IMPERIAL Interpolated Likelihoods for Fast Reinterpretations

Tom Runting^a, Jonathon Langford^a, Nicholas Wardle^a

Motivation

During Run 2 (2016 – 2018) CMS precisely measured the Higgs sector $| \cdot |$ However, standard reinterpretations such as χ^2 are inaccurate [1]: with STXS measurements [1]:

Use these measurements to probe new physics models, Effective Field Theories in particular

Full CMS Higgs boson combination is too expensive to evaluate directly, so...

Aim: a fast, accurate interpolated likelihood

How: Sampling

- Aim: evaluate the full likelihood in 17dimensional Wilson coefficient space
- Sampling from a grid is inefficient, so we use Gaussian Processes (GPs)
- GP parametrizes a surface with of mean *m* and covariance *k* functions, giving us a value and associated uncertainty at each point on the surface [3].
- Iteratively sample our surface at points where the uncertainty is highest.
- Focus on sampling points where the test statistic Δq is within 5σ of the best-fit value, increasing density of points

How: Interpolation

- Once we have the sampled points from the true surface, how do we interpolate between them?
- Points are unstructured \Rightarrow Radial Basis Functions

Sampling in a grid vs Gaussian Processes

Results

For development and testing, we use the Combine tool [5] to evaluate a statistical model of $H \rightarrow \gamma \gamma$ events at CMS, where we remove any systematic uncertainties to have a more lightweight model for rapid development. We see that we perform significantly better compared to the χ^2 simplification (grey, which can lead to incorrect conclusions about the model), and on par with a naïve grid-sampling technique.

At present, this scaling behaviour isn't favourable enough to feasibly interpolate the full 17 dimensions of the combined Higgs measurement, but the 12 available in $H \rightarrow \gamma \gamma$ behaviour appears to be in reach. In the future, we intend to explore the choice of interpolant in more detail.

Once one has a working interpolator, constraints on EFT parameters can then be used to set constraints on parameters of UV complete models.

