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Introduction
Neutrinos and their Oscillations

e Standard model neutrinos are known to oscillate

Mass eigenstates determine how neutrinos propagate through space

and time

Flavor eigenstates are determined by neutrinos’ charged-current weak

interactions
Parameterized by PMNS matrix
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Important consequence: (some) neutrinos have mass?
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Introduction » ”

Arena: Sterile Neutrino Searches Amly > 1 eV
via v, Disappearance

]'/3 ) 2
Amiry —<——— ~25x103eV?
: . . : _ %) .
 If (LH) massive neutrinos exist, then (RH) neutrinos: Am?o, -~ T4 %10 5eV2
* Do not participate in the weak interaction because of V — A. V1 . U. U
”Sterile” = I T
* May be accessible by oscillations.
2
* Simplest model which permits sterile neutrinos is 3+1. E.g., Amfll v

p(Ve 2 V) =1 — 4 |Upyl? (1 — |Upyl?) sin?(1.27 AmZ, L/E)

* As atest-bed, consider the class of experiments searching for a
3+1 sterile by electron-(anti)neutrino disappearance.
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Introduction
Arena: Sterile Neutrino Searches via v, Disappearance

Reactor Experiments Source Experiments

* Scintillator detectors + nuclear reactors; measure v, * MCisources (e.g. 3’Ar and >1Cr) + gallium targets

disappearance . : _
PP * Detectors capture neutrinos via v, ("1Ga, "1Ge) e~;

* “Shape-only fit” — we correct for the flux normalization mismatch germanium atoms are periodically counted

illati rectl
and measure oscillations directly * BEST (below), SAGE, and GALLEX each observe deficits

compared to expectations, called the “gallium anomaly

”

 Can measure nonzero Uy, and Am3; < 10 eV?

* Most shape-only fits do not favor a sterile neutrino

* STEREO (below), PROSPECT, NEOS, DANSS
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FIG. 1. The Ga target and extraction piping diagram also indicating the source handling apparatus.

https://doi.org/10.1038/s41586-022-05568-2 https://arxiv.org/abs/2109.11482
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Introduction
Wilks’ Theorem and its Problems

e Conventionally:

* Model parameters y are estimated by maximizing a likelihood function L, (y),
with x observed data. That is, J = argmax,, L,(y).

* One can devise a likelihood-ratio test statistic A = 2[log L,.(y) — log L,.(y,)]
comparing the maximum likelihood to the likelihood under a null (no-oscillation)

hypothesis.
* Wilks’ theorem (under some assumptions) states A ~ y# with k = dim x,
allowing us to compute and interpret significances.
* There are two problems with sterile searches and Wilks':
1. The null model (|U,,| = 0) lies on the boundary of the parameter space.
2. The oscillation frequency parameter (Amﬁl) can independently scan over many

local minima, with flexibility unaccounted for.

e Assuming Wilks’ theorem in 3+1 fits can cause you to misinterpret the
significance of your results.

[For an excellent pedagogical overview, see ]
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Box 2 | Necessary conditions for Wilks' theorem

Asymptotic
Sufficient data are collected.

Interior

Only values of the parameters of interest 4 and
nuisance parameters  that are not on the boundaries
of their parameter space are admitted.

Identifiable
Different values of the parameters specify distinct
models.

Nested

The null hypothesis H, is a limiting case of the general
case hypothesis H,, for example, with some parameter
constrained to a subrange of the entire parameter space.

Correct
The true model is specified either under H, or under H,.
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Introduction
Feldman-Cousins

* Since we can’t use Wilks’ to do a 3+1 fit, we have to more carefully describe the distribution of our LLR test statistic A.
This is the job of the Feldman-Cousins method:

1. Given experimental data, compute likelihood function L, (y) = p(x|y) for (all) values of the oscillation
parameters y = (U,4, AM%4)

2. Given experimental data, compute value of a test statistic (e.g., A = 2[log L,.(y) — log L,.(v,)]) for (all) values of
the oscillation parameters

3. Order pointsin oscillation parameter space by most to least desirable value of test statistic

4. Add points in oscillation parameter space to the confidence region until desired the confidence is reached
(computed from the likelihood L, (y))

* Major problems:
* Computing the likelihood is often time-consuming

* Computing the test statistic is often time-consuming
* Doingthis on a fine enough grid only complicates things further
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Introduction
Simulation-Based Inference

* In the end, to describe the a best-fit point and its
significance, all you need is an object like a
* Posterior distribution p(y|x), significance quantified by
a credibility region
* Likelihood p(x|y), significance quantified by a
confidence interval

* Advances in the field of density estimation allow us to
estimate these quantities directly through machine
learning, in place of (or enhancing) high-fidelity fitting
procedures like MCMC to generate posterior

* Training data acquired through simulation

RESEARCH ARTICLE PHYSICAL SCIENCES ] f X in 8 '\

The frontier of simulation-based inference

Kyle Cranmer B, johann Brehmer @, and Gilles Louppe Authors Info & Affiliations

Edited by Jitendra Malik, University of California, Berkeley, CA, and approved April 10, 2020 (received for review November 4, 2019)

May 29, 2020 117 (48) 30055-30062 = https://doi.org/10.1073/pnas.1912789117
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Abstract

Many domains of science have developed complex simulations to describe phenomena
of interest. While these simulations provide high-fidelity models, they are poorly suited
for inference and lead to challenging inverse problems. We review the rapidly developing
field of simulation-based inference and identify the forces giving additional momentum
to the field. Finally, we describe how the frontier is expanding so that a broad audience

can appreciate the profound influence these developments may have on science.
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Building an ML-Based (Global) Fitter

Naive Approach

. (2015) show that the
dropout procedure, traditionally used for
regularization of neural networks, can be

J

with dropout before each hidden layer, and
leave dropout on at inference time.

repurposed to approximate predictive
uncertainties. The idea: Train a neural network

* Each time a prediction is made from the neural

KDE

network, a different subnetwork is randomly
and independently chosen.

L

* Effectively asking for predictions from an
ensemble of smaller neural networks.

e Obtain prediction PDF by fitting a KDE to many
prediction samples.
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https://proceedings.mlr.press/v48/gal16.html

log10 Am3,

Building an ML-Based (Global) Fitter
Mode Collapse

* Misleading structures emerge in the predictive accuracies of these effective network ensembles.

* If the NNs are shown MC data thrown from a physical model to which the experiment(s) is (are) insensitive, the
NN just guesses the R? = 0 choice (an average).

Ill

Offers a natural “embedding”

Neural Network Predictive Error Neural Network Predictive Error Neural Network Predictive Error
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Building an ML-Based (Global) Fitter

Conditional Density Estimation with Normalizing Flows
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https://ankurdhuriya.medium.com/what-are-normalizing-flows-ce7ccd222ee7

* Normalizing flows learn a sequence of invertible transforms from a base distribution to some arbitrary
distribution

* Frequently used for generative modeling, but have obvious applications to density estimation.

* Use NFs to “correct” neural network predictions to compensate for mode collapse
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Building an ML-Based (Global) Fitter
The FCMLC Procedure

Experimental Data

mmdl Estimated posterior

* With a posterior, can find 2D credibility region Y, =
{y:p(ylx) > h,} satisfying

J p(ylx) dy = a
YEYq
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Results
Fits on Simulated Experimental Data

» Sensitivities (dashed black lines) come from conventional fits
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Results
Fits on Simulated Experimental Data
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Discussion
FCMLC Pros and Cons

Pro: The SBI approach is much faster than traditional fitting methods.
* With a NN and a NF trained, posterior density estimation takes ~5 minutes and can run in a Jupyter notebook.
* Together with generation of MC data, training, and FCMLC evaluation, ~2.5K CPU hours
* By comparison, Feldman-Cousins takes 510K CPU for the experiments considered in this work.

Pro: Runtime of FCMLC is ~constant with respect to the inclusion of more experiments.

Pro: SBI does not assume Gaussian uncertainties, and it is straightforward to set up simulations to capture
this.

Con: Hyperparameter optimization can further extend the overhead of FCMLC.
Con: FCMLC is sensitive to the way in which you generate your MC data.

Con: FCMLC'’s posterior density and Feldman-Cousins answer slightly different statistical questions.
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Summary
Conclusions and Future Directions

 SBI fits nicely in the realm of particle physics global fits, alleviating some of the
computational barriers currently in place.

* These methods are plug-and-play; pick your favorite density estimator and try it out. As
the field of deep-learning based methods for density estimation develops, SBI will
mature.

* Using a technique like FCMLC may be able to seed higher-fidelity fitting frameworks.

* Simulation-based likelihood / likelihood ratio estimation may be able to super-charge
Feldman-Cousins.
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