

Development of systematic-aware neural network trainings for binned-likelihood-analyses at the LHC

Based on CMS-PAS-MLG-23-005

11.09.2024 Markus Klute, Artur Monsch, Lars Sowa, Roger Wolf

www.kit.edu

Starting point: a synthetic example

artur.monsch@kit.edu

2/23

11.09.2024

Objective: signal strength $r_s \pm \Delta r_s$ in a given model

Common problems for classification tasks (i.e. left):

• High imbalance between process yields

Effects from added Λ

PHYSTAT: Statistics meets Machine Learning

- Processes overlap in some phase space regions
- Processes are (usually) affected by uncertainties

 $H(125) \rightarrow \tau \tau$ application

\rightarrow Utilizing NN models for process classification

Institute of Experimental Particle Physics

Summarv

NN models for conventional process separation

Cross entropy NN training (CENNT)

- Training objective: process separation
- Utilization of nominal signal (S) and background (B) dataset

Resulting NN output

- Nominal S and B datasets
- Systematic variations ΔS_j , ΔB_j for each uncertainty source *j*

4/23 11.09.2024 artur.monsch@kit.edu

PHYSTAT: Statistics meets Machine Learning

Additional information about systematic variations

NN model for Δr_s minimization

Systematic aware NN training (SANNT)

Training objective: Δr_s minimization, now aligns with analysis objective

 Not a process separation anymore: High S/B bins creation with low syst. variations

Resulting NN output

- Nominal S and B datasets
- Systematic variations ΔS_j , ΔB_j for each uncertainty source *j*

Karlsruhe Institute of Technology

Consequences for Δr_s

- Statistical uncertainty comparable
- Redistribution of events reduces impact of uncertainty on r_s
 - \rightarrow Reduction of overall uncertainty

Changes to the training procedure summarized

SANNT

Use CE pretraining achieving:

- Process separation
- Good starting point for SANNT

Main difference: SANNT vs. CENNT :

- Changed training objective
- Added information about systematic variations to the training

CENNT

Karlsruhe Institute of Technology

Δr_s as training objective

• Modification to existing likelihood $\mathcal{L}(\{k_i\}, \{r_s\}, \{\theta_j\})$ (backup):

Extend λ_i in P (k_i | λ_i,) to λ'_i = Σ_s r_sS_{si} + Σ_b B_{bi} + Ã_i with systematic shifts Ã_i, set θ_j = 0 ∀ j and use Asimov dataset, replacing k_i → k_i^A

$$\tilde{\Delta}_{i} = \sum_{p \in \{s, b\}} \sum_{j} \max\left(\mathbf{0}, \theta_{j_{p}}\right) \left(\Delta_{j_{p}}^{\mathsf{up}}\right)_{i} + \min\left(\theta_{j_{p}}, \mathbf{0}\right) \left(\Delta_{j_{p}}^{\mathsf{down}}\right)_{i},$$

→ Build computational graph of effects of syst. variations effects for each process $p \in \{s, b\}$ → Including asymmetries at $\theta_k^{\pm} \rightarrow 0$ for each deviation from nominal

Δr_s as training objective

• Modification to existing likelihood $\mathcal{L}(\{k_i\}, \{r_s\}, \{\theta_j\})$ (backup):

Extend λ_i in P (k_i | λ_i,) to λ'_i = ∑_s r_sS_{si} + ∑_b B_{bi} + Ã_i with systematic shifts Ã_i, set θ_j = 0 ∀ j and use Asimov dataset, replacing k_i → k_i^A

Symptotically estimate Δr_s from $\sqrt{F_{r_s,r_s}^{-1}}$ using full, weighted training/validation dataset

$$F_{x_i x_j} = \mathbb{E}\left[\frac{\partial^2}{\partial x_i \partial x_j} \left(-\log \mathcal{L}\right)\right]_{x_i x_j \in \{\{r_s\}, \{\theta_j\}\}} = \left(\operatorname{Hess}\left(-\log \mathcal{L}\right)\right)_{x_i x_j \in \{\{r_s\}, \{\theta_j\}\}}$$

For *n* signals: sum over *n* diagonal elements of $\sqrt{F_{r_s,r_s}^{-1}}$

Caviat: Backpropagation

Training should have a non breaking backpropagation

- Every computation step of Δr_s must be differentiable
- Gradient for histograms is usually not provided (i.e. PYTORCH, TENSORFLOW)

Approach: introduce bin-wise custom functions \mathcal{B}_i replacing histogram gradient (adapted from [1])

- Histogram remains unchanged in the forward pass
- Use \mathcal{B}_i only during backward pass
- Choice of \mathcal{B}_i has an effect on training procedure

 \rightarrow Improvement of \mathcal{B}_i can enable application to more complex tasks

Effects of systematic aware training

Visualizing effects of systematic variations

Injecting uncertainty for B in bin 6 after pretraining (left)

After subsequent SANNT training (right):

- S events
 - Approx. maintaned in S-enriched regions
- B events
 - Further removed from S-enriched region mostly to the left in the histogram
- Unct. affected B events moved to the left
 - \rightarrow Effect of unct. is reduced

11/23

Conventional analyses

11.09.2024

artur.monsch@kit.edu

 Λ information

PHYSTAT: Statistics meets Machine Learning

Systematic variations that can not be addressed

Bka (up-shi

Bkg. (down-shift

- Best process separation achieved after pretraining
 - \rightarrow lowest possible Δr_s^{stat} achieved

In case of pure normalization uncertainties:

- Events are present in all bins and are equally affected
 - \rightarrow no phase space that could lead to improvement of Δr_s w.r.t. Δr_s^{stat}

— - Sia

Sig. (down-shift)

Systematic variations that should not be considered

Low statistics uncertainty sample

 Downsampled *B* events from 5 % normalization shift (previous slide)

Fluctuating results are retrieved in both cases

SANNT will pick up the fluctuations and try to minimize their effect on $\Delta r_s!$

\rightarrow Good uncertainty model description remains essential here

Application on reduced $H(125) \rightarrow au au$ analysis

ML-based H(125) ightarrow au au analysis (HIG-19-010, [2])

- Differential cross-section measurement of H(125) production based on <u>STXS scheme</u>
- Utilized multiclass classification with 5 background and up to 15 STXS signal classes

ML-based H(125) ightarrow au au analysis (HIG-19-010, [2])

- Differential cross-section measurement of H(125) production based on <u>STXS scheme</u>
- Utilized multiclass classification with 5 background and up to 15 STXS signal classes

Future prospects for this and other analyses:

- Statistical uncertainties will decrease (Run3 and HL-LHC)
- Importance of systematic uncertainties will increase
 - \rightarrow Addressing them will become more important

 Λ information

14/23 11.09.2024 artur.monsch@kit.edu

Conventional analyses

PHYSTAT: Statistics meets Machine Learning

Setup overview of application on reduced HIG-19-010 analysis ([3])

- Using a subset of the dataset used by [2]
 - Final state: $e\mu$, $\mu\tau_h$, $e\tau_h$, $\tau_h\tau_h$
 - Era: 2016, 2017, 2018
- Selecting 86 theoretical and experimental uncertainties
- NN input: 15 variables used as in [2]
- Full-batch training with evaluation based on two-fold cross validation scheme
- Binary classification: all S_s (B_b) processes grouped
- Multiclass classification: 5 B and 2 S processes

Application on reduced analysis of HIG-19-010 Binary classification

CENNT vs. SANNT: Binary classification

- Conceptual differences of SANNT:
 - S/B separation not the primary target
 - No relational bin information for SANNT: bin-wise ordering due to CE pretraining
- Improvements in process separation due to B reduction in S-enriched bins
- Largest total B unct. contributions move away from S-enriched bins

Results of an ensemble test

- Ensemble configuration:
 - Sample size: 100 repetitions
 - Changing NN weight initialization
 - Confidence interval derived from Δr_s
- Fit to Asimov data (S + B model with SM-like signal $r_s = 1$)
- Median expectation of Δr_s w.r.t. CENNT reduction mainly by reducing systematic component of Δr_s

 Λ information

17/2311.09.2024 artur.monsch@kit.edu

Conventional analyses

PHYSTAT: Statistics meets Machine Learning

Effects from added Λ

SANNT

CENNT

Comparison of uncertainty impacts

- Importance ordering as obtained after CENNT (Detailed description: backup)
- Reduction of uncertainties with largest impact on Δr_s
 - \rightarrow Comparable reduction of Δr_s can be achieved using only a subset of uncertainties with largest impact on Δr_s
- Note: Normalization uncertainties in binary classification can show a shape-changing effect if applied on a subset process of S, B

 Λ information

18/23 11.09.2024 artur.monsch@kit.edu

Conventional analyses

PHYSTAT: Statistics meets Machine Learning

Effects from added Λ

Application on reduced analysis of HIG-19-010 Multiclass classification

SANNT: Multiclass classification

- Considering uncertainty for two signal processes
 - Gluon fusion (ggH)
 - Vector boson fusion (qqH)
- No relational information to predefined classes nor bins
- Sustain concept of output classes

$$\mathcal{L}_{ ext{SANNT}}^{ ext{mult.}} = \sum_{m{s}} \Delta r_{m{s}} + \omega_{\lambda} m{g}\left(\,\cdot\,
ight), ext{ with }$$

 Λ information

•
$$g(\cdot) = \max(CE' - CE'_{\min}^{\text{pretrain.}}, 0)$$

• and learnable ω_{λ} [4]

Conventional analyses

PHYSTAT: Statistics meets Machine Learning

Uncertainty reduction for SANNT multiclass classification

qqH has low process yield in comparison to ggH

- Δr_{qqH} still statistically dominated
- Reduction of Δr_{qqH} through minimization of Δr_{qqH}^{stat}
 - \rightarrow Improvement in process separation

 ggH is more distributed across multiple classes

- Process enrichment in few bins more difficult \rightarrow only minor improvement in Δr_{geH}^{stat}
- Major reduction of \(\Delta r_{ggH}\) through reduction of systematic uncertainty contribution

*r*_{inc}: backup

Summary

Summary

- Fundamental SANNT studies:
 - General idea of functionality through synthetic examples
 - Effects of various uncertainty sources on training outcomes
 - Effects of poorly understood uncertainty models, regardless of applied method

Application of SANNT:

- Systematic NN training is applicable to real-life analysis tasks with considerably higher complexity
- Extension to multiple classes while maintaining interpretability is possible
- Significant sensitivity improvement over classical CE-based training using 86 uncertainties

References I

- Stefan Wunsch et al. "Optimal Statistical Inference in the Presence of Systematic Uncertainties Using Neural Network Optimization Based on Binned Poisson Likelihoods with Nuisance Parameters". In: <u>Computing and Software for Big Science</u> 5.1 (Jan. 2021), p. 4. ISSN: 2510-2044. DOI: 10.1007/s41781-020-00049-5. URL: https://doi.org/10.1007/s41781-020-00049-5.
- [2] Armen Tumasyan et al. "Measurements of Higgs boson production in the decay channel with a pair of τ leptons in proton–proton collisions at √s = 13 TeV". In: Eur. Phys. J. C 83.7 (2023). All the figures and tables, including additional supplementary figures and tables, can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-010 (CMS Public Pages), p. 562. DOI: 10.1140/epjc/s10052-023-11452-8. arXiv: 2204.12957. URL: https://cds.cern.ch/record/2807752.
- [3] Development of systematic-aware neural network trainings for binned-likelihood-analyses at the LHC. Tech. rep. Geneva: CERN, 2024. URL: http://cds.cern.ch/record/2905411.

22/23	11 09 2024	artur monsch@kit edu	PHYSTAT: Statistics meets Machine Lear	ning Institute of Experiment	al Particle Physics
Conventional analyses		Δ information	Effects from added Δ	H(125) ightarrow au au application	Summary ○●●

References II

 John Platt and Alan Barr. "Constrained Differential Optimization". In: <u>Neural Information Processing Systems</u>. Ed. by D. Anderson. Vol. 0. American Institute of Physics, 1987. URL:

https://proceedings.neurips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf.

Backup

Likelihood formulation

All histogram bins (i) of all classes (c) enter as inputs to an extended binned likelihood function L, including all nuisance parameters (θ_j)

$$\mathcal{L}\left(\left\{k_{i}\right\},\left\{r_{s}\right\},\left\{\theta_{j}\right\}\right)=\prod_{c}\left[\prod_{i}\mathcal{P}\left(k_{i}|\lambda_{i}\right)\prod_{j}\mathcal{C}_{j}\left(\tilde{\theta}_{j}|\theta_{j}\right)\right]_{c}$$
$$\lambda_{i}=\sum_{s}r_{s}\mathcal{S}_{si}\left(\left\{\theta_{j}\right\}\right)+\sum_{b}\mathcal{B}_{bi}\left(\left\{\theta_{j}\right\}\right)$$

with

- Poisson distribution $\mathcal{P}(\cdot | \cdot)$ constructed from k_i observed and λ_i expected events per bin *i*
- Use S + B model with scaling parameter(s) r_s
- Uncertainties are taken into account in the form of nuisance parameters θ_j , following predifined pdf's $C_j(\cdot | \cdot)$

• Estimation of the uncertainty Δr_s on r_s through Asimov dataset D_H^A : $k_i \rightarrow k_i^A$

•0000000000

Choice of \mathcal{B}_i

From [1] (left): Derivative of Gaussian PDF

- Low Gradient amplitude at center of bins
- Observing undesired concentration of events in very few bins in H(ŷ)
 - \rightarrow Hard to apply to more complex tasks

Modification (right): linear function within bin boundaries

- Maintains injectivity
- Restricts range to corresponding bin H_i
- Keeps bins indistinguishable

0000000000

Event evolution during training

Using \mathcal{B}_i from [1] with same setup ($\Delta x_2 = \pm 1$)

- Strong concentration in \hat{y}
- Independent from choice of pretraining

Pretraining change to CE:

- Equivalent to Δr_s^{stat} minimization
- Providing better starting point for minimization of systematic component of Δr_s

Identity operation (STE) for \mathcal{B}_i : similar behaviour to [1]

26/23 11.09.2024 artur.monsch@kit.edu PHYSTAT: Statistics me

Karlsruhe Institute of Technology

Choice of \mathcal{B}_i : evolution during training

go back

Institute of Experimental Particle Physics

27/23 11.09.2024 artur.monsch@kit.edu PHYSTAT: Statistics meets Machine Learning

Choice of \mathcal{B}_i : Evolution during training - different pretraining

Derivative of Gaussian PDF as choice for \mathcal{B}_i

- Collapse of \hat{y} into single bins independent of pretraining loss (CE or Δr_s^{stat}) or duration (here 300 optimization steps)
- Collapse still prominent, ŷ is less spread after pretraining/with shorter pretraining duration
- Best result achieved here (left) for 300 optimization steps of CE as pretraining: during collapse phase

00000000000

Evolution using Idendity operation (STE) as \mathcal{B}_i

- Using identity for B_i leads to same problem as B_i as proposed in [1]
- Bins where the collapse into single bins occurs vary, depending on the seed used for weight initialization

00000000000

Description of most impactful uncertainties (binary classification)

abel	Type	Process	Bank	Norm	Shane	Comment	CN	S Preliminar
trig	- Triagor	EMD	nank	NUTIT	Shape	Comment	DY-reweight	
TD(D)	τ-ingger τ-ID	MC EMB	16	_	~	– Disro against e	ε ^{ID} _τ (40, 500)	
$\frac{1}{10}(35, 40)$	τ-ID	EMB	20	-	\checkmark	$35 < p_m^{Th} < 40 \text{ GeV}$	F _F (0-jet)	
^{ID} (40, 500)	τ-ID	EMB	2	_	\checkmark	$40 < \rho_{\rm m}^{\tau_{\rm h}} < 500 {\rm GeV}$	F _F (2-jet)	
(1-prong*)	τ-ID	EMB	18	-	~	One $\pi^+ \pi^0$'s	F _F ^{dob} (W+jets)	
$T_{\tau}^{(1)}$ (3-prong)	au-ID	EMB	8	-	\checkmark	Three π^+ 's	F ^{QCD} (m _{vie})	
= (0 iot)	Norm	E-	2		/	M	ε ^{ID} _τ (3-prong)	
F(0-jet)	Norm.	r Fr	15	_	×	$N_{jet} = 0$ $N_{iet} = 1$	ggH(µ)	
F(2-jet)	Norm.	F _F	4	-	~	$N_{\text{iet}} = 2$	ID _e ^{miss} (barrel)	
QCD (mvis)	Non-closure	FF	7	_	\checkmark	In m _{vis}	ggH(120)	
QCD (W+jets)	Subtr.	- FE	5	-	\checkmark	Subtr. of MC	ggH(Qres)	
F	These	1	0		,		ggH(60)	
$(gH(\mu))$	Theory	ggH	12	_	×	μ_f and μ_f Besummation	F _F (1-jet)	
$_{rgH(0/1)}$	Theory	ggH	13	_	~	$0 \rightarrow 1$ jet migr.	$\epsilon_{\rm T}^{\rm ID}({\rm D_{\rm g}})$	
rgH(60)	Theory	ggH	14	-	1	$p_{\rm T}^{\rm H}$ migr.	Lumi	
gH(120)	Theory	ggH	11	-	~	p_T^H migr.	ε ^{ID} _τ (1-prong [*])	
	,	00				,1 0	ID _e ^{miss} (endcap)	
De (barrel)	e-miss-ID	MC	10	-	\checkmark	Barrel	ε ^{ID} _τ (35, 40)	
De ^{miss} (endcap)	e-miss-ID	MC	19	-	\checkmark	Endcap	-0.4	-0.2
DY-reweight	Reweight	MC	1	-	\checkmark	In $p_{\rm T}^{\mu\mu}$ and $m_{\mu\mu}$		
.umi	Luminosity	MC	17	\checkmark	-			

000000000000

Uncertainty reduction for multiclass classification $r_{\rm inc.}$

0000000000000

Differences to CENNT: In multiclass classification case

Effects on NN output

- Conceptually:
 - No relational information about predefined classes (nor bins)
 - Given Δr_s or $\sum_s \Delta r_s$ no penalty for events that swap predefined classes
 - \rightarrow may lead to emergence of empty classes (less interpretable)
 - \rightarrow Introduce a penalty term modifying the loss to: $L_{\text{SANNT}}^{\text{mult.}} = \sum_{s} \Delta r_{s} + \omega_{\lambda} g(\cdot)$ as introduced in [4]
 - Aim is to sustain the concept of output classes
 - $g(\cdot) = CE' CE'_{min}$ ensures a class assignment, that corresponds to CE'_{min} as obtained from pretraining
 - ω_λ updated at each optimization step (using backpropagation) and set to 0 if g (·) < 0 (improvement w.r.t. CE[']_{min})
- Technical differences:
 - Different activation function (Sigmoid vs. Softmax)
 - In case of SANNT: modified (binary) CE' for pretraining and as constraint

0000000000000

Related work

Estimation of statistical quantities from binned variables (in HEP) is often necessary due to

- Computational cost
- Availability of corrections/shifts

Transition to NN application requires differentiable histogram operation.

The two solutions to which this work is most comparable are (also mentioned in the paper): INFERN0¹: Histogram approximation trough tunable softmax operator

- Training objective: Diagonal element of inverse Fisher-Information matrix (Δr_s)
- Uses mini-batches during training and explicit sampling of F_{xi,xj}
- neos²: Histogram approximation trough kernel density estimation
 - Training objective: likelihood ratio
 - Uses mini-batches during training

¹DOI: 10.1016/j.cpc.2019.06.007 ²DOI: 10.1088/1742-6596/2438/1/012105

0000000000

Downsampled normalization shift

0000000000