Exhaustive Symbolic Regression: Learning astrophysics directly from data

*Harry Desmond*¹, Deaglan Bartlett², Pedro Ferreira³

¹ Institute of Cosmology and Gravitation, University of Portsmouth
 ² Institut Astrophysique de Paris; ³ Department of Physics, University of Oxford

harry.desmond@port.ac.uk

arxiv: 2211.11461, 2301.04368, 2310.16786 github.com/DeaglanBartlett/ESR

(Exhaustive) Symbolic Regression and the MDL principle

- Symbolic Regression (SR) algorithms learn analytic expressions which fit data accurately and simply in a highly interpretable way.
- We have developed a new SR method Exhaustive Symbolic Regression (ESR) – which efficiently considers all possible equations up to some complexity. Unlike other methods, ESR is guaranteed to find the true optimum and complete function ranking.
- ESR represents functions as trees and finds all that form unique functions.
- We apply ESR to the SPARC RAR to ask whether the best functions have these limits, and how good they are compared to the classic MOND functions.
- We find scant support for the deep-MOND limit, and many functions better than those of MOND.

The *minimum description length (MDL) principle* posits that the **best functional representation of a dataset is the one that compresses it most**, so that the fewest units of information are needed to communicate the data with the help of the function. The total amount of information to send is

L(D) = L(H) + L(D|H),

where *L* denotes codelength, L(D|H) is an accuracy term and L(H) penalises more complex hypotheses (functions). Lower-L(D) models are those which *i*) fit the data more accurately, *ii*) contain fewer operators and parameters and *iii*) do not need as finely tuned parameter values to fit the data well.

Application 1 – Is cosmic expansion Friedmann?

- Can we derive the law of the Universe's expansion without assuming GR?
- ► Apply ESR to cosmic chronometers, stellar "standard clocks".
- ► We find that ACDM is not the best equation for the data! It does, however, lie in the top 40 of the 5.2 million functions up to complexity 10.

Figure 1: Expansion rate, H, as a function of redshift, z, learned by applying ESR to the cosmic chronometer data (blue points). Functions are colour-coded by their description length.

Figure 2: The "Pareto front" shows the best L(D) and likelihood \mathcal{L} achievable at any complexity. ACDM lies above this line: it is "Pareto-dominated" by the ESR results. Figure 4: *Left*: Pareto front of L(D) found by ESR vs those of classic MOND IFs and double power law. *Right*: The limiting slopes of the 10 best functions. MOND functions would have blue and red points on the corresponding dotted lines, which is typically not the case.

Application 3 – Is inflation quadratic, quartic or Starobinsky?

- ► Use ESR to score all possible functional forms for the single-field inflaton potential using A_s, n_s and r constraints from the CMB.
- Consider also a language-model (Katz) prior which upweights functions similar to those in a training set (the *Encyclopaedia Inflationaris*).
- Compare to literature solutions such as quadratic, quartic and Starobinsky. We find thousands of potentials better than these!

Rank	$V(\phi)$	Comp.	L(D)	Rank	$V(\phi)$	Comp.	L(D)
1	$e^{-e^{e^{e^{\phi}}}}$	6	-6.06	1	$ heta_0 \phi^{ heta_1/\phi}$	7	-2.59
2	$ heta_0 e^{-e^\phi}$	5	-5.16	2	$ heta_0(heta_1+\phi^\phi)$	7	-1.39
3	$ heta_0 ^{e^{e^{\phi}}}$	5	-5.09	3	$ heta_0 \phi^{\phi^{ heta_1}}$	7	-0.63
	:	1	1		:		
1272	$\theta_0(1-e^{-\sqrt{2/3}\phi})^2$	9	5.57	12	$\theta_0(1-e^{-\sqrt{2/3}\phi})^2$	9	0.70
I	I	1	1		1	1	1
8697	$ heta_0 \phi^2$	4	38.01	5401	$ heta_0 \phi^2$	4	38.03

Table 1: Highest ranked functions for $H(z)^2$ inferred by ESR. 38 surpass ΛCDM .

Application 2 – Is galaxy dynamics MOND?

The Radial Acceleration Relation (RAR) describes the coupling between galaxies' visible and dynamical mass. It is claimed to support MOND by having asymptotic slopes of 1/2 & 1 ("deep-MOND" & "Newtonian" regimes). Table 2: Best inflaton potentials found by ESR, plus quadratic and Starobinsky inflation. *Left*: without Katz prior; *Right*: with Katz prior.

Where next?

- In all cases investigated so far we find clear gains over literature standards.
 Improvements to the algorithm: autodiff, integer snap, increased efficiency of tree operations, improved likelihoods. Plus hybrid exhaustive/stochastic approaches, using ESR to inform the operation of genetic algorithms.
- New applications: Halo profiles (from data and simulations), galaxy and halo mass functions, bias relations, ...
- Your ideas are wanted!!