Efficient machine learning for statistical hypothesis testing

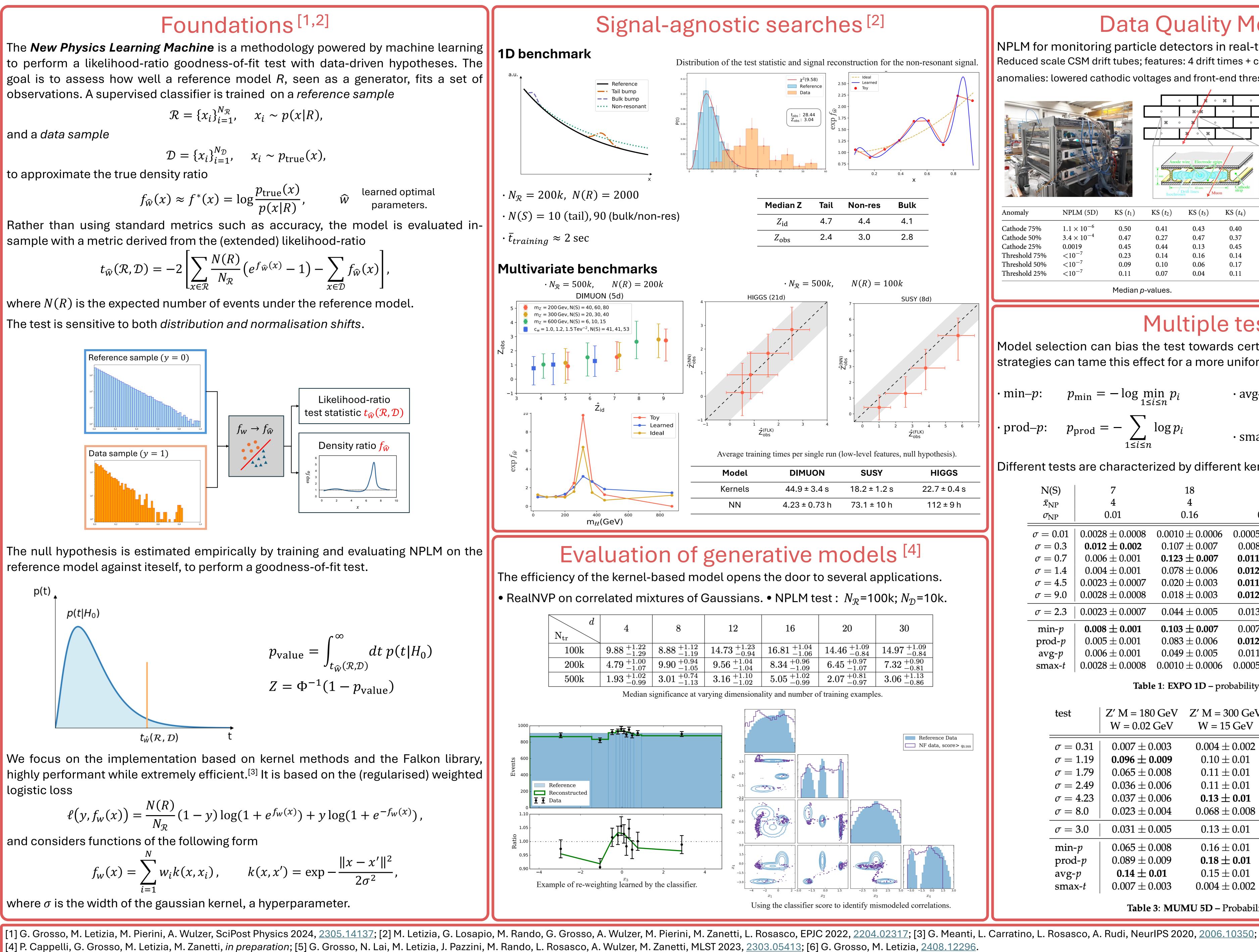
Marco Letizia – Machine Learning Genoa Center and INFN In collaboration with: G. Grosso (IAIFI-MIT), M. Pierini (CERN), L. Rosasco (UniGe-MaLGa), A. Wulzer (IFAE), M. Zanetti (UniPd).

observations. A supervised classifier is trained on a reference sample

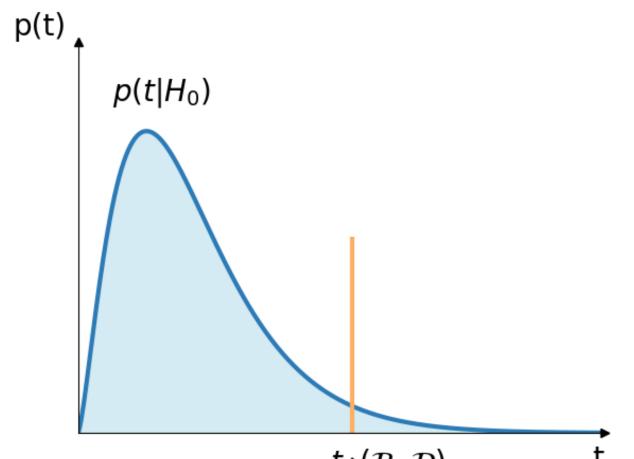
$$\mathcal{R} = \{x_i\}_{i=1}^{N_{\mathcal{R}}}, \quad x_i \sim p(x|R),$$

and a data sample

$$\mathcal{D} = \{x_i\}_{i=1}^{N_{\mathcal{D}}}, \quad x_i \sim p_{\text{true}}(x),$$


to approximate the true density ratio

$$f_{\widehat{w}}(x) \approx f^*(x) = \log \frac{p_{\text{true}}(x)}{p(x|R)}, \qquad \widehat{w} \quad \begin{array}{c} \text{learner} \\ p(x) = 0 \\ p(x) =$$


sample with a metric derived from the (extended) likelihood-ratio

$$t_{\widehat{w}}(\mathcal{R},\mathcal{D}) = -2 \left[\sum_{x \in \mathcal{R}} \frac{N(R)}{N_{\mathcal{R}}} \left(e^{f_{\widehat{w}}(x)} - 1 \right) - \sum_{x \in \mathcal{D}} f_{\widehat{w}}(x) \right]_{\mathcal{H}}$$

where N(R) is the expected number of events under the reference model. The test is sensitive to both distribution and normalisation shifts.

reference model against iteself, to perform a goodness-of-fit test.

$$p_{\text{value}} = \int_{t_{\widehat{w}}(\mathcal{R},\mathcal{D})}^{\infty} dt \, p$$
$$Z = \Phi^{-1} (1 - p_{\text{value}})$$

logistic loss

$$\ell(y, f_w(x)) = \frac{N(R)}{N_R} (1 - y) \log(1 + e^{f_w(x)}) + y \log(1 + e^{-A})$$

and considers functions of the following form

$$f_w(x) = \sum_{i=1}^{N} w_i k(x, x_i), \qquad k(x, x') = \exp{-\frac{\|x - x'\|^2}{2\sigma^2}}$$

where σ is the width of the gaussian kernel, a hyperparameter.

UniGe

and signal reconstruction for the non-resonant signal.	NPLN Reduct anoma
$\frac{4.7}{s} = \frac{4.4}{3.0} = \frac{4.1}{2.8}$ $N_{\mathcal{R}} = 500k, \qquad N(R) = 100k$	Cathode Cathode Cathode Thresho Thresho Thresho
SUSY (8d) $\int_{1}^{1} \int_{2}^{1} \int_{$	Mode strate • min
DIMUONSUSYHIGGS $44.9 \pm 3.4 \text{ s}$ $18.2 \pm 1.2 \text{ s}$ $22.7 \pm 0.4 \text{ s}$ $2.3 \pm 0.73 \text{ h}$ $73.1 \pm 10 \text{ h}$ $112 \pm 9 \text{ h}$	Diffe
ve models [4] door to several applications. PLM test : $N_{\mathcal{R}}$ =100k; $N_{\mathcal{D}}$ =10k. 16 20 30 1 ^{+1.04} 14.46 + 1.09 14.97 + 1.09 -1.06 6.45 + 0.97 7.32 + 0.90 +1.02 2.07 + 0.81 3.06 + 1.13 -0.99 2.07 + 0.81 3.06 + 1.13 number of training examples. 14.97 + 0.90	
$\begin{bmatrix} \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} $	

Using the classifier score to identify mismodeled correlations.

Data Quality Monitoring^[5]

M for monitoring particle detectors in real-time. iced scale CSM drift tubes; features: 4 drift times + crossing angle; $\bar{t}_{training} \approx 0.5$ sec; nalies: lowered cathodic voltages and front-end thresholds. $5D - N_R = 2000, N_D = 500$ 0.030 Reference 🔲 Thr 75% 🔲 Thr 50% 🔲 Thr 25% 0.020 $--- \chi^2(83)$ <u>t</u> d 0.015 0.010 0.005 Reference 🗖 Thr 50% 🔹 learned 0.12 Layer = KS (ϕ) $\mathrm{KS}\left(t_{4}\right)$ 0.08 **3** 0.06 0.42 0.40 0.04 0.37 0.41 0.45 0.14 0.48 0.17 0.11 Median p-values. Drift time (ns)

Anomaly	NPLM (5D)	KS (t_1)	KS (t_2)	KS
Cathode 75%	1.1×10^{-6}	0.50	0.41	0
Cathode 50%	$3.4 imes 10^{-4}$	0.47	0.27	0
Cathode 25%	0.0019	0.45	0.44	0
Threshold 75%	$< 10^{-7}$	0.23	0.14	0
Threshold 50%	$< 10^{-7}$	0.09	0.10	0
Threshold 25%	$< 10^{-7}$	0.11	0.07	0
		Median p	values.	

Multiple testing^[6]

lel selection can bias the test towards certain signal hypotheses. Multiple testing tegies can tame this effect for a more uniform response.

$\cdot \min_{p}$:	$p_{\min} = -\log\min_{1 \le i \le n} p_i$
• prod– <i>p</i> :	$p_{\text{prod}} = -\sum_{1 \leq i \leq n} \log p_i$

erent tests are characterized by different kernel widths.

N(S)	7	18	13	10	90
\bar{x}_{NP}	4	4	4	6.4	1.6
$\sigma_{ m NP}$	0.01	0.16	0.64	0.16	0.16
$\sigma = 0.01$	0.0028 ± 0.0008	0.0010 ± 0.0006	0.0005 ± 0.0004	0.0001 ± 0.0001	0.029 ± 0.004
$\sigma = 0.3$	0.012 ± 0.002	0.107 ± 0.007	0.008 ± 0.002	0.246 ± 0.009	0.65 ± 0.01
$\sigma = 0.7$	0.006 ± 0.001	0.123 ± 0.007	$\textbf{0.011} \pm \textbf{0.002}$	0.36 ± 0.01	0.70 ± 0.01
$\sigma = 1.4$	0.004 ± 0.001	0.078 ± 0.006	0.012 ± 0.002	0.29 ± 0.01	0.54 ± 0.01
$\sigma = 4.5$	0.0023 ± 0.0007	0.020 ± 0.003	0.011 ± 0.002	0.098 ± 0.007	0.28 ± 0.01
$\sigma = 9.0$	0.0028 ± 0.0008	0.018 ± 0.003	$\textbf{0.012} \pm \textbf{0.002}$	0.075 ± 0.006	0.24 ± 0.01
$\sigma = 2.3$	0.0023 ± 0.0007	0.044 ± 0.005	0.013 ± 0.002	0.028 ± 0.004	0.36 ± 0.01
min-p	0.008 ± 0.001	0.103 ± 0.007	0.007 ± 0.002	0.32 ± 0.01	0.66 ± 0.01
prod-p	0.005 ± 0.001	0.083 ± 0.006	0.012 ± 0.002	0.26 ± 0.01	0.65 ± 0.01
avg-p	0.006 ± 0.001	0.049 ± 0.005	0.011 ± 0.002	0.068 ± 0.006	0.50 ± 0.01
smax-t	0.0028 ± 0.0008	0.0010 ± 0.0006	0.0005 ± 0.0004	0.0001 ± 0.0001	0.029 ± 0.004

test	Z' M = 180 GeV W = 0.02 GeV	Z' M = 300 GeV W = 15 GeV	Z' M = 600 GeV W = 30 GeV	$\begin{array}{c} \text{EFT} \\ c_w = 1.5 \times 10^{-6} \end{array}$
$\sigma = 0.31$	0.007 ± 0.003	0.004 ± 0.002	0.0010 ± 0.0008	0.0010 ± 0.0008
$\sigma = 1.19$	0.096 ± 0.009	0.10 ± 0.01	0.006 ± 0.002	0.017 ± 0.004
$\sigma = 1.79$	0.065 ± 0.008	0.11 ± 0.01	0.012 ± 0.003	0.026 ± 0.005
$\sigma = 2.49$	0.036 ± 0.006	0.11 ± 0.01	0.027 ± 0.005	0.053 ± 0.007
$\sigma = 4.23$	0.037 ± 0.006	0.13 ± 0.01	0.066 ± 0.008	0.13 ± 0.01
$\sigma = 8.0$	0.023 ± 0.004	0.068 ± 0.008	0.056 ± 0.007	0.22 ± 0.01
$\sigma = 3.0$	0.031 ± 0.005	0.13 ± 0.01	0.044 ± 0.006	0.092 ± 0.009
min-p	0.065 ± 0.008	0.16 ± 0.01	0.057 ± 0.007	0.23 ± 0.01
prod-p	0.089 ± 0.009	0.18 ± 0.01	0.028 ± 0.005	0.083 ± 0.009
avg-p	0.14 ± 0.01	0.15 ± 0.01	0.035 ± 0.006	0.098 ± 0.009
smax-t	0.007 ± 0.003	0.004 ± 0.002	0.0010 ± 0.0008	0.0010 ± 0.0008
	1			

 $\cdot \operatorname{avg-}p$: $\cdot \operatorname{smax} - t$: $t_{\operatorname{smax}} = \log - c$

Table 1: **EXPO 1D** – probability of observing $Z \ge 3$.

Table 3: **MUMU 5D** – Probability of observing $Z \ge 3$.