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(Exhaustive) Symbolic Regression and the MDL principle

▶ Symbolic Regression (SR) algorithms learn analytic expressions which fit
data accurately and simply in a highly interpretable way.

▶ We have developed a new SR method – Exhaustive Symbolic Regression
(ESR) – which efficiently considers all possible equations up to some
complexity. Unlike other methods, ESR is guaranteed to find the true optimum
and complete function ranking.

▶ ESR represents functions as trees and finds all that form unique functions.

The minimum description length (MDL) principle posits that the best functional
representation of a dataset is the one that compresses it most, so that the
fewest units of information are needed to communicate the data with the help of
the function. The total amount of information to send is

L(D) = L(H) + L(D|H),

where L denotes codelength, L(D|H) is an accuracy term and L(H) penalises
more complex hypotheses (functions). Lower-L(D) models are those which i) fit
the data more accurately, ii) contain fewer operators and parameters and iii) do
not need as finely tuned parameter values to fit the data well.

Application 1 – Is cosmic expansion Friedmann?

▶ Can we derive the law of the Universe’s expansion without assuming GR?
▶ Apply ESR to cosmic chronometers, stellar “standard clocks”.
▶ We find that ΛCDM is not the best equation for the data! It does, however,

lie in the top 40 of the 5.2 million functions up to complexity 10.
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Figure 1: Expansion rate, H, as a function of redshift, z, learned by applying ESR to the cosmic
chronometer data (blue points). Functions are colour-coded by their description length.
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Figure 2: The “Pareto front” shows the best L(D) and likelihood L achievable at any complexity.
ΛCDM lies above this line: it is “Pareto-dominated” by the ESR results.

Rank H (z)2 / km2s−2Mpc−2 Complexity − logL L(D)
1 θ0(1 + z)2 5 8.36 16.39 ←Best
2 |θ0|(1+z)

θ1 5 7.97 18.70
3 θ0 |θ1|−(1+z) 5 7.57 20.08
... ... ... ... ...

39 θ0 + θ1(1 + z)3 9 7.28 23.51 ←ΛCDM
... ... ... ... ...

Table 1: Highest ranked functions for H (z)2 inferred by ESR. 38 surpass ΛCDM.

Application 2 – Is galaxy dynamics MOND?

▶ The Radial Acceleration Relation (RAR) describes the coupling between
galaxies’ visible and dynamical mass. It is claimed to support MOND by
having asymptotic slopes of 1/2 & 1 (“deep-MOND” & “Newtonian” regimes).

arxiv: 2211.11461, 2301.04368, 2310.16786 github.com/DeaglanBartlett/ESR

▶ We apply ESR to the SPARC RAR to ask whether the best functions have
these limits, and how good they are compared to the classic MOND functions.

▶ We find scant support for the deep-MOND limit, and many functions better
than those of MOND.

Figure 3: The SPARC RAR (blue points) and its classic MOND fits (“IFs”).

Figure 4: Left : Pareto front of L(D) found by ESR vs those of classic MOND IFs and double
power law. Right : The limiting slopes of the 10 best functions. MOND functions would have blue
and red points on the corresponding dotted lines, which is typically not the case.

Application 3 – Is inflation quadratic, quartic or Starobinsky?

▶ Use ESR to score all possible functional forms for the single-field inflaton
potential using As, ns and r constraints from the CMB.

▶ Consider also a language-model (Katz) prior which upweights functions
similar to those in a training set (the Encyclopaedia Inflationaris).

▶ Compare to literature solutions such as quadratic, quartic and Starobinsky.
We find thousands of potentials better than these!

Rank V (ϕ) Comp. L(D) Rank V (ϕ) Comp. L(D)

1 e−ee
eϕ

6 -6.06 1 θ0ϕ
θ1/ϕ 7 -2.59

2 θ0e
−eϕ 5 -5.16 2 θ0(θ1 + ϕϕ) 7 -1.39

3 |θ0|ee
ϕ

5 -5.09 3 θ0ϕ
ϕθ1 7 -0.63

... ... ... ... ... ... ... ...
1272 θ0(1− e−

√
2/3ϕ)2 9 5.57 12 θ0(1− e−

√
2/3ϕ)2 9 0.70

... ... ... ... ... ... ... ...
8697 θ0ϕ

2 4 38.01 5401 θ0ϕ
2 4 38.03

Table 2: Best inflaton potentials found by ESR, plus quadratic and Starobinsky inflation. Left :
without Katz prior; Right : with Katz prior.

Where next?

▶ In all cases investigated so far we find clear gains over literature standards.
▶ Improvements to the algorithm: autodiff, integer snap, increased efficiency

of tree operations, improved likelihoods. Plus hybrid exhaustive/stochastic
approaches, using ESR to inform the operation of genetic algorithms.

▶ New applications: Halo profiles (from data and simulations), galaxy and halo
mass functions, bias relations, ...

▶ Your ideas are wanted!!

https://arxiv.org/abs/2211.11461
https://arxiv.org/abs/2301.04368
https://arxiv.org/abs/2310.16786
https://github.com/DeaglanBartlett/ESR

