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Overview
Problem Nested sampling computes the Bayesian evidence for model selection by sampling from a prior constrained to likelihood-level sets. At

high dimensions, existing nested sampling algorithms fail given the computationally challenging task.
Solution Proximal nested sampling utilizes proximal calculus and Moreau-Yosida regularisation to support non-differentiable, log-convex likeli-

hoods, such as those found in imaging applications, to compute the Bayesian evidence at high dimensions.

Nested Sampling
▶ Bayesianmodel selection for a set of param-
eters x ∈ Ω and data y requires computation
of Bayesian evidence Z for model M

Z = P (y|M) =

∫
Ω

dx L(x)π(x).

where likelihood L(x) = P (y|x,M) and prior
π(x) = P (x|M).

▶ Nested Sampling[1] computes prior volumes
Xi nested within likelihood-level sets Li to
compute Z as a 1-D integral.

Nested subspaces[2] Reparameterised likelihood[2]

Proximal Calculus
▶ Proximity operator of a convex function
f : Rn 7→ R given by

proxλf (x) = argmin
u

[f(u) + ∥u− x∥2/2λ].

proxf mapping blue to red points[3]. Domain bound-
ary (thick black) and level-sets (thin black) of f .

▶ Moreau-Yosida envelope of f given by

fλ(x) = inf
u∈Rn

f(u) + ∥u− x∥2/2λ.

• As λ → 0,fλ(x) → f(x).
• ∇fλ(x) = (x− proxλf (x))/λ.

Moreau-Yosida of |x| for varying λ

Proximal Nested Sampling
▶ Nested sampling requires sampling from a prior constrained to likelihood level-sets, which is
very difficult at high dimensions e.g. imaging applications.
▶ Proximal nested sampling[4] utilizes proximal calculus to alleviate this challenge where likeli-
hoods are log-convex and lower semicontinuous, e.g. in imaging, by applying the Moreau-Yosida
regularisation to likelihood level-set constraints.
▶ Langevin Markov chain Monte Carlo (MCMC) efficiently samples high dimensions using gradient
information; can adopt our method to produce the proximal nested sampling Markov chain

x(k+1) = x(k) +
δ

2
∇ log π(x(k))− δ

2λ
[x(k) − proxλχBτ

(x(k))] +
√
δw(k+1)

with characteristic function χBτ
corresponding to constraint L(x) ≥ L∗ and Brownian motion w.

▶ Log-prior log π(x) may be non-differentiable,
in which case we similarly apply Moreau-Yosida
regularisation.
▶ Tweedie’s formula[5] links noisy observations
z ∼ N (x, σ2I) and samples x ∼ q(x) without
knowledge of q(x):

E(x|z) = z + σ2∇ log p(z)

where p(z) is the marginal distribution of z.
▶ Leveraging Tweedie’s formula, can relate
score of Gaussian-smoothed prior to denoiser
Dϵ trained to recover x from xϵ ∼ N (x, ϵI)

∇ log πϵ(x
(k)) = ϵ−1(Dϵ(x

(k))− x(k)).
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ProxNest Markov chain (in black). When out-
side the constrained likelihood level-set χBτ ,
proxχBτ

pushes the chain back into the con-
straint set.

▶ Denoisers Dϵ can include deep neural networks leading to data-driven AI priors that can be
implemented in a plug-and-play (PnP)[6,7] approach with proximal nested sampling[8].

ProxNest with Data-Driven AI Priors
▶ Validated the method with a Gaussian benchmark.
▶ Evaluated denoising an image with selection of denoisers:
hand-crafted priors (DB8 wavelets) and data driven AI priors trained on
natural images (CRR-NN[9] and DnCNN[7]).
▶ Bayesian evidence favours the DnCNN model, which the ground truth
also demonstrates is the best reconstruction.
▶ Method implemented in ProxNest Python package. New and updated
codebase soon to be available at https://github.com/astro-informatics.
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Denoising with DB6 wavelets, CRR-NN[9], DnCNN[7]. Note: Peak signal-to-noise ratio (PSNR)
requires the ground truth, which is not available in realistic settings.
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