Precision-Machine Learning for

the Matrix Element Method

Matrix Element Method (MEM)

* based on first principles
» estimates uncertainties reliably
e optimal use of information

Classical analysis

How can we extract
all the available information
from LHC data?

e hand-crafted observables
e binned data

— |oss of information
— perfect for processes with few events
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Learning the transfer function

LHC example
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likelihood for individual momenta close to optimal information
» Bayesian networks Uncertainty bands: MC integration error &

estimate training uncertainties systematic error from limited training statistics (BNN)
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