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• During Run 2 (2016 – 2018) CMS precisely measured the Higgs sector 
with STXS measurements [1]: 

• Use these measurements to probe new physics models, Effective 
Field Theories in particular

• However, standard reinterpretations such as 𝜒2 are inaccurate [1]:

• Full CMS Higgs boson combination is too expensive to evaluate 
directly, so… 

Motivation

Aim: a fast, accurate interpolated likelihood

How: Sampling
• Once we have the sampled points from the true 

surface, how do we interpolate between them? 
• Points are unstructured ⇒ Radial Basis Functions

How: Interpolation

Sampling in a grid vs Gaussian ProcessesF
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For development and testing, we use the Combine tool [5] to evaluate a statistical model of 𝐻 → 𝛾𝛾 events at CMS, where we remove any systematic 
uncertainties to have a more lightweight model for rapid development. We see that we perform significantly better compared to  the 𝜒2 
simplification (grey, which can lead to incorrect conclusions about the model), and on par with a naïve grid-sampling technique.

At present, this scaling behaviour isn’t favourable enough to feasibly interpolate the full 17 dimensions of the combined Higgs measurement, but 
the 12 available in 𝐻 → 𝛾𝛾 behaviour appears to be in reach. In the future, we intend to explore the choice of interpolant in more detail.

Once one has a working interpolator, constraints on EFT parameters can then be used to set constraints on parameters of UV complete models.

Results
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• Aim: evaluate the full likelihood in 17-
dimensional Wilson coefficient space

• Sampling from a grid is inefficient, so we 
use Gaussian Processes (GPs)

. 
• GP parametrizes a surface with of mean 

𝑚 and covariance 𝑘 functions, giving us a 
value and associated uncertainty at each 
point on the surface [3]. 

• Iteratively sample our surface at points 
where the uncertainty is highest.

• Focus on sampling points where the test 
statistic Δ𝑞  is within 5𝜎  of the best-fit 
value, increasing density of points 
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