Proximal Nested Sampling with Data-Driven AI Priors

Tobías I. Liaudat¹, <u>Henry J. Aldridge²,</u> Matthew A. Price 2 , Marcelo Pereyra 3 , Xiaohao Cai⁴, Jason D. McEwen² ¹CEA, ²MSSL UCL, ³HWU, ⁴Southhampton.

Correspondence: tobias.liaudat@cea.fr, henry.aldridge.23@ucl.ac.uk, jason.mcewen@ucl.ac.uk

Overview

Problem Nested sampling computes the Bayesian evidence for model selection by sampling from a prior constrained to likelihood-level sets. At high dimensions, existing nested sampling algorithms fail given the computationally challenging task.

▶ Proximity operator of a convex function $f: \mathbb{R}^n \mapsto \mathbb{R}$ given by

 $\mathrm{prox}_f^{\lambda}(\boldsymbol{x}) = \mathrm{argmin}$ \boldsymbol{u} $[f(\boldsymbol{u}) + ||\boldsymbol{u} - \boldsymbol{x}||^2/2\lambda].$

 prox_{f} mapping blue to red points $^{[3]}$. Domain boundary (thick black) and level-sets (thin black) of f .

 \blacktriangleright Moreau-Yosida envelope of f given by

where $p(z)$ is the marginal distribution of z . ▶ Leveraging Tweedie's formula, can relate score of Gaussian-smoothed prior to denoiser D_{ϵ} trained to recover x from $x_{\epsilon} \sim \mathcal{N}(x, \epsilon I)$

 $\nabla \log \pi_\epsilon(\boldsymbol{x}^{(k)}) = \epsilon^{-1}(D_\epsilon(\boldsymbol{x}^{(k)}) - \boldsymbol{x}^{(k)}).$

Solution Proximal nested sampling utilizes proximal calculus and Moreau-Yosida regularisation to support non-differentiable, log-convex likelihoods, such as those found in imaging applications, to compute the Bayesian evidence at high dimensions.

> ▶ Langevin Markov chain Monte Carlo (MCMC) efficiently samples high dimensions using gradient information; can adopt our method to produce the proximal nested sampling Markov chain

> > $\bm{x}^{(k+1)} = \bm{x}^{(k)} +$ δ 2 $\nabla \log \pi(\boldsymbol{x}^{(k)}) \delta$ 2λ $[\boldsymbol{x}^{(k)} - \text{prox}_{\chi}^{\lambda}]$ $\chi_{\mathcal{B}_\tau}$ $\{(\boldsymbol{x}^{(k)})\}+$ √ $\overline{\delta}\bm{w}^{(k+1)}$

with characteristic function $\chi_{\mathcal{B}_\tau}$ corresponding to constraint $\mathcal{L}(\bm{x}) \geq L^*$ and Brownian motion $\bm{w}.$ \blacktriangleright Log-prior $\log \pi(x)$ may be non-differentiable, in which case we similarly apply Moreau-Yosida regularisation. \overline{x} (k) \overline{x} $(k+1)$

▶ Tweedie's formula^[5] links noisy observations $z \sim \mathcal{N}(x, \sigma^2 I)$ and samples $x \sim q(x)$ without knowledge of $q(x)$:

 $\mathbb{E}(x|z) = z + \sigma^2 \nabla \log p(z)$

Proximal Calculus

Nested Sampling ▶ **Bayesian model selection** for a set of parameters $x \in \Omega$ and data y requires computation **Proximal Nested Sampling** ▶ **Nested sampling requires sampling from a prior constrained to likelihood level-sets**, which is very difficult at high dimensions e.g. imaging applications.

of Bayesian evidence Z for model M

 $Z = P(y|M) =$ Ω $dx \mathcal{L}(\bm{x})\pi(\bm{x}).$

where likelihood $\mathcal{L}(\bm{x}) = P(\bm{y}|\bm{x}, M)$ and prior $\pi(\boldsymbol{x}) = P(\boldsymbol{x}|M).$

▶ **Nested Sampling**^[1] computes prior volumes X_i nested within likelihood-level sets L_i to compute Z as a 1-D integral.

constraint set XB_{τ}

$$
f^{\lambda}(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^n} f(\boldsymbol{u}) + ||\boldsymbol{u} - \boldsymbol{x}||^2 / 2\lambda.
$$

• As $\lambda \to 0, f^{\lambda}(x) \to f(x)$. $\bullet~~ \nabla f^{\lambda}(\boldsymbol{x}) = (\boldsymbol{x} - \text{prox}_f^{\lambda}(\boldsymbol{x}))/\lambda.$

 \blacktriangleright Denoisers D_ϵ can include deep neural networks leading to **data-driven AI priors** that can be implemented in a **plug-and-play (PnP)** [6,7] approach with proximal nested sampling [8] .

▶ Validated the method with a Gaussian benchmark. ▶ Evaluated denoising an image with selection of denoisers: hand-crafted priors (DB8 wavelets) and data driven AI priors trained on natural images (CRR-NN^[9] and DnCNN^[7]).

▶ Bayesian evidence favours the DnCNN model, which the ground truth also demonstrates is the best reconstruction.

▶ **Proximal nested sampling** [4] utilizes proximal calculus to alleviate this challenge where likelihoods are log-convex and lower semicontinuous, e.g. in imaging, by **applying the Moreau-Yosida regularisation to likelihood level-set constraints**.

> Denoising with DB6 wavelets, CRR-NN^[9], DnCNN^[7]. Note: Peak signal-to-noise ratio (PSNR) requires the ground truth, which is not available in realistic settings.

ProxNest Markov chain (in black). When outside the constrained likelihood level-set $\chi_{\mathcal{B}_{\tau}}$, prox χ $\mathcal{B}_{\mathcal{T}}$ pushes the chain back into the constraint set.

ProxNest with Data-Driven AI Priors

and the control of the cont

▶ Method implemented in ProxNest Python package. New and updated

References

[1] Skilling J., 2006, Nested sampling for general Bayesian computation. [2] Feroz F. et al., 2013, Importance nested sampling and the MultiNest algorithm. [3] Parikh N. and Boyd S., 2013, Proximal algorithms. [4] Cai X. et al., 2022, Proximal nested sampling for high-dimensional Bayesian model selection. [5] Robbins H., 1956, An empirical Bayes approach to statistics.

[6] Venkatakrishnan S.V. et al., 2013, Plug-and-play priors for model based reconstruction. [7] Ryu E. et al., 2019, Plug-and-Play methods provably converge with properly trained denoisers. [8] McEwen J. D. et al., 2023, Proximal nested sampling with data-driven priors for physical scientists. [9] Goujon A. et al., 2022, A neural-network-based convex regularizer for inverse problems.