# Multivariate two-sample tests from univariate integral probability measures

Samuele Grossi<sup>(†) 1,2\*</sup>, Marco Letizia<sup>2,3\*</sup>, Riccardo Torre<sup>2\*</sup> <sup>1\*</sup> Department of Physics, University of Genova, Via Dodecaneso 33, I-16146 Genova, Italy <sup>2\*</sup> INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy <sup>3\*</sup> MaLGa-DIBRIS, University of Genova, Via Dodecaneso 35, I-16146 Genova, Italy † sgrossi@ge.infn.it



| sgrossiege.inin.it                                                                                                                       |   |                             |                                                                                                                                                                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Motivations and purpose of the work                                                                                                   |   | 2. Test statistics          |                                                                                                                                                                                                                            |  |  |  |  |
| Model based Monte Carlo ML-based generative models                                                                                       |   | Test-statistic              | Definition                                                                                                                                                                                                                 |  |  |  |  |
| • Computationally demanding • Faster simulations                                                                                         |   | Sliced WD [1]               | $t_{\rm SW} = \frac{1}{K} \sum_{\theta=1}^{K} \int_{\mathbb{R}}  F_n^{\theta}(u) - G_m^{\theta}(u)  du$                                                                                                                    |  |  |  |  |
| • Reliable synthetic data • Lower reliability                                                                                            |   | Scaled mean KS              | $t_{\overline{\mathrm{KS}}} = \frac{1}{d} \sum_{I=1}^{d} \sqrt{\frac{nm}{n+m}} \sup_{u}  F_n^I(u) - G_m^I(u) $                                                                                                             |  |  |  |  |
| Necessity to validate data from generators! This can be done using a $\mathbf{two}$                                                      | - | Scaled sliced KS            | $t_{\text{SKS}} = \frac{1}{K} \sum_{\theta=1}^{K} \sqrt{\frac{nm}{n+m}} \sup_{u}   F_n^{\theta}(t) - G_m^{\theta}(t)  $                                                                                                    |  |  |  |  |
| <b>Imple test</b> , which checks if two independent samples come from<br>me probability density function (PDF).                          |   | $MMD_u^2$ [2]               | $t_{\text{MMD}} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j\neq i}^{n} k(x^{i}, x^{j}) + \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j\neq i}^{m} k(y^{i}, y^{j}) \\ - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x^{i}, y^{j})$ |  |  |  |  |
| • THEORETICALLY: likelihood-ratio is the most powerful test for sim ple hypothesis. <i>Need to know</i> the PDFs generating the samples. | - | $\mathrm{FGD}_{\infty}$ [3] | $t_{\rm FGD} = \lim_{n,m\to\infty} \sum_{I=1}^{d} (\mu_{1,n}^{I} - \mu_{2,m}^{I})^2 + \operatorname{tr} \left( \Sigma_{1,n} + \Sigma_{2,m} - 2\sqrt{\Sigma_{1,n}\Sigma_{2,m}} \right)$                                     |  |  |  |  |

• PRACTICALLY: Underlying PDFs are usually *unknown* when dealing with real data. Need to use metrics that involve only the data.

**Purpose of the work:** Establish a rigorous statistical procedure based on robust, simple, and interpretable two-sample tests that can serve both for evaluation and for benchmarking more advanced tests.

# 3. Reference and Deformed Models

**Toy Distributions:** 

#### JetNet Datasets:

gluon initiated jets

• Overall jet features

• Individual particles in the

- *d* dimensional multivariate Correlated Gaussians
- q components, d dimensional mixture of multivariate Gaussians d = 5, 20, 100

*Deformed* models are defined by a single parameter  $\epsilon$ :

| (1) | $\mu$ -deformation:              | $y_{iI} = x_{iI} + \delta_{\mu I} ,$              | $\delta_{\mu I} \sim \mathcal{U}_{[-\epsilon,\epsilon]}$  |
|-----|----------------------------------|---------------------------------------------------|-----------------------------------------------------------|
| (2) | $\Sigma_{II}$ -deformation:      | $y_{iI} = \mu_I + c_{\Sigma I} (x_{iI} - \mu_I),$ | $\mathbf{c}_{\Sigma I} \sim \mathcal{U}_{[1,1+\epsilon]}$ |
| (3) | $\Sigma_{I\neq J}$ -deformation: | $y_{iI} = \sum_{j} P_{ij}^{(I)} x_{jI}$ ,         | $\mathbf{P}_{ij}^{(I)} = P_{ij}^{(I)}(\epsilon)$          |

Log-likelihood ratio  $t_{\text{LLR}} = -2 \log \frac{\mathcal{L}_{H_0}}{\mathcal{L}_{H_1}}$ 

# 4. Methodology and test features

Goal: Make inference on  $\epsilon$ , finding the smallest value we are sensitive to.

**Test**  $H_0$ : build test statistic distribution under  $H_0$ . Perform  $10^4(10^3)$  repeated tests on samples drawn from the reference toy distribution(dataset).



**Test**  $H_1$ : perform 100 test on samples extracted from the reference and the deformed distributions. Calculate the mean and standard deviation.

(4) 
$$pow_+$$
-deformation:  $y_{iI} = sign(x_{iI})|x_{iI}|^{1+\epsilon}$ ,  $\epsilon \ge 0$   
(5)  $pow_-$ -deformation:  $y_{iI} = sign(x_{iI})|x_{iI}|^{1-\epsilon}$ ,  $\epsilon \ge 0$   
(6)  $\mathcal{N}$ -deformation:  $y_{iI} = x_{iI} + \delta_{iI}$ ,  $\delta_{iI} \sim \mathcal{N}_{0,\epsilon}$   
(7)  $\mathcal{U}$ -deformation:  $y_{iI} = x_{iI} + \delta_{iI}$ ,  $\delta_{iI} \sim \mathcal{U}_{[-\epsilon,\epsilon]}$ 

- test close to the decision boundary:  $\epsilon$  such that the mean is at the CL threshold. Use the standard deviation to set an error on  $\epsilon$ .
- test different precision: evaluate each metric varying sample sizes.

#### 5. Example: Results for MoG

| MoG model with d = 20, q = 5, and n = m = 5 $\cdot 10^4$ |                                        |                                        |       |                                        |                                        |                                  |                                     |                                        |                      |                                       |                                        |       |
|----------------------------------------------------------|----------------------------------------|----------------------------------------|-------|----------------------------------------|----------------------------------------|----------------------------------|-------------------------------------|----------------------------------------|----------------------|---------------------------------------|----------------------------------------|-------|
|                                                          | $\mu$ -deformation                     |                                        |       | $\Sigma_{ii}$ -deformation             |                                        | $\Sigma_{i \neq j}$ -deformation |                                     |                                        | $pow_+$ -deformation |                                       |                                        |       |
| Statistic                                                | $\epsilon_{95\% CL}$                   | $\epsilon_{99\%{ m CL}}$               | t (s) | $\epsilon_{95\% CL}$                   | $\epsilon_{99\%{ m CL}}$               | t (s)                            | $\epsilon_{95\%{ m CL}}$            | $\epsilon_{99\%{ m CL}}$               | t (s)                | $\epsilon_{95\% CL}$                  | $\epsilon_{99\%{ m CL}}$               | t (s) |
| $t_{\rm SW}$                                             | $0.04957^{+0.018}_{-0.02}$             | $0.06694^{+0.017}_{-0.017}$            | 3023  | $0.01679^{+0.005}_{-0.0063}$           | $0.02315^{+0.0045}_{-0.005}$           | 3197                             | $0.00639^{+0.0016}_{-0.0022}$       | $0.00871^{+0.0013}_{-0.0016}$          | 5148                 | $0.00581^{+0.0017}_{-0.0022}$         | $0.00798^{+0.0015}_{-0.0017}$          | 3157  |
| $t_{\overline{\mathrm{KS}}}$                             | $0.00482\substack{+0.0013 \\ -0.0018}$ | $0.00667\substack{+0.0011\\-0.0013}$   | 2966  | $0.00175\substack{+0.00052\\-0.00068}$ | $0.00248\substack{+0.00042\\-0.00052}$ | 3185                             | $1.00146_{-0.00031}^{+0.00074}$     | $1.00238_{-0.00031}^{+0.00055}$        | 5495                 | $0.0004\substack{+0.00015\\-0.00017}$ | $0.00059\substack{+0.00013\\-0.00014}$ | 3363  |
| $t_{ m SKS}$                                             | $0.03647^{+0.011}_{-0.014}$            | $0.04821^{+0.011}_{-0.012}$            | 2899  | $0.01329^{+0.003}_{-0.0043}$           | $0.01759^{+0.0025}_{-0.003}$           | 3022                             | $0.00531^{+0.0016}_{-0.002}$        | $0.00699\substack{+0.0014\\-0.0016}$   | 7233                 | $0.0043^{+0.0009}_{-0.0013}$          | $0.00565\substack{+0.00074\\-0.0009}$  | 3193  |
| $t_{ m FGD}$                                             | $0.05778^{+0.026}_{-0.027}$            | $0.0787^{+0.023}_{-0.021}$             | 4047  | $0.01945^{+0.0063}_{-0.0081}$          | $0.02651\substack{+0.0053\\-0.0056}$   | 4507                             | $0.0028^{+0.00079}_{-0.001}$        | $0.00388\substack{+0.00062\\-0.00073}$ | 8575                 | $0.00702^{+0.0021}_{-0.0028}$         | $0.00965^{+0.0016}_{-0.0019}$          | 4870  |
| $t_{ m MMD}$                                             | $0.04425^{+0.019}_{-0.018}$            | $0.06215_{-0.015}^{+0.017}$            | 10204 | $0.00923^{+0.0058}_{-0.0051}$          | $0.01305^{+0.0053}_{-0.0044}$          | 11217                            | $0.00605^{+0.0028}_{-0.0025}$       | $0.00838^{+0.0027}_{-0.0022}$          | 13822                | $0.00332^{+0.0018}_{-0.0017}$         | $0.00467^{+0.0017}_{-0.0014}$          | 11801 |
| $t_{\rm LLR}$                                            | $0.00021^{+0.00013}_{-0.00014}$        | $0.0003^{+0.00013}_{-0.00014}$         | 5911  | $0.00007^{+0.00005}_{-0.00004}$        | $0.0001^{+5e-05}_{-4e-05}$             | 6304                             | _                                   | _                                      | -                    | $0.00002^{+0.00001}_{-0.00001}$       | $0.00002^{+0.00001}_{-0.00001}$        | 6877  |
|                                                          | powdeformation                         |                                        |       | $\mathcal{N}	ext{-deformation}$        |                                        | $\mathcal{U}$ -deformation       |                                     |                                        |                      | Timing                                |                                        |       |
| Statistic                                                | $\epsilon_{95\%{ m CL}}$               | $\epsilon_{99\%{ m CL}}$               | t (s) | $\epsilon_{95\%{ m CL}}$               | $\epsilon_{99\%{ m CL}}$               | t (s)                            | $\epsilon_{95\%{ m CL}}$            | $\epsilon_{99\%{ m CL}}$               | t (s)                | $\mid t^{\text{null}}$ (s)            |                                        |       |
| $t_{\rm SW}$                                             | $0.00604^{+0.0017}_{-0.0023}$          | $0.00825^{+0.0016}_{-0.0018}$          | 3051  | $0.19318^{+0.025}_{-0.039}$            | $0.22704_{-0.026}^{+0.019}$            | 2403                             | $0.33394^{+0.044}_{-0.068}$         | $0.39248^{+0.033}_{-0.044}$            | $\boldsymbol{2354}$  | 338                                   |                                        |       |
| $t_{\overline{\mathrm{KS}}}$                             | $0.00042\substack{+0.00015\-0.00018}$  | $0.00061\substack{+0.00013\\-0.00015}$ | 3372  | $0.00751\substack{+0.002\\-0.0024}$    | $0.00993\substack{+0.0018\\-0.002}$    | 2934                             | $0.01211\substack{+0.003\\-0.0035}$ | $0.01575\substack{+0.0027\\-0.003}$    | 2835                 | 155                                   |                                        |       |
| $t_{ m SKS}$                                             | $0.00441^{+0.00092}_{-0.0014}$         | $0.00574_{-0.00094}^{+0.00077}$        | 3324  | $0.15874_{-0.034}^{+0.023}$            | $0.18473^{+0.019}_{-0.023}$            | 2726                             | $0.27395^{+0.041}_{-0.059}$         | $0.3188^{+0.033}_{-0.04}$              | 2601                 | 509                                   |                                        |       |
| $t_{ m FGD}$                                             | $0.00722^{+0.0021}_{-0.0027}$          | $0.00987^{+0.0016}_{-0.0019}$          | 4892  | $0.18095^{+0.023}_{-0.038}$            | $0.21269^{+0.016}_{-0.02}$             | 3756                             | $0.31409^{+0.04}_{-0.07}$           | $0.36919^{+0.027}_{-0.036}$            | 3643                 | 2795                                  |                                        |       |
| $t_{\mathrm{MMD}}$                                       | $0.00353^{+0.0016}_{-0.0015}$          | $0.00494^{+0.0014}_{-0.0012}$          | 11418 | $0.43531^{+0.066}_{-0.11}$             | $0.51609\substack{+0.045\\-0.054}$     | 8642                             | $0.75353^{+0.12}_{-0.18}$           | $0.89336^{+0.078}_{-0.098}$            | 7700                 | 13860                                 |                                        |       |
| $t_{ m LLR}$                                             | $0.00002^{+0.00001}_{-0.00001}$        | $0.00002^{+0.00001}_{-0.00001}$        | 6991  | -                                      | _                                      | -                                | _                                   | -                                      | -                    | -                                     |                                        |       |

## 6. Conclusions

- The likelihood ratio, when calculable, shows about an order of magnitude greater sensitivity compared to the other metrics.
- The metrics based on 1D tests  $(t_{SW}, t_{\overline{KS}}, t_{SKS})$  are easy to implement regardless of sample sizes and scale linearly with dimensions, suiting a wide range of scenarios. In contrast, FGD<sub> $\infty$ </sub> requires large sample sizes to perform well, while MMD<sup>2</sup><sub>u</sub> suffers the curse of dimensionality.
- Despite their simplicity these metrics show high sensitivity to all the deformations. The small relative errors on the  $\epsilon$  values ensure that the procedure we adopted is robust.
- We think the proposed test statistics could serve as a valuable first step in evaluating a generator, before considering more resource-intensive tools.

## References

N. Bonneel, J. Rabin, G. Peyré and H. Pfister, "Sliced and Radon Wasserstein Barycenters of Measures". In: Journal of Mathematical Imaging and Vision 51 (2015) 22
 A. Gretton, K. M. Borgwardt, M. J. Rasch., B. Schölkopf and A. Smola. "A Kernel Two-Sample Test". In: Journal of Machine Learning Research 13 (2012) 723-773.
 R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari and T. Tomei. "Evaluating generative models in high energy physics". In: Phys. Rev. D (2023).