Statistics of generative models for the LHC

UNIVERSITÀ **DEGLI STUDI DI MILANO**

PHYSTAT – Statistics meets ML | Imperial College London **Ramon Winterhalder – UniMi**

Introduction & Definition

Introduction & Definition

Introduction

LHC analysis (oversimplified)

LHC analysis (oversimplified)

GAN Art (2018) → sold for \$432,500 State-of-the-art image generation

State-of-the-art text generation

What is a Generative Model?

We have:
$$p_{\text{truth}} \equiv p_{\text{data}}(x)$$

The distribution p_{truth} is usually given as:

- explicit as function (e.g. $d\sigma \propto$ differential cross-section)
- implicit via a set of training data $\{x\} \sim p_{data}(x)$

We want to generate new samples

$$x \sim p_{\omega}(x) \simeq p_{\text{data}}(x)$$

In particle physics:

- Event generation
- Calorimeter simulation
- Unfolding
- MEM (transfer function)

What is a Generative Model?

We have:
$$p_{\text{truth}} \equiv p_{\text{data}}(x)$$

The distribution p_{truth} is usually given as:

- explicit as function (e.g. $d\sigma \propto$ differential cross-section)
- implicit via a set of training data $\{x\} \sim p_{data}(x)$

→ Multiple types of generative models

We want to generate new samples

$$x \sim p_{\omega}(x) \simeq p_{\text{data}}(x)$$

In particle physics:

- Event generation
- Calorimeter simulation
- Unfolding
- MEM (transfer function)

Strengths & Weaknesses of DGMs

Diffusion Probabilistic
ModelDiffusion ModelScore-matching
ModelConditional Flow
Matching

Normalizing Flow

Continuous NFs

Maximum-likelihood Models

Autoregessive Transfomer (GPT)

Diffusion Probabilistic
ModelDiffusion ModelScore-matching
ModelConditional Flow
MatchingNormalizing FlowContinuous NFs

Maximum-likelihood Models

Autoregessive Transfomer (GPT)

MADNIS — Neural importance sampling

[2212.06172, 2311.01548, 2408.01486]

MADNIS — Neural importance sampling

Fully differentiable version available

[2212.06172, 2311.01548, 2408.01486]

Uncertainty Estimation

Introduction & Definition

What we have vs what we want

However, in particle physics:

 \rightarrow we are not only interested in **results**, but also in **errorbars**

How do we achieve this?

Bayesian neural networks

BNN loss function

Predictive distribution in DGMs:

$$p(y \,|\, x) = \int$$

Approximate posterior:

 $p(\omega | x) \simeq q_{\alpha}(\omega | x) \approx q_{\alpha}(\omega)$

BNN loss function

• Predictive distribution in **DGMs**:

$$p(y \,|\, x) = \int$$

• Approximate posterior:

$$p(\omega | x) \simeq q_{\alpha}(\omega | x) \approx$$

- Variational inference: find α that minimizes
- BNN loss function

Neg log-likelihood averaged over q_{α} q_{α} shoud not deviate too much from prior! (2)

Inference — Matrix element method

Inference — Matrix element method

[2210.00019, 2310.07752]

Inference — Matrix element method

[2210.00019, 2310.07752]

Classifier test & reweighting

Introduction & Definition

DCTRGAN

Additional classifier improves precision (+)DCTRGAN [1907.08209, 2009.03796], LASER [2106.00792, 2305.07696]

Reweighting and refinement

If we have samples from data and DGM...

...an optimal classifier yields

$$f(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$

and defines weight

$$w(x) = \frac{p_{\text{data}}(x)}{p_G(x)} = \frac{f(x)}{1 - f(x)}$$

DCTRGAN

Additional classifier improves precision (+)DCTRGAN [1907.08209, 2009.03796], LASER [2106.00792, 2305.07696]

Reweighting and refinement

Classifier test

→ classifier detects **subtle difference** between densities → yields a valuable test metric

[2305.16774]

Data Amplification

Introduction & Definition

Discussion Topic

Given N training samples, how many more events $N_g > N$ can the DGM generate that can effectively increase the statistics?

[2008.06545]

GANplification

Calorimeter Simulation

[2202.07352]

[2008.06545]

GANplification

Calorimeter Simulation

Method Comparison

 $\lfloor \mathbf{k}
vert$ lk

[2008.06545]

→ works for **different DGMs**

GANplification

Calorimeter Simulation

Method Comparison

 $\lfloor \mathbf{k}
vert$ lκ

[2008.06545]

- → works for different DGMs
- → More details and link to BNNs, see talk from G.Kasieczka and [2408.00838]

GANplification

Calorimeter Simulation

Method Comparison

k k

Introduction & Definition

Open Discussion