

Types of ML in Particle Physics

PHYSTAT: Statistics meets Machine Learning

Dr. Jonathon Langford 9th September 2024

Particle physics and big data

LHC proton-proton collision

CMS detector with O(100 million) readout channels

- Astronomically large: ~500 Tb of data produced by CMS per-second
 - \circ After real-time filtering of collisions (trigger) \rightarrow Tens of Pb per-year saved offline for further analysis
- **Extremely diverse:** plethora of detector technologies with different geometry/readout
- Well understood: small uncertainty in the data
- Well structured: significant effort in making datasets easier to work with
- High-fidelity/quality simulation: provides "truth"

Jonathon Langford

Particle physics and big data

CMS detector with O(100 million) readout channels

LHC proton-proton collision

Ideal playground for Machine Learning initiatives

Jonathon Langford

Jonathon Langford

Jonathon Langford

Monte-Carlo simulation

- [Theory \rightarrow observables] is described by highly-intractable likelihood
- Use high-fidelity MC simulation of each stage of collision event

$$L(x \,|\, \vec{\alpha}) = \int \mathrm{d}z_d \int \mathrm{d}z_s$$

Observables e.g. reconstructed energies, momenta and angles of all final state particles

- Provides "truth" for inference on real data
 - \bigcirc
- Labelled collisions for supervised learning

Jonathon Langford

Types of ML in Particle Physics

High dimensional integral over latent variables

 $dz_p p(x|z_d) p(z_d|z_s) p(z_s|z_p) p(z_p|\vec{\alpha})$

Fundamental physics parameters of interest e.g. Higgs boson mass

Accurate simulation is crucial to avoid bias (calibration)

ML in particle physics

- Disclaimer: collider, CMS, experimental
 <u>Neutrino Physics & ML workshop, ETH (2024)</u>
 <u>Theoretical HEP & AI talk, EuCAIFCon (2024)</u>
 <u>Latest ML developments for LHCb, EP-IT seminar (2024)</u>
 <u>DM direct detection [arXiv:2406.10372]</u>
- Topics:
 - Object identification & reconstruction
 - Event classification
 - Simulation (generative)
 - Inference
- Try to keep relevant with mostly new applications/results

Jonathon Langford

<u>Object identification</u> <u>& reconstruction</u>

Types of ML in Particle Physics

Jonathon Langford

Jet classification

<u>Jet</u> = spray of particles (cone) produced by hadronization of a quark/gluon when ejected from high-energy collision

Jets come in different "flavours" \rightarrow different substructure

- Jet constituent particles produce patterns of "hits" as they traverse detector
 - Essentially a pattern recognition problem Ο
 - Has become a huge frontier in ML over last years (see ML4Jets) Ο

Jonathon Langford

Jet representations

• Evolution of representations:

Image-based (CNN) Difficult to combine non-additive quantities, very sparse (>90% pixels are blank)

Sequences (RNN) Can include any kind of constituent feature, no issues with sparse data, sorted list e.g. decreasing pT

Jonathon Langford

Types of ML in Particle Physics

Point/particle cloud (GNN) Unordered list is permutation invariant, no issues with sparse data

Ten types of jets viewed as particle clouds Coordinates = Direction of flight Size = Energy Shape = Particle ID Solid/Hollow = Charged/Neutral Blueness = Displacement from IP <u>arXiv:2202.03772</u>

Jet classification

- Huge advances by using low-level information with Graph Neural Networks (e.g. ParticleNet in CMS, GN1/GN2 in ATLAS)
- Now **Transformers** (e.g. ParT): "attention" gives more weight to certain jet constituents

Jonathon Langford

Impact of improved jet classification

- Translates to significant improvements in particle physics measurements/searches
 - Search for boosted HH \rightarrow bbVV \rightarrow bb4q Ο
 - Global particle transformer (GloParT) classifier to identify boosted $VV \rightarrow 4q$ Ο

Jonathon Langford

Types of ML in Particle Physics

[CMS-PAS-HIG-23-012]

All-in-one algorithms

- Unified particle transformer for small-radius (AK4) jets: UParT
 - Simultaneously identify heavy-flavour (b, c), identify hadronically decaying tau-leptons, identify s-jets, regress jet energy, estimate jet energy resolution Ο

Jonathon Langford

Types of ML in Particle Physics

[CMS-DP-2024-066]

All-in-one algorithms

- Unified particle transformer for small-radius (AK4) jets: UParT
 - Simultaneously identify heavy-flavour (b, c), identify hadronically decaying tau-leptons, identify s-jets, regress jet energy, estimate jet energy resolution \bigcirc

word of caution... Δ

- Challenging to calibrate sophisticated jet-taggers \bigcirc
- Trained with simulation \rightarrow learn modeling-specific details. Systematic uncertainties! \bigcirc
- Explainability/interpretability: what makes this particular jet Type-X like? \bigcirc
- Cover such topics this week

Jonathon Langford

Types of ML in Particle Physics

[CMS-DP-2024-066]

Event classification

Event classification

- **<u>Common task</u>**: identify collisions of interest ("signal") from "background"
 - Traditionally used (sequential) selection cuts to increase signal purity Ο
 - Now use Multivariate ML algorithms based on high-level features \bigcirc
 - E.g. Boosted Decision Trees (BDT), Deep Neural Network (DNN) Ο
- Output provides powerful summary to "cut" or fit directly

Tip: XGBoost BDT typically provides most powerful, robust, calibrated classifier for "tabulated" input data

Jonathon Langford

Types of ML in Particle Physics

[JHEP 07 (2021) 027]

Data/MC

Event classification

Tip: XGBoost BDT typically provides most powerful, robust, calibrated classifier for "tabulated" input data

Jonathon Langford

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

- No labels \rightarrow Learn directly from data
- Anomaly metric: compare input, x, to **Decoder(Encoder(**x))
 - If large difference then event has low Prob(bkg) \bigcirc

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- E.g. Unsupervised learning with (Variational) Auto-Encoders (AE)

- No labels \rightarrow Learn directly from data
- Anomaly metric: compare input, x, to **Decoder**(**Encoder**(x))
 - If large difference then event has low Prob(bkg) Ο
- ATLAS apply AE to physics-informed representation (rapidity-mass matrix)
 - For searches involving different object pairs: j+j, j+b, b+b, j+e, b+e, $j+\gamma$, $j+\mu$, $b+\mu$, $b+\gamma$ Ο

Jonathon Langford

Types of ML in Particle Physics

[PRL 132 (2024) 081801]

9/9/24

What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**

Jonathon Langford

[PRL 132 (2024) 081801]

9/9/24

Anomaly detection in real-time

- What if we don't know what the signal looks like a-priori?
 - If we don't consider this in the trigger (online filter), we lose data before we even begin
 - Apply anomaly detection algorithms online e.g. AXOL1TL

Jonathon Langford

Types of ML in Particle Physics

Selects <u>unique</u> events, preference for high multiplicity

Anomaly detection in real-time

- What if we don't know what the signal looks like a-priori?
 - If we don't consider this in the trigger (online filter), we lose data before we even begin
 - Apply anomaly detection algorithms online e.g. AXOL1TL

Jonathon Langford

Types of ML in Particle Physics

Selects <u>unique</u> events, preference for high multiplicity

Anomaly detection in real-time

• Demonstrated successful running in L1T (2024)

Types of ML in Particle Physics

Jonathon Langford

<u>Simulation</u> (generative)

Types of ML in Particle Physics

Jonathon Langford

Simulation is painful!

Can we use ML to short-cut parts of the simulation chain?

Jonathon Langford

Faster simulation

Deep generative models for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4

Jonathon Langford

```
[CSBS 8, 7 (2024)]
```

Faster simulation

- Deep generative models for fast photon shower simulation in ATLAS calorimeter to replace (slow) Geant4
 - Generation time reduced by up to two orders of magnitude, very small memory footprint (5 Mb) Ο

Total energy of shower: response & resolution Decent agreement, slightly better for GANs

Shower shape variables (lateral shower width)

Jonathon Langford

Types of ML in Particle Physics

[CSBS 8, 7 (2024)]

Room for improvement, VAE outperforms particularly for high pT photons

9/9/24

Better simulation

- Better our simulation reflects real data \rightarrow more accurate inference (i.e. less bias, reduced systematic uncertainty)
 - Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach Ο
 - ML approaches promise high-dimensional, unbinned calibration Ο
- Example: "One Flow to correct them all" [arXiv: 2403.18582]

Morph simulation to data

Normalising flow architecture

Map both simulation and data to share distribution, conditioned on boolean

Jonathon Langford

Flip boolean switch, quantiles are preserved

Better simulation

- Better our simulation reflects real data \rightarrow more accurate inference (i.e. less bias, reduced systematic uncertainty)
 - Calibration/refinement is a crucial part of any particle physics analysis: traditionally use binned scale factor approach Ο
 - ML approaches promise high-dimensional, unbinned calibration Ο
- Example: "One Flow to correct them all" [arXiv: 2403.18582]

Jonathon Langford

<u>Inference</u>

Unfolding

- **<u>Unfolding</u>**: reconstruct "true" distribution of a physical quantity from measured (i.e. smeared) data
 - Limited to small number of observables and present as differential cross section in predetermined bins Ο

Fraction of "truth" bin i lands in reco bin j

Jonathon Langford

Types of ML in Particle Physics

[Phystat Conference on Unfolding 2024]

Unfolding with omnifold

- **Unfolding:** reconstruct "true" distribution of a physical quantity from measured (i.e. smeared) data
 - Limited to small number of observables and present as differential cross section in predetermined bins Ο
- **OMNIFOLD:** result provided (unbinned) as dataset of particle-level events

Iterative NN reweighting procedure using BCE loss function over datasets A and B

Jonathon Langford

Types of ML in Particle Physics

[arXiv:1911.09107]

Unfolding with omnifold

Z+jets process: x = 24 observables

Jonathon Langford

Types of ML in Particle Physics

[arXiv:2405.20041]

9/9/24

Invertible networks for inference

- CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)
 - Map complex observable space to simple base distribution Ο
 - Conditional on parameters we are trying to infer \bigcirc
 - Apply to high dimensional feature space \rightarrow limited information loss Ο
 - Learning the density, $p(x|\theta)$! \bigcirc

Conditional Invertible

Neural Network (cINN)

(Learnt) Transformations of x to latent space z Conditional on θ . Evaluate simple base distribution density

 $|\theta) = \prod_{x_i \in \mathcal{D}} p(x_i | \theta)$

Jonathon Langford

Conserves probability mass

Invertible networks for inference

CINN: Conditional Invertible Neural Network (e.g. Normalising Flow)

Example: CALOFLOW [arXiv:2404.18992v1]

Infer incident pion energy (θ) from measured energy in calorimeter cells (x)

Jonathon Langford

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
 - Sample over base distribution, z_0
 - Obtain synthetic data $\{x_{qen}\}$ for fixed value of θ which follows learned conditional density
 - Significantly less compute than expensive MC simulation

Types of ML in Particle Physics

$\{z_0\} \sim \mathcal{N}(0, \mathbb{1})$ $x_{\text{gen}} = T(z_0|\theta) = f(z_0|\theta; \phi)$

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
 - \circ Sample over base distribution, z_0
 - Obtain synthetic data $\{x_{qen}\}$ for fixed value of θ which follows learned conditional density
 - Significantly less compute than expensive MC simulation e.g. FlashSim at CMS

$\{z_0\} \sim \mathcal{N}(0, \mathbb{1})$ $x_{\text{gen}} = T(z_0|\theta) = f(z_0|\theta; \phi)$

[CHEP2023 Talk]

Invertible networks for generation

- Flows are invertible \rightarrow use as generative model
 - Sample over base distribution, z_0 Ο
 - Obtain synthetic data $\{x_{gen}\}$ for fixed value of θ which follows learned conditional density Ο
 - Significantly less compute than expensive MC simulation e.g. FlashSim at CMS Ο

Jonathon Langford

Types of ML in Particle Physics

$\{z_0\} \sim \mathcal{N}(0, \mathbb{1})$ $x_{\text{gen}} = T(z_0|\theta) = f(z_0|\theta;\phi)$

[CHEP2023 Talk]

FlashSIM at CMS

Jonathon Langford

Types of ML in Particle Physics

[CHEP2023 Talk]

Outlook

- Covered many different "Types of ML in Particle Physics": BDT, DNN, CNN, GNN, Transformer, GAN, NF, ...
 - With vast array of applications: object identification/reconstruction, event classification, anomaly detection, generation, inference Ο
 - Only a subset: diffusion models, detector design & optimisation, pileup mitigation, background prediction, ... Ο
 - ML is clearly opening up many new possibilities in the field! Ο
- As our dependence on ML grows \rightarrow **Must ensure we use tool correctly**
 - Performance is not the only relevant metric Ο
 - Focus on robustness, interpretability, insensitivity to modeling details, ... Ο
 - E.g. systematic-aware learning, domain adversarial training Ο
- We will cover these kind of topics over **Phystat: Stats meets ML**
 - Plenty of interesting discussions to come! Ο

Jonathon Langford

Back-Up

Object reconstruction

- Previous slides assume object (jet) has already been reconstructed from detector read-outs
 - Traditional object reconstruction follows rule-based algorithms (e.g. Kalman Filter, DBScan, Particle Flow) Ο

Jonathon Langford

Object reconstruction

- Now investigating graph-based ML for reconstruction
 - Example: ML Particle Flow to <u>learn mapping</u> from tracks/clusters \rightarrow particles \bigcirc

[arXiv:2101.08578]

Jonathon Langford

Types of ML in Particle Physics

Demonstrate improved performance over rule-based algorithms

9/9/24

44

Parametric classifiers

- What if we are searching for new physics (signal) over large parameter/hypothesis space?
 - \circ Example: search for new resonant particle, X, with mass m_x in [250,1000] GeV
- Train ML classifier using MC simulation to identify signal-vs-background:
 - 1. Train single classifier using simulation from many m_x hypotheses = sub-optimal
 - 2. Train multiple classifiers, one at each hypothesis = unwieldy for large parameter space
 - 3. **Parametric classifier:** output is conditional on m_x parameter

Add m_{χ} as additional training feature (θ)

Train on all signal MC simultaneously {m1,m2,...} Give background MC random values (in set)

Jonathon Langford

Types of ML in Particle Physics

[CMS-PAS-HIG-22-012]

 $f(\vec{x})$ to $f(\vec{x}; m_X)$

[EPJC 76 (2016) 5, 235]

9/9/24

Parametric classifiers

- What if we are searching for new physics (signal) over large parameter/hypothesis space?
 - Example: search for new resonant particle, X, with mass m_x in [250,1000] GeV
- Train ML classifier using MC simulation to identify signal-vs-background:

[CMS-PAS-HIG-22-012]

9/9/24

- What if we don't know what the signal looks like a-priori? Use **Anomaly detection algorithms**
- CMS apply model-agnostic approaches to <u>dijet resonance searches with anomalous jet substructure</u>

Other approaches including semi-supervised learning (partial labels) and weakly-supervised learning (noisy labels)

Jonathon Langford

LHC triggering

Data-taking

Online filtering (Trigger)

...

40 MHz collisions, O(100 million) readout channels

Types of ML in Particle Physics

Jonathon Langford

LHC triggering

Data-taking

40 MHz collisions, O(100 million) readout channels

Types of ML in Particle Physics

Jonathon Langford

[FastML23 Workshop]

Pile-Up = number of simultaneous p-p collisions in bunch crossing

- Task becomes much harder during HL-LHC due to increased Pile-Up
- Advances in FPGA technology facilitates ML in the ultra-low latency, high-bandwidth environment
 - Conifer his 4 mi convert python ML model to FPGA language

FastML

Field Programmable Gate Array (FPGA)

High parallelism, high flexibility, latency deterministic, power efficient

Example: CNN to identify b-quark jets in *µ*s domain

Jonathon Langford

Types of ML in Particle Physics

2029-2040+

9/9/24

$D \subseteq \mathbb{R}^{n \times d}$

- Determine underlying parameters, θ , that produce observed data, x
- MC simulation: accurate density estimation in high-dim space is extremely challenging!
- Typically construct lower-dimensional summary statistic

 $\mathbb{R}^{h \times k}$

- Construct Poisson-likelihood using summary statistic to infer, $\theta = \{\mu, \nu\}$
 - e.g. to extract signal rate, μ , with nuisance parameters, ν Ο

$$L(\text{data}|\mu,\nu) = \left(\prod_{r} \text{Pois}[N_{r}|\mu s(\nu) + b(\nu)]\right) \cdot C(\nu)$$

Where can ML improve inference over traditional methods?

Jonathon Langford

Types of ML in Particle Physics

Events / Ge/

 $p(x|\theta) =$

The inverse problem

Reconstructed four-momenta + ID of all final state particles

