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Particle physics and big data
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LHC proton-proton collision CMS detector with O(100 million) readout channels

● Astronomically large: ~500 Tb of data produced by CMS per-second

○ After real-time filtering of collisions (trigger) → Tens of Pb per-year saved offline for further analysis

● Extremely diverse: plethora of detector technologies with different geometry/readout

● Well understood: small uncertainty in the data

● Well structured: significant effort in making datasets easier to work with

● High-fidelity/quality simulation: provides “truth” 

40 million times a second



Particle physics and big data
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LHC proton-proton collision CMS detector with O(100 million) readout channels

40 million times a second

Ideal playground for Machine Learning initiatives
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Monte-Carlo simulation
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● [Theory → observables] is described by highly-intractable likelihood

● Use high-fidelity MC simulation of each stage of collision event
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High dimensional integral over latent variables

Observables e.g. 
reconstructed 
energies, momenta 
and angles of all 
final state particles

Fundamental physics 
parameters of interest 
e.g. Higgs boson mass

● Provides “truth” for inference on real data

○ Accurate simulation is crucial to avoid bias (calibration)

● Labelled collisions for supervised learning 



ML in particle physics
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Novel ML 
techniques

Taken from J. Duarte ICHEP slides

● Disclaimer: collider, CMS, experimental

● Topics:

○ Object identification & reconstruction

○ Event classification

○ Simulation (generative)

○ Inference

● Try to keep relevant with mostly new applications/results

Neutrino Physics & ML workshop, ETH (2024) 

Theoretical HEP & AI talk, EuCAIFCon (2024) 

Latest ML developments for LHCb, EP-IT seminar (2024) 

DM direct detection [arXiv:2406.10372] 

https://indico.cern.ch/event/1291157/contributions/5958213/attachments/2901085/5090949/ICHEP2024_NovelMLTechniques_23Jul2024.pdf
https://indico.phys.ethz.ch/event/113/overview
https://indico.nikhef.nl/event/4875/contributions/21152/attachments/8268/11791/EuCAIFcon2024-Schwartz.pdf
https://indico.cern.ch/event/1433541/
https://arxiv.org/abs/2406.10372
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Object identification
& reconstruction



Jet classification
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● Jet = spray of particles (cone) produced by hadronization of a quark/gluon when ejected from high-energy collision

● Jets come in different “flavours” → different substructure

● Jet constituent particles produce patterns of “hits” as they traverse detector

○ Essentially a pattern recognition problem

○ Has become a huge frontier in ML over last years (see ML4Jets)

Light-quark jets
e.g. QCD background

b-quark jets
e.g. H→bb

Boosted (large radius)
e.g. top decays

https://indico.cern.ch/event/1253794/timetable/#20231106.detailed


Jet representations
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● Evolution of representations:

Image-based (CNN)
Difficult to combine 
non-additive quantities, 
very sparse (>90% pixels 
are blank)

Sequences (RNN)
Can include any kind of 
constituent feature, no 
issues with sparse data, 
sorted list e.g. decreasing pT

Point/particle cloud (GNN)
Unordered list is permutation 
invariant, no issues with 
sparse data

Ten types of jets 
viewed as particle clouds
Coordinates = Direction of flight
Size = Energy
Shape = Particle ID
Solid/Hollow = Charged/Neutral
Blueness = Displacement from IP
arXiv:2202.03772

https://arxiv.org/pdf/2202.03772


Jet classification
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● Huge advances by using low-level information with Graph Neural Networks (e.g. ParticleNet in CMS, GN1/GN2 in ATLAS)

● Now Transformers (e.g. ParT): “attention” gives more weight to certain jet constituents

ATLAS-FTAG_2023-01

arXiv:2202.03772

● Add domain knowledge e.g. Lorentz Invariance in Pelican [arXiv:2211.00454]

○ Competitive performance with far fewer parameters!

https://cms-ml.github.io/documentation/inference/particlenet.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://arxiv.org/pdf/2202.03772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://arxiv.org/pdf/2202.03772
https://arxiv.org/abs/2211.00454


Impact of improved jet classification
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● Translates to significant improvements in particle physics measurements/searches

○ Search for boosted HH → bbVV → bb4q

○ Global particle transformer (GloParT) classifier to identify boosted VV→4q

[CMS-PAS-HIG-23-012]

● Second best constraint on 𝞳2V from CMS to-date!

Calibrated with 
Lund-plane reweighting

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-23-012/index.html
https://cds.cern.ch/record/2866330?ln=en


All-in-one algorithms
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● Unified particle transformer for small-radius (AK4) jets: UParT

○ Simultaneously identify heavy-flavour (b, c), identify hadronically decaying tau-leptons, identify s-jets, regress jet energy, estimate jet energy resolution
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[CMS-DP-2024-066]

● Adversarial training

○ Rectified Normed Gradient 

Method (R-NGM)

○ Improve robustness against 

perturbed data

https://cds.cern.ch/record/2904702/files/DP2024_066.pdf
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Jonathon Langford Types of ML in Particle Physics 9/9/24

[CMS-DP-2024-066]

● Adversarial training

○ Rectified Normed Gradient 

Method (R-NGM)

○ Improve robustness against 

perturbed data

● A word of caution…

○ Challenging to calibrate sophisticated jet-taggers

○ Trained with simulation → learn modeling-specific details. Systematic uncertainties!

○ Explainability/interpretability: what makes this particular jet Type-X like?

● Cover such topics this week

https://cds.cern.ch/record/2904702/files/DP2024_066.pdf
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Event classification



Event classification
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● Common task: identify collisions of interest (“signal”) from “background”

○ Traditionally used (sequential) selection cuts to increase signal purity

○ Now use Multivariate ML algorithms based on high-level features

○ E.g. Boosted Decision Trees (BDT), Deep Neural Network (DNN)

● Output provides powerful summary to “cut” or fit directly
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● Tip: XGBoost BDT typically provides most powerful, robust, calibrated classifier for “tabulated” input data 

[JHEP 07 (2021) 027]

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-015/index.html
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● Tip: XGBoost BDT typically provides most powerful, robust, calibrated classifier for “tabulated” input data 

[JHEP 07 (2021) 027]

https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-015/index.html


Model-agnostic searches 
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● What if we don’t know what the signal looks like a-priori? Use Anomaly detection algorithms

● E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

● No labels → Learn directly from data

● Anomaly metric: compare input, x, to Decoder( Encoder(x) )

○ If large difference then event has low Prob(bkg)



Model-agnostic searches 
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[PRL 132 (2024) 081801]
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● What if we don’t know what the signal looks like a-priori? Use Anomaly detection algorithms

● E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

● No labels → Learn directly from data

● Anomaly metric: compare input, x, to Decoder( Encoder(x) )

○ If large difference then event has low Prob(bkg)

● ATLAS apply AE to physics-informed representation (rapidity-mass matrix)

○ For searches involving different object pairs: j+j, j+b, b+b, j+e, b+e, j+𝛾, j+𝜇, b+𝜇, b+𝛾

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.132.081801


Model-agnostic searches 
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[PRL 132 (2024) 081801]
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● What if we don’t know what the signal looks like a-priori? Use Anomaly detection algorithms

● E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.132.081801


Anomaly detection in real-time
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● What if we don’t know what the signal looks like a-priori?

○ If we don’t consider this in the trigger (online filter), we lose data before we even begin

○ Apply anomaly detection algorithms online e.g. AXOL1TL

Jonathon Langford Types of ML in Particle Physics 9/9/24

Variational Auto-Encoder 
Trained to compress and reconstruct collision data

Trigger on events with high anomaly score

Selects unique events, 
preference for high multiplicity

[CMS-DP-2023-079]

https://cds.cern.ch/record/2876546/files/DP2023_079.pdf


Anomaly detection in real-time
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Selects unique events, 
preference for high multiplicity

[CMS-DP-2023-079]

Event not selected by standard triggers
12 jets (max L1), eleven with ET > 20 GeV,
Muon with ET = 3 GeV, Number of vertices = 75

● What if we don’t know what the signal looks like a-priori?

○ If we don’t consider this in the trigger (online filter), we lose data before we even begin

○ Apply anomaly detection algorithms online e.g. AXOL1TL

https://cds.cern.ch/record/2876546/files/DP2023_079.pdf


Anomaly detection in real-time
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● Demonstrated successful running in L1T (2024)
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[CMS-DP-2023-079]

https://cds.cern.ch/record/2876546/files/DP2023_079.pdf
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Simulation
(generative)



Simulation is painful!
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● MC simulation is extremely CPU-intensive
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● Can we use ML to short-cut parts of the simulation chain?

[CERN-LHCC-2022-005]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/


Faster simulation
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● Deep generative models for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4 
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[CSBS 8, 7 (2024)]

Generative 
Adversarial 
Network (GAN)

Variational 
Auto-Encoder 
(VAE)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2020-04/


Faster simulation
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● Deep generative models for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4

○  Generation time reduced by up to two orders of magnitude, very small memory footprint (5 Mb)
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[CSBS 8, 7 (2024)]

Total energy of shower: response & resolution
Decent agreement, slightly better for GANs

Shower shape variables (lateral shower width)
Room for improvement, VAE outperforms particularly for high pT photons

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2020-04/


Better simulation
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● Better our simulation reflects real data → more accurate inference (i.e. less bias, reduced systematic uncertainty)

○ Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach

○ ML approaches promise high-dimensional, unbinned calibration

● Example: “One Flow to correct them all” [arXiv: 2403.18582]
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Normalising flow architecture
Map both simulation and data to share distribution,
conditioned on boolean

Morph simulation to data
Flip boolean switch, quantiles are preserved

https://arxiv.org/pdf/2403.18582


Better simulation
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● Better our simulation reflects real data → more accurate inference (i.e. less bias, reduced systematic uncertainty)

○ Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach

○ ML approaches promise high-dimensional, unbinned calibration

● Example: “One Flow to correct them all” [arXiv: 2403.18582]
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Apply morphing with flow

https://arxiv.org/pdf/2403.18582
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Inference



Unfolding
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● Unfolding: reconstruct “true” distribution of a physical quantity from measured (i.e. smeared) data

○ Limited to small number of observables and present as differential cross section in predetermined bins

[Phystat Conference on Unfolding 2024]

Response matrix ( R ): extract from MC simulation: 
Fraction of “truth” bin i lands in reco bin j 

Unfold by solving:
(Perhaps with regularisation)

https://indico.cern.ch/event/1357972/


Unfolding with omnifold
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● Unfolding: reconstruct “true” distribution of a physical quantity from measured (i.e. smeared) data

○ Limited to small number of observables and present as differential cross section in predetermined bins

● OMNIFOLD: result provided (unbinned) as dataset of particle-level events
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Iterative NN reweighting procedure using BCE loss function over datasets A and B

Output f(x) used to extract likelihood-ratio (weight)N-dimension event observables

[arXiv:1911.09107]

https://arxiv.org/pdf/1911.09107


Unfolding with omnifold
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[arXiv:2405.20041]

Taken from J. Duarte ICHEP slides

Construct new observables from (reweighted) 
particle-level dataset: not presented in original paper

Dataset on Zenodo

Code on GitLab

Z+jets process: x = 24 observables

https://arxiv.org/pdf/2405.20041
https://indico.cern.ch/event/1291157/contributions/5958213/attachments/2901085/5090949/ICHEP2024_NovelMLTechniques_23Jul2024.pdf
https://zenodo.org/records/11507450
https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024


Invertible networks for inference
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● CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)

○ Map complex observable space to simple base distribution

○ Conditional on parameters we are trying to infer

○ Apply to high dimensional feature space → limited information loss

○ Learning the density, p(x|𝜃) !
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Conditional on 𝜃

𝜃

(Learnt) Transformations of x to 
latent space z
Conditional on 𝜃. Evaluate simple base 
distribution density

Conserves probability mass



Invertible networks for inference
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● CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)
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Conditional on 𝜃

Example: CALOFLOW [arXiv:2404.18992v1]
Infer incident pion energy (𝜃) from measured energy in calorimeter cells (x)

Learnt full density: per-shower resolution estimates

https://arxiv.org/pdf/2404.18992v1


Invertible networks for generation
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● Flows are invertible → use as generative model

○ Sample over base distribution, z0

○ Obtain synthetic data {xgen} for fixed value of 𝜃 which follows learned conditional density

○ Significantly less compute than expensive MC simulation

Jonathon Langford Types of ML in Particle Physics 9/9/24

𝜃



Invertible networks for generation
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● Flows are invertible → use as generative model

○ Sample over base distribution, z0

○ Obtain synthetic data {xgen} for fixed value of 𝜃 which follows learned conditional density

○ Significantly less compute than expensive MC simulation e.g. FlashSim at CMS
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Expensive CMS detector 
simulation (Geant4)

Particle-level (truth) Detector-level 
(reconstructed)

[CHEP2023 Talk]

https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf


Invertible networks for generation
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● Flows are invertible → use as generative model

○ Sample over base distribution, z0

○ Obtain synthetic data {xgen} for fixed value of 𝜃 which follows learned conditional density

○ Significantly less compute than expensive MC simulation e.g. FlashSim at CMS
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Replace with surrogate of full 
detector simulation using flow

Particle-level (truth)

Conditional variables, 𝜃
Generated particles momentum, angle, mass, flavour Input data, x

Reconstructed particle momenta, angle, ID, …

Detector-level 
(reconstructed)

[CHEP2023 Talk]

https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf


FlashSIM at CMS
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Full high-fidelity 
MC simulation

Generative 
flow

[CHEP2023 Talk]

https://indico.jlab.org/event/459/contributions/11718/attachments/9544/13848/flashsim_chep.pdf


Outlook
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● Covered many different “Types of ML in Particle Physics”: BDT, DNN, CNN, GNN, Transformer, GAN, NF, … 

○ With vast array of applications: object identification/reconstruction, event classification, anomaly detection, generation, inference

○ Only a subset: diffusion models, detector design & optimisation, pileup mitigation, background prediction, …

○ ML is clearly opening up many new possibilities in the field!

● As our dependence on ML grows → Must ensure we use tool correctly

○ Performance is not the only relevant metric

○ Focus on robustness, interpretability, insensitivity to modeling details, …

○ E.g. systematic-aware learning, domain adversarial training

● We will cover these kind of topics over Phystat: Stats meets ML

○ Plenty of interesting discussions to come!
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https://indico.cern.ch/event/1407421/overview
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Back-Up



Object reconstruction
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● Previous slides assume object ( jet) has already been reconstructed from detector read-outs

○ Traditional object reconstruction follows rule-based algorithms (e.g. Kalman Filter, DBScan, Particle Flow)
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Particle
flow

Adapted from [arXiv:2309.06782]

https://arxiv.org/pdf/2309.06782


Object reconstruction
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● Now investigating graph-based ML for reconstruction

○ Example: ML Particle Flow to learn mapping from tracks/clusters → particles
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[arXiv:2309.06782]
[arXiv:2101.08578]

Demonstrate improved performance over rule-based algorithms

M: Median, IQR: Interquartile range

ZH WW

https://arxiv.org/pdf/2309.06782
https://arxiv.org/pdf/2101.08578


Parametric classifiers
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● What if we are searching for new physics (signal) over large parameter/hypothesis space?

○ Example: search for new resonant particle, X, with mass mX in [250,1000] GeV

● Train ML classifier using MC simulation to identify signal-vs-background:
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1. Train single classifier using simulation from many mX hypotheses = sub-optimal

2. Train multiple classifiers, one at each hypothesis = unwieldy for large parameter space

3. Parametric classifier: output is conditional on mX parameter
[EPJC 76 (2016) 5, 235]

Interpolatable!

Add mX as additional 
training feature (𝜃)

Train on all signal MC simultaneously {m1,m2,...}

Give background MC random values (in set)

[CMS-PAS-HIG-22-012]

https://arxiv.org/pdf/1601.07913
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-22-012/index.html


Parametric classifiers
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● What if we are searching for new physics (signal) over large parameter/hypothesis space?

○ Example: search for new resonant particle, X, with mass mX in [250,1000] GeV

● Train ML classifier using MC simulation to identify signal-vs-background:
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[CMS-PAS-HIG-22-012]

Optimised discriminant for each mass hypothesis

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-22-012/index.html


Model-agnostic searches 
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● What if we don’t know what the signal looks like a-priori? Use Anomaly detection algorithms

● CMS apply model-agnostic approaches to dijet resonance searches with anomalous jet substructure

[CMS-PAS-EXO-22-026]

Other approaches including semi-supervised learning (partial labels)
 and weakly-supervised learning (noisy labels)

Increased discovery 
potential
Cross section needed for 
5σ discovery reduced by 
up to factor of 7, 
compared to inclusive 
dijet search

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-22-026/index.html


LHC triggering
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Data-taking
Online filtering
(Trigger)

…

Probability to 
produce anything

Probability to 
produce a Higgs 
boson
~1 in a billion collisions

40 MHz collisions, O(100 million) readout channels



LHC triggering
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Data-taking
Online filtering
(Trigger)

…

Probability to 
produce anything

Probability to 
produce a Higgs 
boson
~1 in a billion collisions

40 MHz collisions, O(100 million) readout channels

● We need trigger algorithms to be:

○ Very fast = get more data through

○ Very accurate = select the right data



FastML

50Jonathon Langford Types of ML in Particle Physics 9/9/24

● Task becomes much harder during HL-LHC due to increased Pile-Up

● Advances in FPGA technology facilitates ML in the ultra-low 
latency, high-bandwidth environment

○                                    convert python ML model to FPGA language

Pile-Up = number of simultaneous 
p-p collisions in bunch crossing

2029-2040+

[FastML23 Workshop]

Example: CNN to identify b-quark jets in 𝜇s domain

Field Programmable Gate Array (FPGA)
High parallelism, high flexibility, 
latency deterministic, power efficient

https://indico.cern.ch/e/fastml2023


The inverse problem
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● Determine underlying parameters, 𝜃, that produce observed data, x

● MC simulation: accurate density estimation in high-dim space is extremely challenging!

● Typically construct lower-dimensional summary statistic 
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Likelihood is integral over all possible trajectories through latent space

Reconstructed four-momenta + ID of 
all final state particles

Histogram of h bins in k dimensions

● Construct Poisson-likelihood using summary statistic to infer, 

○ e.g. to extract signal rate, 𝜇, with nuisance parameters, 𝜈

● Where can ML improve inference over traditional methods?


