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Introduction
We study the application of selected ML techniques to the
recognition of a substructure of hadronic final states (jets) and
their tagging based on their possible origin in current HEP ex-
periments using simulated events and a parameterized detector
simulation. The results are then compared with the cut-based
method.

Simulations
Jets as hadronic final states are an inevitable consequence of
the quantum chromodynamics (QCD) [1], the force between
strongly interacting matter constituents of quarks and gluons. In
hadron collisions, jets are important final states and signatures of
objects of high transverse momentum. In cases of large jet trans-
verse momenta, i.e. with a larger Lorentz boost in the plane per-
pendicular to the proton beam, decay products of hadronically
decaying W bosons or top quarks are collimated so that they
form one large boosted jet in the detector.

Preprocessing
1. Specific jets can be identified by focusing on those with

masses in the ranges of [60, 100] GeV and [138, 208] GeV,
jets outside these ranges are classified as light jets, as a result,
we have four subsets: zp-sets and pp-sets for t jets, and zp-
sets and pp-sets for W jets

2. Decomposition into the training and the test sets, training sets
contain 80% and the test sets 20% of data from the original
sets

3. Standardization of datasets by removing the mean and scaling
to unit variance

Methods
Metrics

Accuracy ≡ TP + TN
TP + TN + FP + FN

Precision ≡ TP
TP + FP

Recall ≡ TP
TP + FN

≡ True positive rate

False positive rate ≡ FP
FP + TN

Classifiers
• Gradient boosting classifier (GBC) - combining multiple sim-

ple predictors (here decision trees) to create a more powerful
model

Figure 1: GBC

• Multi-layer Perceptron classifier (MLP) - based on neural net-
works.

Undersampling
• very distorted ratio between t-jets and light-jets (in the direc-

tion of t-jets)

• we settled for the undersampling applied to the training sets,
which uses various techniques to remove data from the major
class

• tested undersampling techniques: Random undersampling,
Cluster centroids, Near miss, Repeated edited nearest neigh-
bor

Cut-based algorithm
to identify jets coming from the hadronic decays of the W boson
or a top quark by a simple cut-based algorithm
• W -jets if

0.10 < τ21 < 0.60 ∧ 0.50 < τ32 < 0.85 ∧ mJ ∈ [60, 100] GeV

• top-jets if

0.30 < τ21 < 0.70 ∧ 0.30 < τ32 < 0.80 ∧ mJ ∈ [138, 208] GeV

Data Structure

ID File name Number of jets
0 ascii run XY pp 2tj allhad NLO ptj1j2min200... 797 363
1 ascii run XY pp 2tj allhad NLO ptj1j2min60... 446 838
2 ascii run XY pp 2tj allhad NLO ptj1min200... 781 675
3 ascii run XY zp ttbarj allhad 1000GeV... 449 606
4 ascii run XY zp ttbarj allhad 1250GeV... 388 593

→
ID File name Number of jets
0 data zp 838 199
1 data pp 2 025 876

Table 1: Table of datasets
We have 5 different datasets, from which we subsequently created two new ones. The first one is the unification of the zp-sets (IDs 3
and 4) and the second one is the unification of the pp-sets (IDs 0–2).

Figure 1: Structure of data zp

Figure 2: Structure of data pp

The ratios between t-jets (W-jets) and light-jets are summarized
in the following tables

Data set t-jets light-jets
data zp t 86% 14%
data pp t 72.5% 27.5%

Data set W-jets light-jets
data zp w 48% 52%
data pp w 42% 58%

Data set t-jets light-jets
data zp t 129 282 21 555
data pp t 127 029 48 000

Data set W-jets light-jets
data zp w 110 735 121 658
data pp w 180 169 251 422

Variables defined and used for each jet in the classification are as
follows

event ∆R(J,W ) ∆R(J, t) pT η ϕ τ32 τ21 m label

0 0.693589 0.280779 271.076000 -0.205725 1.034350 0.641589 0.304973 70.244600 l
0 1.152290 0.542026 161.364000 1.779510 -2.046550 0.678087 0.529191 67.632400 l
0 0.505954 0.876577 88.041000 0.431132 0.073586 0.468017 0.631805 7.432140 l
1 0.172936 0.046981 367.557000 -1.193480 -1.722920 0.840838 0.283345 75.302100 w
1 0.031584 0.143634 329.300000 -0.109191 1.337560 0.618819 0.205733 75.042200 w
2 0.143172 0.050171 501.473000 0.596318 -0.276567 0.605931 0.370552 171.372000 t

Table 2: Defined variables for each jet

Results
Performance of ML algorithms
For training and testing the respective algorithms, we used different sets. The algorithms for the prediction of t-jets were trained,
after applications of undersampling methods, on a part of the data set data zp t and tested on the rest of data zp t and data pp t.
The algorithms for the prediction of W-jets were trained on a part of the data set data pp w and tested on the rest of data pp w and
data zp w.The performance of classifiers is shown via ROC curves derived based on test samples in Figure 3.
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Figure 3: ROC curves summerising performance of W-tagging classifiers (left) and t-tagging classifiers (right)

Comparison of best ML method and cut-based algorithm In
the Figure 4 we can see top tagging real efficiencies (red) and
mistagging rates (blue) using cut-based (dashed lines) and ML-
based (solid lines) of BSM tt̄y0 → tt̄tt̄ as a function of jet mass
(right). We can see that ML based algorithms give the same real
efficiencies as cut-based, but significantly less fake efficiencies.
Where real and fake efficiencies are defined as

ϵreal =
N(tagged & matched)

N(tagged & matched) + N(not− tagged & matched)

ϵfake =
N(tagged & not−matched)

N(tagged & not−matched) + N(not− tagged & not−matched)
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Figure 4: Efficiencies using cut-based and ML
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Conclusions
The real efficiencies of cut-based method in both t-jets and W -
jets tagging are high about 80%, mostly flat, but unfortunatelly
also having high mistagging rates about 65-70%. While ML-
based method has lower efficiencies, the mistagging rates are
suppresed compared to cut-based method
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