Lorentz-GATr Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics

Jonas Spinner*, Victor Breso*, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer

PHYSTAT 2024 Statistics meets machine learning

Symmetries are key in high-energy physics...

... but its hard to build them into networks in a scalable way.

 γ^{μ} $\sigma^{\mu
u}$ $\gamma^{\mu}\gamma_5$ γ_5

Geometric algebra representations

Equivariant layers

GATr was originally developed for E(3) arXiv:2305.18415

Transformer architecture

Strong performance on diverse problems

Scalable to thousands of tokens

Ingredients **Geometric algebra representations**

- Basis elements γ^{μ} of the geometric/Clifford algebra defined by $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$
 - Operations: αx , x + y, $x \cdot y$
 - General multivector: $x = x^{S1} + x_{\mu}^{V}\gamma^{\mu} + x_{\mu\nu}^{T}\sigma^{\mu\nu} + x_{\mu}^{A}\gamma^{\mu}\gamma_{5} + x^{P}\gamma_{5}$
- We embed multivectors as $(x^{S}, x_{0}^{V} \cdots x_{3}^{V}, x_{01}^{T} \cdots x_{23}^{T}, x_{0}^{A} \cdots x_{3}^{A}, x^{P}) \in \mathbb{R}^{16}$
- Each GATr token contains n multivector and m scalar representations

Ingredients Equivariance

symmetry group transformation \mathcal{G}

neural network transformation \mathcal{N}

$\mathcal{G}(\mathcal{N}(x)) = \mathcal{N}(\mathcal{G}(x))$

Ingredients **Equivariant layers**

EquiLinear

Geometric product

Geometric attention

LayerNorm, dropout, activation function... $\phi(x) = \mathbf{i}$ k = 0

 $\psi(x, y) = x \cdot y$

Attention(

See bonus material

$$\int_{0}^{4} v_{k} \langle x \rangle_{k} + \sum_{k=0}^{4} w_{k} \gamma_{5} \langle x \rangle_{k}$$

$$(q, k, v)_{i\alpha} = \text{Softmax}_{j} \left(\frac{\langle q_{i\beta}, k_{j\beta} \rangle}{\sqrt{16n}} \right) v_{j\alpha}$$

Ingredients **Transformer architecture**

Credits to Johann Brehmer

 γ^{μ} $\sigma^{\mu
u}$ $\gamma^{\mu}\gamma_5$ γ_5

Geometric algebra representations

Equivariant layers

Transformer architecture

Scalable to thousands of tokens

Experiments LHC simulation chain

Experiments

Credits to Theo Heimel

. . .

Experiments **Amplitude regression**

Experiments **Amplitude regression**

L-GATr scales best to high multiplicity, where amplitude surrogates are most useful

Experiments **Top tagging**

Experiments Top tagging

Model	Accuracy	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B~(\epsilon_S=0.3)$
TopoDNN [48]	0.916	0.972	_	295 ± 5
LoLa [15]	0.929	0.980	_	722 ± 17
P-CNN [1]	0.930	0.9803	$201\pm~4$	759 ± 24
N-subjettiness [61]	0.929	0.981	_	867 ± 15
PFN [50]	0.932	0.9819	247 ± 3	888 ± 17
TreeNiN [57]	0.933	0.982	_	1025 ± 11
ParticleNet [63]	0.940	0.9858	397 ± 7	1615 ± 93
ParT [64]	0.940	0.9858	413 ± 16	1602 ± 81
LorentzNet* [41]	0.942	0.9868	498 ± 18	2195 ± 173
CGENN* [67]	0.942	0.9869	500	2172
PELICAN* [9]	0.9426 ± 0.0002	0.9870 ± 0.0001	_	2250 ± 75
L-GATr (ours)*	$\textbf{0.9417} \pm 0.0002$	0.9868 ± 0.0001	548 ± 26	2148 ± 106

L-GATr is on par with the best equivariant (*) baselines

Continuous normalising flows (CNF) connect a simple base density to a complex target density through a neural differential equation

Conditional flow matching (CFM) is a simple way to train CNFs by comparing the learned velocity $v_t(x)$ to a conditional target velocity $u_t(x \mid x_1)$

Continuous normalising flows arXiv:1806.07366

arXiv:2210.02747

$$\frac{d}{dt}x = v_t(x)$$

$\mathscr{L} = \mathbb{E}_{t,x,x_1} \| v_t(x) - u_t(x \,|\, x_1) \|^2$

Conditional flow matching

In conditional flow matching (CFM), the choice of target velocity can be more important than the architecture

Riemannian Flow Matching arXiv:2302.03660

In conditional flow matching (CFM), the choice of target velocity can be more important than the architecture

Target velocity	Architecture	AUC
Euclidean	L-GATr	0.99
Phasespace-aware	MLP	0.78
Phasespace-aware	L-GATr	0.51

Riemannian Flow Matching arXiv:2302.03660

L-GATr helps with tricky kinematic features

L-GATr generates samples that a classifier can almost not distinguish from the ground truth

 γ^{μ} $\sigma^{\mu
u}$ $\gamma^{\mu}\gamma_5$ γ_5

Geometric algebra representations

L-GATr combines equivariance and scalability

Strong performance on diverse problems

Scalable to thousands of tokens

Transformer architecture

Victor Bresó

Pim de Haan

Geometric Algebra Transformer

E(3)-equivariant version Johann Brehmer*, Pim de Haan*, Sönke Behrends, Taco Cohen NeurIPS 2023, arXiv:2305.18415

Lorentz-Equivariant **Geometric Algebra Transformer** for High-Energy Physics

Jonas Spinner*, Victor Breso*, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer Under review, arXiv:2405.14806

Tilman Plehn

Jesse Thaler

E(3)-GATr paper

L-GATr paper

Johann Brehmer

Bonus material

Ingredients Equivariant layers

EquiLinear

Geometric product

Geometric attention

EquiLayerNorm

Activation function

Dropout

 $\phi(x) = \sum_{k=0}^{4} \psi(x, y) = x$ Attention(4)

LN(x) = x

a(x) = GE

Separate dropout for each multivector blade

$$\sum_{k=0}^{4} \frac{w_k \gamma_5 \langle x \rangle_k}{k=0}$$

$$x \cdot y$$

$$(q, k, v)_{i\alpha} = \text{Softmax}_{j} \left(\frac{\langle q_{i\beta}, k_{j\beta} \rangle}{\sqrt{16n}} \right) v_{j\alpha}$$

$$x / \sqrt{\frac{1}{n} \sum_{c=1}^{n} \sum_{k=0}^{4} \left| \left\langle \langle x_{c} \rangle_{k}, \langle x_{c} \rangle_{k} \right\rangle \right| + \epsilon}$$

$$ELU(\langle x \rangle_{0}) x$$

Amplitude regression

Event generation Target velocities for CFM

$$p = (E, p_x, p_y, p_z) = f(y) = \left(\sqrt{m^2 + p_T^2} \cos y\right)$$
$$y = (y_m, y_p, \phi, \eta), \qquad m^2 = \exp(y_m), \quad p_T = \frac{1}{2}$$

Target velocities can be constant in $p = (E, p_x, p_y, p_z)$ ('euclidean') constant in $y = (y_m, y_p, \phi, \eta)$ ('phasespace-aware')

 $\sinh^2 \eta, p_T \cos \phi, p_T \sin \phi, p_T \sinh \eta$

Event generation

Event generation

Tagging + Generation Symmetry breaking

Sources of symmetry breaking

- Real world: Beam direction, detector geometry... Symmetry-breaking object: Beam direction
- Generation: Have to break $SO(1,3) \rightarrow SO(3)$ because generative networks can only be defined on compact groups Symmetry-breaking object: Time direction

We break the symmetry by adding the symmetry-breaking objects as extra token or as extra channel for each token

