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Introduction
Neutrinos and their Oscillations
• Standard model neutrinos are known to oscillate

• Mass eigenstates determine how neutrinos propagate through space 
and time

• Flavor eigenstates are determined by neutrinos’ charged-current weak 
interactions

• Parameterized by PMNS matrix

• Important consequence: (some) neutrinos have mass?
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Introduction
Arena: Sterile Neutrino Searches
via 𝝂𝒆 Disappearance

• If (LH) massive neutrinos exist, then (RH) neutrinos:

• Do not participate in the weak interaction because of 𝑉 − 𝐴. 
”Sterile”

• May be accessible by oscillations.

• Simplest model which permits sterile neutrinos is 3+1. E.g.,

  

• As a test-bed, consider the class of experiments searching for a 
3+1 sterile by electron-(anti)neutrino disappearance.
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Introduction
Arena: Sterile Neutrino Searches via 𝝂𝒆 Disappearance

Reactor Experiments
• Scintillator detectors + nuclear reactors; measure 𝜈𝑒  

disappearance

• “Shape-only fit” – we correct for the flux normalization mismatch 
and measure oscillations directly

• Can measure nonzero 𝑈𝑒4 and Δ𝑚41
2 ≲ 10 eV2

• Most shape-only fits do not favor a sterile neutrino

• STEREO (below), PROSPECT, NEOS, DANSS

Source Experiments
• MCi sources (e.g. 37Ar and 51Cr) + gallium targets 

• Detectors capture neutrinos via 𝜈𝑒  (71Ga,  71Ge) 𝑒−; 
germanium atoms are periodically counted

• BEST (below), SAGE, and GALLEX each observe deficits 
compared to expectations, called the “gallium anomaly”
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Introduction
Wilks’ Theorem and its Problems
• Conventionally:

• Model parameters 𝑦 are estimated by maximizing a likelihood function 𝐿𝑥(𝑦), 
with 𝑥 observed data. That is, ො𝑦 = argmax𝑦  𝐿𝑥(𝑦).

• One can devise a likelihood-ratio test statistic 𝜆 = 2[log 𝐿𝑥 ො𝑦 − log 𝐿𝑥(𝑦0)] 
comparing the maximum likelihood to the likelihood under a null (no-oscillation) 
hypothesis.

• Wilks’ theorem (under some assumptions) states 𝜆 ∼ 𝜒𝑘
2 with 𝑘 = dim 𝑥, 

allowing us to compute and interpret significances.

• There are two problems with sterile searches and Wilks’:

1. The null model ( 𝑈𝑒4 = 0) lies on the boundary of the parameter space.

2. The oscillation frequency parameter (Δ𝑚41
2 ) can independently scan over many 

local minima, with flexibility unaccounted for.

• Assuming Wilks’ theorem in 3+1 fits can cause you to misinterpret the 
significance of your results.
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Introduction
Feldman-Cousins

• Since we can’t use Wilks’ to do a 3+1 fit, we have to more carefully describe the distribution of our LLR test statistic 𝜆. 
This is the job of the Feldman-Cousins method:

1. Given experimental data, compute likelihood function 𝐿𝑥 𝑦 = 𝑝(𝑥|𝑦) for (all) values of the oscillation 
parameters 𝑦 = (𝑈𝑒4, Δ𝑚41

2 )

2. Given experimental data, compute value of a test statistic (e.g., 𝜆 = 2[log 𝐿𝑥 ො𝑦 − log 𝐿𝑥(𝑦0)]) for (all) values of 
the oscillation parameters

3. Order points in oscillation parameter space by most to least desirable value of test statistic

4. Add points in oscillation parameter space to the confidence region until desired the confidence is reached 
(computed from the likelihood 𝐿𝑥 𝑦 )

• Major problems:

• Computing the likelihood is often time-consuming

• Computing the test statistic is often time-consuming

• Doing this on a fine enough grid only complicates things further
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Introduction
Simulation-Based Inference

• In the end, to describe the a best-fit point and its 
significance, all you need is an object like a

• Posterior distribution 𝑝 𝑦 𝑥 , significance quantified by 
a credibility region

• Likelihood 𝑝(𝑥|𝑦), significance quantified by a 
confidence interval

• Advances in the field of density estimation allow us to 
estimate these quantities directly through machine 
learning, in place of (or enhancing) high-fidelity fitting 
procedures like MCMC to generate posterior

• Training data acquired through simulation
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Building an ML-Based (Global) Fitter
Naïve Approach

• Gal and Ghahramani (2015) show that the 
dropout procedure, traditionally used for 
regularization of neural networks, can be 
repurposed to approximate predictive 
uncertainties. The idea: Train a neural network 
with dropout before each hidden layer, and 
leave dropout on at inference time.

• Each time a prediction is made from the neural 
network, a different subnetwork is randomly 
and independently chosen.

• Effectively asking for predictions from an 
ensemble of smaller neural networks.

• Obtain prediction PDF by fitting a KDE to many 
prediction samples.
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Building an ML-Based (Global) Fitter
Mode Collapse

• Misleading structures emerge in the predictive accuracies of these effective network ensembles.

• If the NNs are shown MC data thrown from a physical model to which the experiment(s) is (are) insensitive, the 
NN just guesses the 𝑅2 = 0 choice (an average).

• Offers a natural “embedding”
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Building an ML-Based (Global) Fitter
Conditional Density Estimation with Normalizing Flows

• Normalizing flows learn a sequence of invertible transforms from a base distribution to some arbitrary 
distribution

• Frequently used for generative modeling, but have obvious applications to density estimation.

• Use NFs to ”correct” neural network predictions to compensate for mode collapse
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Building an ML-Based (Global) Fitter
The FCMLC Procedure
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• With a posterior, can find 2D credibility region 𝒴𝛼 =
{𝑦: 𝑝 𝑦 𝑥 > ℎ𝛼} satisfying

න
𝑦∈𝒴𝛼

 

𝑝 𝑦 𝑥  𝑑𝑦 = 𝛼

ℎ𝛼

𝑝(𝑦|𝑥)

𝑦𝒴𝛼

Experimental Data

Network Normalizing flow

Estimated posterior



Results
Fits on Simulated Experimental Data
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• Sensitivities (dashed black lines) come from conventional fits

Preliminary Preliminary Preliminary



Results
Fits on Simulated Experimental Data
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Discussion
FCMLC Pros and Cons

• Pro: The SBI approach is much faster than traditional fitting methods.

• With a NN and a NF trained, posterior density estimation takes ~5 minutes and can run in a Jupyter notebook.

• Together with generation of MC data, training, and FCMLC evaluation, ~2.5K CPU hours

• By comparison, Feldman-Cousins takes ~510K CPU for the experiments considered in this work.

• Pro: Runtime of FCMLC is ~constant with respect to the inclusion of more experiments.

• Pro: SBI does not assume Gaussian uncertainties, and it is straightforward to set up simulations to capture 
this.

• Con: Hyperparameter optimization can further extend the overhead of FCMLC.

• Con: FCMLC is sensitive to the way in which you generate your MC data.

• Con: FCMLC’s posterior density and Feldman-Cousins answer slightly different statistical questions.
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Summary
Conclusions and Future Directions

• SBI fits nicely in the realm of particle physics global fits, alleviating some of the 
computational barriers currently in place.

• These methods are plug-and-play; pick your favorite density estimator and try it out. As 
the field of deep-learning based methods for density estimation develops, SBI will 
mature.

• Using a technique like FCMLC may be able to seed higher-fidelity fitting frameworks.

• Simulation-based likelihood / likelihood ratio estimation may be able to super-charge 
Feldman-Cousins.
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Backup
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The Wilks’ Trap
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“Using a more reliable Monte Carlo simulation of a large set of Neutrino-4-like data, we 
found that the statistical significance of the Neutrino-4 short-baseline neutrino 
oscillation signal decreases to about 2.2σ.”
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