Anomaly aware machine learning for dark matter direct detection at DARWIN PHYSTAT 10/11/2024, London

Andre Scaffidi and Roberto Trotta for the DARWIN collaboration

dark matter 26.8%

5,7.

dark energy 68.3%

@AstroKatie/Planck13

The search for dark matter

Abundant evidence for DM:

- CMB accoustic oscillations
- Bullet cluster
- Star roation curves

The search for dark matter

Terrestrial direct detection:

- Earth flying through 'WIND' of dark matter
- Detect it on Earth?

XLZD: XENON-LUX-ZEPLIN-DARWIN (Design book in preparation)

Sun

 $\bigcirc \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet \bullet$

- Early alert

DARWIN

Leading R&D for 40+ tonne detectors

This aim:

- Develop deep/ML tools for enhancing the analysis pipeline.
- Collaboration paper out soon!

Current/Future ML scope @ DARWIN/XLZD

Current/Future ML scope @ DARWIN/XLZD

The Time Projection Chamber (TPC)

- Liquid and gaseous Xe 0 Two photo sensor arrays (top and bottom)
- Two signals: 0 Photons (primary scintillation S1) Electrons (ionisation)
- Electrons drifted along electric field 0 into gas phase → Secondary scintillation
- Extract high-level 'summary statistics': 0

cS1, **cS2**

- Proxy for **recoil energy** 0
 - $^{\circ}$ cS1, cS2 \Rightarrow E = g(cS1, cS2)

ns 10 phe/

Time $[\mu s]$

raditional likelihood-based analysis

 $\log \mathscr{L}(\mathbf{cS1}, \mathbf{cS2} \mid \sigma_{\mathbf{SI}}, \theta) = \log \mathscr{L}_{\text{science}}(\mathbf{cS1}, \mathbf{cS2} \mid \sigma_{\mathbf{SI}}, \theta) + \log \mathscr{L}_{\text{ancillary}}(\theta)$

- Parametrically model dependent
- Derived from 2D templates
- Costly...

Does this likelihood yield an optimal test statistic?

raditional likelihood-based analysis

 $\log \mathscr{L}(\mathbf{cS1}, \mathbf{cS2} \mid \sigma_{\mathbf{SI}}, \theta) = \log \mathscr{L}_{\text{science}}(\mathbf{cS1}, \mathbf{cS2} \mid \sigma_{\mathbf{SI}}, \theta) + \log \mathscr{L}_{\text{ancillary}}(\theta)$

- Parametrically model dependent
- Derived from 2D templates
- Costly...

Does this likelihood yield an optimal test statistic?

Simulation based inference

Data / Simulation

Machine Learning

**See talk by Will Handley and posters by Giovanni De Crescenzo, Kai Lehman

Inference

Diagram credit : Kyle Cranmer

Simulation based hypothesis testing

Data / Simulation

Machine Learning

Inference

Diagram credit : Kyle Cranmer

Simulation based hypothesis testing

Data / Simulation

'Anomaly' refers to observation of significantly discrepant anomaly score distribution

Training on Event topologies

- Nuclear Recoil (NR) → Associated with WIMPs
- (Dominant) Background → Linked to Electron Recoil 0 (ER)
- S1/S2 Peak Distance & Ratio \rightarrow Used to distinguish NR from ER

Training on Event topologies

- ONUMBER Recoil (NR) → Associated with WIMPs
- (Dominant) Background → Linked to Electron Recoil (ER)
- S1/S2 Peak Distance & Ratio \rightarrow Used to distinguish NR from ER

Training on Event topologies

- Output State
 Nuclear Recoil (NR) → Associated with WIMPs
- Ominant) Background → Linked to Electron Recoil (ER)
- S1/S2 Peak Distance & Ratio → Used to distinguish NR from ER

Pipeline

- $^{\circ}$ VAE \Rightarrow Learns spectral info in latent space.
- $^{\circ}$ Classifier \Rightarrow Lopez-Fogliani et.al 2406.10372: BDT's MLP and transformers all basically just as good

Quantify presence of anomaly with two sample test to reject f_0

- Using ELBO encodes spectral info
- Using cross entropy 'signal like' NR to the tails

Top: Variational auto-encoder: Train on ER only 0 **Bottom:** Fully connected MLP classifier: ER vs NR

0

Extraction of anomaly function from neural networks

Classifier

Extraction of NR and ER background pdf from TS distribution to determine presence of anomalous (non=background) events

Pipeline

- ^o VAE \Rightarrow Learns spectral info in latent space.
- Classifier ⇒Lopez-Fogliani et.al 2406.10372: BDT's MLP and transformers all basically just as good

Quantify presence of anomaly with two sample test to reject f_0

- Using ELBO encodes spectral info
- Using cross entropy 'signal like' NR to the tails

• Top: Variational auto-encoder: Train on ER only

Bottom: Fully connected MLP classifier: ER vs NR

Extraction of anomaly function from neural networks

Classifier

Extraction of NR and ER background pdf from TS distribution to determine presence of anomalous (non=background) events

Pipeline

- $^{\circ}$ VAE \Rightarrow Learns spectral info in latent space.
- Classifier \Rightarrow Lopez-Fogliani et.al 2406.10372: BDT's MLP and transformers all basically just as good

Quantify presence of anomaly with two sample test to reject f_0

- Using ELBO encodes spectral info
- Using cross entropy 'signal like' NR to the tails

• Top: Variational auto-encoder: Train on ER only

Bottom: Fully connected MLP classifier: ER vs NR O

Extraction of anomaly function from neural networks

Classifier

Extraction of NR and ER background pdf from TS distribution to determine presence of anomalous (non=background) events

ELBO encodes spectral information

Quantify presence of anomalous events via two sample test

\Rightarrow 1D analysis in *TS* space:

Accept/reject $\mathscr{H}_0: X \sim f_0(TS \mid \text{No signal})$

$$\mathscr{L}(\mathbf{TS} \mid \mathscr{H}_{0}) \propto e^{-B} \prod_{i=1}^{N} \left(Bf_{0} \left(TS_{i} \right) \right)$$

Pros

- Un-binned.
- Parametrically independent on WIMP model.
- coverage.
- (Current work!)
- Rapid increase in end-to-end computational efficiency

No auxiliary terms required assuming simulations have suitably descriptive

Can be augmented with more fundamental data representation or calibration.

Forecast background rejection sensitivity

Summary

- XLZD ML program making way
- Works!
- Outperforms baseline likelihood approach for analogous test.
- Drastic increase in computational efficiency
- time domain PMT readout handling.

Focussed on end-to-end anomaly detection (background rejection) task

Novel baseline for future modular additions: Calibration DA, energy recon.,

Backup

Forecasting background rejection 2D plane

Influence of R

There seems a universal value for which anomaly awareness is maximised: $R = 2.5 \times 10^5$ p

 10^{-1}

 10^{-2} -

9

XLZD - XENON-LUX-ZEPLIN-DARWIN

XLZD nominal design (design book in preparation)

- 60 t LXe in TPC (~80 t total), early science with 40 t LXe *
- 3-inch PMTs, 1182/array *
- 2.97 m e- drift, 2.98 m diameter **
- Drift field: 240-290 V/cm *
- Extraction field: 6-8 kV/cm *

