Generative A Unfolding Top decays Bayesian NN Calibration

ML-Unfolding Tilman Plehn

ML-Unfolding and More

Tilman Plehn

Universität Heidelberg

PHYSTAT, Stats meets ML, September 2024

ML-Unfolding Tilman Plehn

Generative AI Unfolding Top decays Bayesian NNs Calibration

LHC Theory

Turning data into knowledge

· QFT

start with Lagrangian generate Feynman diagrams

- compute hard scattering compute decays compute jet radiation
- partons inside protons hadron-level QCD
- \rightarrow First-principle simulations, not modeling

HL-LHC: optimal inference with 10×more data

- $\cdot \,$ statistical improvement $\sqrt{10} > 3$
- $\cdot\,$ rate over phase space to <0.1%
- $\cdot \hspace{0.1 cm} SBI \hspace{0.1 cm} starts \hspace{0.1 cm} with \hspace{0.1 cm} Simulation \leftrightarrow theory \hspace{0.1 cm} \hbox{[Giovanni De Crescenzo's poster]}$
- · speed the key to precision

ML-Unfolding Tilman Plehn Generative Al Unfolding Top decays Bayesian NNs Calibration

Generative AI

Forward simulations

- \cdot learn phase space density sample Gaussian \rightarrow phase space
- \cdot Variational Autoencoder \rightarrow low-dimensional physics
- \cdot Generative Adversarial Network \rightarrow generator trained by classifier
- · Normalizing Flow/Diffusion \rightarrow (bijective) mapping [INN]
- $\cdot\,$ JetGPT, ViT \rightarrow non-local structures
- $\begin{array}{l} \cdot \ \ Equivariant \ L-GATr \quad \ \ [Jonas \ Spinner's \ talk] \\ \rightarrow \ guarantee \ Lorentz \ symmetry \end{array}$
- → Combinations: Transfermer, TraCFM,...

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays Bayesian NNs Calibration

Generative AI

Forward simulations

- $\begin{array}{l} \cdot \text{ learn phase space density } \quad \mbox{[with error bar]} \\ sample Gaussian \rightarrow phase space \end{array}$
- · Variational Autoencoder
- · Generative Adversarial Network
- · Normalizing Flow/INN/Diffusion
- · JetGPT, ViT
- · Equivariant L-GATr [Jonas Spinner's talk]
- → Combinations: Transfermer, TraCFM,...

Quality control [Das, Favaro, Heimel, Krause, TP, Shih]

 classifier easier to train training vs generated [Neyman-Peason]

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{train}}(x_i)}{p_{\text{gen}}(x_i)}$$

- $\cdot\,$ performance from width of distribution
- $w(x_i) \gg 1$ missing feature $w(x_i) \ll 1$ missing cut
- \rightarrow Systematic performance test

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays Bayesian NNs Calibration

Transforming LHC physics

Number of searches [Aishik's talk]

- $\cdot\,$ optimal inference: signal and background simulations
- · CPU-limitation for many signals

Optimal analyses

- · theory limiting many analyses, but continuous progress
- · analyses need to be updated

Public LHC data

- common lore: LHC data too complicated for amateurs [except Jesse]
- · in truth:

hard scattering and decay simulations public BSM physics not in hadronization and detector

→ Unfold to suitable level [theoretically consistent?]

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays Bayesian NNs Calibration

ML-Unfolding

· four phase space distributions

 $\rightarrow\,$ ML for unbinned and high-dimensional unfolding?

ML-Unfolding Tilman Plehn Generative Al Unfolding Top decays Bayesian NNs Calibration

ML-Unfolding

· four phase space distributions

 $\rightarrow\,$ ML for unbinned and high-dimensional unfolding?

OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler]

- $\cdot \;\; \mathsf{learn} \; \rho_{\mathsf{sim}}(x_{\mathsf{reco}}) \leftrightarrow \rho_{\mathsf{data}}(x_{\mathsf{reco}}) \;\; {}_{\mathsf{[Neyman-Pearson lemma, CWoLa]}}$
- · reweight $p_{sim}(x_{part}) \rightarrow p_{unfold}(x_{part})$

 $\rightarrow\,$ Driven by (now) established ML-classification

ML-Unfolding Tilman Plehn Generative Al Unfolding Top decays Bayesian NNs

Unfolding by generation

Targeting conditional probability [Butter, TP, Winterhalder,...]

- · just like forward ML-generation
- · learn inverse conditional probability from (xpart, xreco)

Improvements crucial [Xavier Villadamigo's poster]

- $\cdot\,$ make networks more precise $\,\rightarrow\,$ TraCFM
- · remove training prior [Backes, Butter, Dunford, Malaescu]
- \rightarrow Success through generative progress

ML-Unfolding Tilman Plehn Generative Al Unfolding

Top decays Bayesian NN Unfolding top decays

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays

Unfolding top decays

- 1 weaken bias by training on m_s -range
- 2 strengthen data by including batch-wise $m_d \sim M_{jjj} \in x_{
 m reco}$

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays

Unfolding top decays

- 1 weaken bias by training on m_s -range
- 2 strengthen data by including batch-wise $\textit{m}_{\textit{d}} \sim \textit{M}_{jjj} \in \textit{x}_{\text{reco}}$

Preliminary unfolding results

· 4D for mass measurement

ML-Unfolding Tilman Plehn Generative AI Unfolding Top decays

Unfolding top decays

- 1 weaken bias by training on m_s -range
- 2 strengthen data by including batch-wise $\textit{m}_{\textit{d}} \sim \textit{M}_{jjj} \in \textit{x}_{\text{reco}}$

Preliminary unfolding results

· 4D for calibrated mass measurement

ML-Unfolding Tilman Plehn Generative Al

Top decays Bayesian NN

Unfolding top decays

Hadonic top decays [Sophia Palacios Schweitzer's poster]

 $\cdot \,$ complete training bias $m_d
ightarrow m_{\mathcal{S}} \,$ [too bad to reweight]

 $\begin{array}{c|c} p_{\text{sim}}(x_{\text{part}} \mid m_{s}) & p_{\text{unfold}}(x_{\text{part}} \mid m_{s}, p_{d}) \\ \\ p_{(x_{\text{reco}} \mid x_{\text{part}})} & & \uparrow p_{\text{model}}(x_{\text{part}} \mid x_{\text{reco}}, m_{s}) \\ \\ p_{\text{sim}}(x_{\text{reco}} \mid m_{s}) & \xleftarrow{\text{correspondence}} & p_{\text{data}}(x_{\text{reco}} \mid m_{d}) \end{array}$

- 1 weaken bias by training on ms-range
- 2 strengthen data by including batch-wise $\textit{m}_{\textit{d}} \sim \textit{M}_{jjj} \in \textit{x}_{\text{reco}}$

Preliminary unfolding results

- · 4D for calibrated mass measurement
- 12D published data
- → CMS data next

Learned uncertainties

Generative AI Unfolding Top decays Bayesian NNs

ML-Unfolding

Tilman Plehn

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP; Bieringer, Diefenbacher, Kasieczka, Trabs]

- sampling phase space events with error bars on weights
- learned density & uncertainty reflecting network learning!
- \rightarrow INNs fitting functions

Learned uncertainties

Generative AI Unfolding Top decays Bayesian NNs

ML-Unfolding

Tilman Plehn

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP; Bieringer, Diefenbacher, Kasieczka, Trabs]

- sampling phase space events with error bars on weights
- learned density & uncertainty
 reflecting network learning!
- \rightarrow INNs and DDPMs fitting functions
- \rightarrow CFMs and transformers different

ML-Unfolding Tilman Plehn

Generative AI Unfolding Top decays Bayesian NNs

Learned uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP; Bieringer, Diefenbacher, Kasieczka, Trabs]

- sampling phase space events with error bars on weights
- learned density & uncertainty reflecting network learning!
- $\rightarrow~$ INNs and DDPMs fitting functions
- → CFMs and transformers different

LHC events with uncertainties [Heimel, Vent...]

- statistical limitation from B-INN
- · systematic limitation from condition

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}} \right)^2$$

→ Comprehensive uncertainty control

ML-Unfolding Tilman Plehn Generative Al Unfolding Top decays

Bayesian NN

Calibration

Transforming LHC analyses

Calibration with uncertainties [Vogel, Loch, TP,...]

- · interpretable topo-cluster phase space x
- learned calibration

$$\mathcal{R}^{\mathsf{BNN}}(x) = \mathcal{R}(x) = rac{E^{\mathsf{EM}}(x)}{E^{\mathsf{dep}}(x)}$$

- · learned uncertainties $\Delta \mathcal{R}(x)$ [Nina Elmer's poster] Bayesian neural networks vs repulsive ensembles
- $\rightarrow~{\rm error}~{\rm vs}$ data spread checked by pull

ML-Unfolding Tilman Plehn Generative Al Unfolding

Calibration

Transforming LHC analyses

Calibration with uncertainties [Vogel, Loch, TP,...]

- · interpretable topo-cluster phase space x
- learned calibration

$$\mathcal{R}^{\mathsf{BNN}}(x) = \mathcal{R}(x) = rac{E^{\mathsf{EM}}(x)}{E^{\mathsf{dep}}(x)}$$

- · learned uncertainties $\Delta \mathcal{R}(x)$ [Nina Elmer's poster] Bayesian neural networks vs repulsive ensembles
- ightarrow error vs data spread checked by pull
- \rightarrow Understand data using uncertainties

ML-Unfolding Tilman Plehn

Generative AI Unfolding Top decays Bayesian NNs Calibration

ML for LHC Theory

Developing ML for the best science

- · just another numerical tool for a numerical field
- · transformative new common language
- · driven by external money
- · 10000 Einsteins to...

...improve established tools ...develop new tools for exciting tasks

- ...transform through new ideas
- \rightarrow You are the golden generation!

Modern Machine Learning for LHC Physicists

Tilman Plehn^a, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Université catholique de Louvain, Louvain-Ia-Neuve, Belgium

March 19, 2024

Abstract

Moder machine learning in transforming particle physics (facts, hullying in way into our numerical look Nor. For young researchers in it recards to our paper files decomposition, which shares anylying cutting edge methods and look to the hull endowing the strength of the embinism for machine learning to release anylogications. They start with an IEE specific motivation and an so-tunded introduction to strength of the discussion are well-defined loss functions and anceming-same metworks. The strength of the strength of the discussion is any well-defined loss functions and anceming-same metworks.

:2211.01421v2 [hep-ph] 17 Mar 2024