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Machine Learning has been used in HEP data analysis for over a decade
but remains a “black-box” in decision-making; in this work, we apply
Graph Neural Networks and XAl tools to analyse ATLAS data.

Two benchmark analyses are considered in the project, one on Supersymmetry [JHEP 12 (2023) 167] and one

on searches for dark photons [JHEP 06 (2023) 153] which is considered here.

» “Dark” photons search, light long lived particle belonging to a new hidden sector:
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“Q SRS DarkJetGraphs (Git @Carmigna):
*Node for every cluster in the calorimeter

*Normalized cluster energy and position
*Edge built with spatial covariant distance “DR”
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Graph Pre-processing:
*Remove isolated and self-connected nodes (Baseline GNN-0)
*Retain largest subgraph as calorimeter noise (GNN-2)
*Exclusive selection on cone distance condition (Best GNN-1)
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> Saliency Maps are essential to explain Captum clear but open ended explainability, i.e., proponent/opponent minimal prototyping needed.
> 2D plots below show reduced activity in layer 0 (low pT range) for FP Proponents as an instance.

Saliency maps. Gradient tracing, Datamodels, Trac-In / Saliency Maps outputs in 2D plots showmg reconstructed JetpT agamst Energy ratio for each of the A \ayers

togram for

ya | | . .
Explanation subgraphs Explanation subgraphs
[ ]
; ! - 4 : . .
; S X '
R
N

CGNN-0 GNN-1

Complement subgraphs Complement subgraphs

> GNN based DarkJetGraphs models conS|stentIy outperformed Iegacy CNN showmg a 2-5% |mprovement across all metrics and achlevmg a 2x better QCD Jets rejectlon
» Explainable Al (XAl) methods such as Saliency Maps and Trac-IN provided enhanced interpretability of model outputs, offering critical insights into model behaviours.

» Kappa pruning technique with differentiable programming to interpret the data proven valid to enhance performance further.

» Paper in progress.
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