Exhaustive Symbolic Regression:
Learning astrophysics directly from data

Harry Desmond', Deaglan Bartlett?, Pedro Ferreira’

I Institute of Cosmology and Gravitation, University of Portsmouth
> Institut Astrophysique de Paris; ° Department of Physics, University of Oxford

harry.desmondéport.ac.uk arxiv: 2211.11461, 2301.04368, 2310.16786 github.com/DeaglanBartlett/ESR

» We apply ESR to the SPARC RAR to ask whether the best functions have
these limits, and how good they are compared to the classic MOND functions.

» We find scant support for the deep-MOND Ilimit, and many functions better

(Exhaustive) Symbolic Regression and the MDL principle

» Symbolic Regression (SR) algorithms learn analytic expressions which fit

data accurately and simply in a highly interpretable way. than those of MOND.
» We have developed a new SR method — Exhaustive Symbolic Regression
(ESR) — which efficiently considers all possible equations up to some 10
complexity. Unlike other methods, ESR is guaranteed to find the true optimum | g”j'n Teglt’;‘r
and complete function ranking. I Stanpdard IF
» ESR represents functions as trees and finds all that form unique functions. 1011 — RARIF
o : Double power law A
he minimum description length (MDL) principle posits that the best functional e | —— Simple IF + EFE ; "
representation of a dataset is the one that compresses it most, so that the g
fewest units of information are needed to communicate the data with the help of = 10°: s
the function. The total amount of information to send is :g] - ‘
L(D) = L(H) + L(D|H), | P il
where L denotes codelength, L(D|H) is an accuracy term and L(H) penalises 107" i
more complex hypotheses (functions). Lower-L(D) models are those which j) fit f //
the data more accurately, /i) contain fewer operators and parameters and J/ii) do N TS e T T T T

not need as finely tuned parameter values to fit the data well.
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Application 1 - Is cosmic expansion Friedmann? Figure 3: The SPARC RAR (blue points) and its classic MOND fits (“IFs”).

» Can we derive the law of the Universe’s expansion without assuming GR? e o 7
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» Apply ESR to cosmic chronometers, stellar “standard clocks”. 140 o 140 1. ¢ Sr o Suemed| o
» We find that ACDM is not the best equation for the data! It does, however, 120 - B simplelF - 120 ;
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Figure 4: Left: Pareto front of L(D) found by ESR vs those of classic MOND I[Fs and double
power law. Right: The limiting slopes of the 10 best functions. MOND functions would have blue

Figure 1: Expansion rate, H, as a function of redshift, z, learned by applying ESR to the cosmic  @nd red points on the corresponding dotted lines, which is typically not the case.
chronometer data (blue points). Functions are colour-coded by their description length.

Application 3 — Is inflation quadratic, quartic or Starobinsky?

® Pareto Front s ACDM AFluid » Use ESR to score all possible functional forms for the single-field inflaton
10 - - 15 potential using A,, n, and r constraints from the CMB.
= Q » Consider also a language-model (Katz) prior which upweights functions
= -10 & similar to those in a training set (the Encyclopaedia Inflationaris).
< 5 < » Compare to literature solutions such as quadratic, quartic and Starobinsky.
e We find thousands of potentials better than these!
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Figure 2: The “Pareto front” shows the best L(D) and likelihood £ achievable at any complexity. 3 16, et 5 509 3 90¢¢91 7 -0.63

ACDM lies above this line: it is “Pareto-dominated” by the ESR results. E = = = = = = =
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2 10 _(142) S /.97 18.70 Table 2: Best inflaton potentials found by ESR, plus quadratic and Starobinsky inflation. Lefft:
3 0 |01] 5 7.57 20.08 without Katz prior; Right: with Katz prior.
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Table 1: Highest ranked functions for H (z)” inferred by ESR. 38 surpass ACDM. , , , _ _
» In all cases investigated so far we find clear gains over literature standards.
» Improvements to the algorithm: autodiff, integer snap, increased efficiency

Application 2 - Is galaxy dynamics MOND? of tree operations, improved likelihoods. Plus hybrid exhaustive/stochastic
approaches, using ESR to inform the operation of genetic algorithms.
> The Radial Acceleration Relation (RAR) describes the coupling between » New applications: Halo profiles (from data and simulations), galaxy and halo
galaxies’ visible and dynamical mass. It is claimed to support MOND by mass functions, bias relations, ...

having asymptotic slopes of 1/2 & 1 (“"deep-MOND” & “Newtonian” regimes). » Your ideas are wanted!!
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