distribution of a physical quantity from measured (i.e. smeared) data
	- Limited to small number of observables and present as differential cross section in predetermined bins
- **OMNIFOLD:** result provided (unbinned) as dataset of particle-level events

Jonathon Langford Types of ML in Particle Physics 9/9/24

Iterative NN reweighting procedure using BCE loss function over datasets A and B

[\[arXiv:1911.09107\]](https://arxiv.org/pdf/1911.09107)

Unfolding with omnifold

[\[arXiv:2405.20041\]](https://arxiv.org/pdf/2405.20041)

Jonathon Langford **Types of ML in Particle Physics** 1999/24 34

Invertible networks for inference

- CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)
	- Map complex observable space to simple base distribution
	- **Conditional on parameters we are trying to infer**
	- \circ Apply to high dimensional feature space \rightarrow limited information loss
	- \circ Learning the density, $p(x|\theta)$!

Jonathon Langford Types of ML in Particle Physics 9/9/24

Conditional Invertible

(Learnt) Transformations of x to latent space z Conditional on θ . Evaluate simple base distribution density

 $\mathcal{D} = \prod_{x_i \in \mathcal{D}} p(x_i | \theta)$

Conserves probability mass

Invertible networks for inference

CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)

Jonathon Langford Types of ML in Particle Physics 9/9/24

Example: CALOFLOW [\[arXiv:2404.18992v1\]](https://arxiv.org/pdf/2404.18992v1)

Infer incident pion energy (θ) from measured energy in calorimeter cells (x)

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
	- \circ Sample over base distribution, z_0
	- \circ Obtain synthetic data { x_{gen} } for fixed value of θ which follows learned conditional density
	- Significantly less compute than expensive MC simulation

Jonathon Langford Types of ML in Particle Physics 9/9/24

$\{z_0\} \sim \mathcal{N}(0,1)$ $x_{\text{gen}} = \mathcal{T}(z_0|\theta) = f(z_0|\theta; \phi)$

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
	- \circ Sample over base distribution, z_0
	- \circ Obtain synthetic data { x_{gen} } for fixed value of θ which follows learned conditional density
	- Significantly less compute than expensive MC simulation e.g. **FlashSim at CMS**

Jonathon Langford Types of ML in Particle Physics 9/9/24

$\{z_0\} \sim \mathcal{N}(0,1)$ $x_{\text{gen}} = \mathcal{T}(z_0|\theta) = f(z_0|\theta; \phi)$

simulation (Geant4)

[\[CHEP2023 Talk\]](https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf)

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
	- \circ Sample over base distribution, z_0
	- \circ Obtain synthetic data { x_{gen} } for fixed value of θ which follows learned conditional density
	- Significantly less compute than expensive MC simulation e.g. **FlashSim at CMS**

Jonathon Langford Types of ML in Particle Physics 9/9/24

$\{z_0\} \sim \mathcal{N}(0,1)$ $x_{\text{gen}} = T(z_0|\theta) = f(z_0|\theta; \phi)$

[\[CHEP2023 Talk\]](https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf)

FlashSIM at CMS

Jonathon Langford **Types of ML in Particle Physics** 1999/24 5 1999/24 5 1999/24 5 1999/24

[\[CHEP2023 Talk\]](https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf)

Outlook

- Covered many different "**Types of ML in Particle Physics"**: BDT, DNN, CNN, GNN, Transformer, GAN, NF, …
	- With vast array of applications: object identification/reconstruction, event classification, anomaly detection, generation, inference
	- Only a subset: diffusion models, detector design & optimisation, pileup mitigation, background prediction, …
	- ML is clearly opening up many new possibilities in the field!
- As our dependence on ML grows → Must ensure we use tool correctly
	- Performance is not the only relevant metric
	- Focus on robustness, interpretability, insensitivity to modeling details, …
	- E.g. systematic-aware learning, domain adversarial training
- We will cover these kind of topics over **Phystat: Stats meets ML**
	- Plenty of interesting discussions to come!

Jonathon Langford Types of ML in Particle Physics 9/9/24

Back-Up

Anathon Langford **Types of ML** in Particle Physics 9/9/24 9/9/24 42

Object reconstruction

- Previous slides assume object (jet) has already been reconstructed from detector read-outs
	- Traditional object reconstruction follows rule-based algorithms (e.g. Kalman Filter, DBScan, Particle Flow)

Jonathon Langford Types of ML in Particle Physics 9/9/24

Object reconstruction

44

- Now investigating graph-based ML for reconstruction
	- Example: ML Particle Flow to **learn mapping** from tracks/clusters → particles

Jonathon Langford Types of ML in Particle Physics 9/9/24

Tracks and calorimeter clusters

ECAL or HCAL cluste

[\[arXiv:2101.08578\]](https://arxiv.org/pdf/2101.08578)

Demonstrate improved performance over rule-based algorithms

Parametric classifiers

- What if we are searching for new physics (signal) over large parameter/hypothesis space?
	- \circ Example: search for new resonant particle, X, with mass m_x in [250,1000] GeV
- Train ML classifier using MC simulation to identify signal-vs-background:
	- 1. Train single classifier using simulation from many m_χ hypotheses = sub-optimal
	- 2. Train multiple classifiers, one at each hypothesis = unwieldy for large parameter space
	- 3. Parametric classifier: output is conditional on m_x parameter

Add m_{χ} as additional training feature (θ)

Jonathon Langford Types of ML in Particle Physics 9/9/24

[\[EPJC 76 \(2016\) 5, 235\]](https://arxiv.org/pdf/1601.07913)

Train on all signal MC simultaneously {m1,m2,...} Give background MC random values (in set)

[\[CMS-PAS-HIG-22-012\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-22-012/index.html)

 $f(\vec{x})$ to $f(\vec{x};m_X)$

Parametric classifiers

- What if we are searching for new physics (signal) over large parameter/hypothesis space?
	-
- Train ML classifier using MC simulation to identify signal-vs-background:

[\[CMS-PAS-HIG-22-012\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-22-012/index.html)

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- CMS apply model-agnostic approaches to dijet resonance searches with anomalous jet substructure

Other approaches including semi-supervised learning (partial labels) and weakly-supervised learning (noisy labels)

Jonathon Langford **Types of ML in Particle Physics** 1999/24 5 and 17 and 17

LHC triggering

Data-taking

Online filtering (Trigger)

…

Jonathon Langford **Types of ML in Particle Physics** 199/24 59/9/24 1999/24 59/9/24

40 MHz collisions, O(100 million) readout channels

LHC triggering

Data-taking

Jonathon Langford **Types of ML in Particle Physics** 1997 1998/24 1998 1998 1999/24

40 MHz collisions, O(100 million) readout channels

FastML

Pile-Up = number of simultaneous p-p collisions in bunch crossing

- Task becomes much harder during HL-LHC due to increased Pile-Up
- Advances in FPGA technology facilitates ML in the ultra-low latency, high-bandwidth environment
	- △ Conifer his 4 mi convert python ML model to FPGA language

2029-2040+

[\[FastML23 Workshop\]](https://indico.cern.ch/e/fastml2023)

Field Programmable Gate Array (FPGA)

High parallelism, high flexibility, latency deterministic, power efficient

Example: CNN to identify b-quark jets in μ s domain

Jonathon Langford **Types of ML in Particle Physics** 1999/24 50

Typically construct lower-dimensional summary statistic

$$
D \subseteq \mathbb{R}^{n \times d} \longrightarrow \mathbb{R}^{h \times d}
$$

The inverse problem

Determine underlying parameters, θ , that produce observed data, x

MC simulation: accurate density estimation in high-dim space is extremely challenging!

Jonathon Langford Types of ML in Particle Physics 9/9/24

Likelihood is integral over all possible trajectories through latent space

 $dz p(x, z | \theta)$

Reconstructed four-momenta + ID of all final state particles

Histogram of h bins in k dimensions

 \boldsymbol{k}

- Construct Poisson-likelihood using summary statistic to infer, $\theta = \{\mu, \nu\}$
	- \circ e.g. to extract signal rate, μ , with nuisance parameters, ν

$$
L(\text{data}|\mu,\nu) = \Big(\prod_r \text{Pois}\big[N_r|\mu s(\nu) + b(\nu)\big]\Big) \cdot C(\nu)
$$

Where can ML improve inference over traditional methods?