
The Landscape of Unfolding with Machine Learning
Known, upgraded and new tools

arXiv: 2404.18807

Reweighting: OmniFold

Mapping distributions: bSB and DiDi

SciPost Physics Submission

allows them to learn distributions, such that sampling over the network parameters gives the
probability distribution in model space, i.e. for the network output. Based on studies for re-
gression [41, 42] and classification tasks [43], there is evidence that for a sufficiently deep
network we can assign independent Gaussians to each network parameter [38]. This effec-
tively doubles the size of the network which now learns a central prediction and the error bar
simultaneously. Even though the weights are Gaussian distributed, the final network output
is generally not a Gaussian. As we will see below, Bayesian networks can be generalized to
generative tasks [44–46].

One benefit of Bayesian networks is that they automatically include a generalized dropout
and a weight regularization [40, 47, 48], derived from Bayes’ theorem together with the like-
lihood loss. This means that BNNs are automatically protected from overtraining and an at-
tractive option for applications where the precision of the network is critical, like the classifier
reweighting in OmniFold.

2.2 Mapping distributions: Schrödinger Bridge and Direct Diffusion

Instead of reweighting phase-space events, we can use generative neural networks to morph
a base distribution to a target distribution. In our case, we train a network to map event
distributions from xreco to xpart based on the paired or unpaired simulated events and apply
this mapping to pdata(xreco) to generate punfold(xpart):

pgen punfold(xpart)

training

x???
x???distribution mapping

psim
correspondence ���������! pdata(xreco) (5)

As mentioned above, the trained mapping assumes that psim and pdata describe the same fea-
tures at the reco-level. Two ML-methods that we study for this task include Schrödinger
Bridges [25] and Direct Diffusion [26], see also Ref. [23] for an early study.

2.2.1 Schrödinger Bridge

Schrödinger Bridges define the transformation between particle-level events xpart ⇠ pgen to
reco-level events xreco ⇠ psim as a time-dependent process following a forward-time stochastic
differential equation (SDE)

d x = f (x , t)dt + g(t)dw . (6)

The drift term f controls the deterministic part of the time-evolution, g is the noise schedule,
and dw a noise infinitesimal. For such an SDE, the reverse time evolution follows the SDE

d x = [f (x , t)� g(t)2r log p(x , t)]d t + g(t)dw , (7)

with the corresponding score s(x , t) = r log p(x , t). To construct an unfolding, we need to
find f and g for our forward process from particle level to reco level, and then encode s✓ (x , t)
in the unfolding network [49].

Constructing a forward-time SDE that transforms an arbitrary distribution into another
is much more challenging than mapping a distribution into a noise distribution with known
probability density (e.g. a Gaussian), as is the case for standard SDE-based diffusion net-
works. A framework to construct a transport plan in the general case was proposed by Erwin
Schrödinger [50]. It introduces two wave functions describing the time-dependent density as

5

Generative unfolding: CFM and VLD

SciPost Physics Submission

Unpaired DiDi The starting premise of most unfolding methods is that the forward model
p(xreco|xpart) is known, within uncertainty. There may be cases where it is not known [24]
and instead of pairs (xpart, xreco), we only have access to the marginals {xpart}, {xreco}. There
is no unique solution to this problem even if the detector response is deterministic; however,
we can proceed by assuming that the function corresponds to the optimal transport map. We
consider a variation of DiDi for this configuration by droping the pairing information between
training events [26]. This can be achieved by modifying the conditional trajectory so that x1
is sampled independently of x0, so Eq.(19) becomes

x(t|x0) = (1� t)x0 + t x1!
®

x0 t ! 0
x1 ⇠ p(xreco) t ! 1 .

(24)

The loss function is

LDiDi-U =
⌦
[v✓ ((1� t)x0 + t x1, t)� (x1 � x0)]

2↵
t⇠U([0,1]),x0⇠p(xpart),x1⇠p(xreco)

. (25)

During training we now sample events independently of each other, and the learned map will
be purely determined by the network and its training.

Bayesian network Because the distribution mapping loss function does not have a straight-
forward interpretation as a likelihood, it cannot be simply transformed into a Bayesian network
from first principles. However, we can add the relevant features of a Bayesian network, as for
the CFM [26,46]. This includes Bayesian layers, Gaussian distributions of all or some network
parameters, and a KL-term regularizing the network parameters towards a Gaussian prior,

LB-CFM =
¨
LCFM

∂
✓⇠q(✓)

+ cKL[q(✓), p(✓)] . (26)

The factor c balances the deterministic loss with the Bayesian-inspired regularization. If the
network loss follows from a likelihood, this factor is fixed by Bayes’ theorem. In all other
cases it is a hyperparameter. We have checked that the network performance as well as the
extracted posteriors are stable when varying c over several orders of magnitudes, suggesting
that the learned weight distribution corresponds to an inherent property of the setup.

2.3 Generative unfolding: cINN, Transfermer, CFM, TraCFM, Latent Diffusion

Generative unfolding uses conditional generative networks to learn the conditional probability
describing the inverse simulation pmodel(xpart|xreco),

pgen punfold(xpart)

paired data

x??y
x???pmodel(xpart|xreco)

psim
correspondence ���������! pdata(xreco) (27)

Building a forward surrogate network (p(xreco|xpart)) uses the same data and has nearly the
same setup as going backwards ((p(xpart|xreco))). The usual assumption of unfolding is that
the detector response is universal, which breaks the symmetry of the forward and backwards
networks via Bayes’ theorem,

p(xpart|xreco) = p(xreco|xpart)
p(xpart)
p(xreco)

. (28)

8

SciPost Physics Submission

2 ML-Unfolding

We define our unfolding problem using four phase space densities, which are encoded in the
corresponding samples, in the sense of unsupervised density estimation in ML-terms. We rely
on simulated predictions at the particle/parton level, pgen(xpart), and the detector or recon-
struction (reco) level, psim(xreco). Unfolding turns the measured pdata into punfold,

pgen
unfolding inference ���������! punfold(xpart)

simulation

???y
x???unfolding

psim
forward inference ����������! pdata(xreco) (1)

Our simulated samples come in pairs (xpart, xreco), which can be used for unfolding. Data only
exist on the xreco level. The features of the unfolded data punfold should be determined by pdata,
but will always include a data-independent bias from the assumed pgen. The question how we
can minimize the resulting model dependence will be part of a follow-up of this study.

Established ML-techniques for unfolding rely on one of two approaches. They either
reweight simulated samples, or they generate unfolded samples from conditional probabili-
ties. We will briefly introduce both original methods [14, 27, 28], as well as a more recent
hybrid approach of mapping distributions using generative networks.

2.1 Reweighting: (b)OmniFold

The deep learning-based approach to unfolding via re-weighting is OmniFold [14, 15]. It is
based on the Neyman–Pearson lemma [35], stating that an optimally trained, calibrated clas-
sifier C will learn the likelihood ratio of the two underlying phase space distributions. If we
use a binary cross entropy (BCE) loss to distinguish between data and simulated reco-level
events, then the following combination approximates the likelihood ratio:

w(xreco)⌘
pdata(xreco)
psim(xreco)

=
C(xreco)

1� C(xreco)
. (2)

OmniFold computes these classifier weights at the reco-level, and uses the paired simulated
data to pull these weights from the reco-level events to the particle-level events. The re-
weighted simulated events then define

punfold(xpart) = w(xreco) pgen(xpart) . (3)

This weight-pushing is the first step in the two-step iterative OmniFold algorithm. Because we
are leaving out the model dependence to a dedicated second study, we restrict ourselves to
this first iteration, which in the scheme of Eq.(1) looks like

pgen
classifier weights�����������! punfold(xpart)

pull/push weights

x??y

psim
classifier weights ���������! pdata(xreco) (4)

Bayesian network Bayesian versions can be derived for any deterministic neural network
with a likelihood loss [36–40]. The BNN training does not fix the network parameters, but

4

What is unfolding?

- Inversion of (parts of) the LHC simulation chain
Why unfolding?

- Efficient and optimal
analyses: can easily test
different or improved
theories

- Public analyses: allows
for combination of results

Why ML-based unfolding?
- High-dimensional, unbinned, precise unfolding

Unfolding of detector effects: Z + jets

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

reco
part
bSB
DiDi-P
CFM
VLD

0.95
1.00
1.05

M
od

el
T
ru

th

10 20 30 40 50
N

0.95
1.00
1.05

M
od

el
T
ru

th

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

reco
part
bSB
DiDi-P
CFM
VLD

0.95
1.00
1.05

M
od

el
T
ru

th

°14 °12 °10 °8 °6 °4 °2
log Ω

0.95
1.00
1.05

M
od

el
T
ru

th

Jet constituent multiplicity Groomed jet mass

Unfolding to parton level: semileptonic decaytt̄
- Percent-level

precision in the full
19-dimensional
phase space

- Mass resonances
and angular
correlations well
reproduced

0.3 0.4 0.5 0.6 0.7
p(x)

10°3

10°2

10°1

100

101

102

N
or

m
al

iz
ed

Part

Gen

VLD

CFM

TraCFM

- Trained classifier shows great
improvement in precision

- Mapping distributions: more efficient diagonal transport
from reco to unfolded

- Generative unfolding: closer to truth, but more complex
to train

20 40
N (reco)

20

40

N
(p

ar
t)

DiDi-P

20 40
N (reco)

20

40

N
(p

ar
t)

CFM (cINN, VLD)

20 40
N (reco)

20

40

N
(p

ar
t)

Truth

20 40
N (reco)

20

40

N
(p

ar
t)

bSB

0.0

0.1

0.2

0.3

n
or

m
al

iz
ed

part

VLD

CFM

TraCFM

0.95
1.00
1.05

M
od

el
T
ru

th

0.95
1.00
1.05

M
od

el
T
ru

th

160 165 170 175 180
mtl [GeV]

0.95
1.00
1.05

M
od

el
T
ru

th

0.2

0.4

n
or

m
al

iz
ed

part

VLD

CFM

TraCFM

0.95
1.00
1.05

M
od

el
T
ru

th

0.95
1.00
1.05

M
od

el
T
ru

th

1 2 3 4 5
¢Rq1,q2

0.95
1.00
1.05

M
od

el
T
ru

th

Physics Problem ML methods and tools

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Inverse

SciPost Physics Submission

2 ML-Unfolding

We define our unfolding problem using four phase space densities, which are encoded in the
corresponding samples, in the sense of unsupervised density estimation in ML-terms. We rely
on simulated predictions at the particle/parton level, pgen(xpart), and the detector or recon-
struction (reco) level, psim(xreco). Unfolding turns the measured pdata into punfold,

pgen
unfolding inference ���������! punfold(xpart)

simulation

???y
x???unfolding

psim
forward inference ����������! pdata(xreco) (1)

Our simulated samples come in pairs (xpart, xreco), which can be used for unfolding. Data only
exist on the xreco level. The features of the unfolded data punfold should be determined by pdata,
but will always include a data-independent bias from the assumed pgen. The question how we
can minimize the resulting model dependence will be part of a follow-up of this study.

Established ML-techniques for unfolding rely on one of two approaches. They either
reweight simulated samples, or they generate unfolded samples from conditional probabili-
ties. We will briefly introduce both original methods [14, 27, 28], as well as a more recent
hybrid approach of mapping distributions using generative networks.

2.1 Reweighting: (b)OmniFold

The deep learning-based approach to unfolding via re-weighting is OmniFold [14, 15]. It is
based on the Neyman–Pearson lemma [35], stating that an optimally trained, calibrated clas-
sifier C will learn the likelihood ratio of the two underlying phase space distributions. If we
use a binary cross entropy (BCE) loss to distinguish between data and simulated reco-level
events, then the following combination approximates the likelihood ratio:

w(xreco)⌘
pdata(xreco)
psim(xreco)

=
C(xreco)

1� C(xreco)
. (2)

OmniFold computes these classifier weights at the reco-level, and uses the paired simulated
data to pull these weights from the reco-level events to the particle-level events. The re-
weighted simulated events then define

punfold(xpart) = w(xreco) pgen(xpart) . (3)

This weight-pushing is the first step in the two-step iterative OmniFold algorithm. Because we
are leaving out the model dependence to a dedicated second study, we restrict ourselves to
this first iteration, which in the scheme of Eq.(1) looks like

pgen
classifier weights�����������! punfold(xpart)

pull/push weights

x??y

psim
classifier weights ���������! pdata(xreco) (4)

Bayesian network Bayesian versions can be derived for any deterministic neural network
with a likelihood loss [36–40]. The BNN training does not fix the network parameters, but

4

Results

- Percent-level precision in the 6-dimensional phase space
- Complementarity of methods allow for closure checks

“Generative Precision Networks for
Particle Physics” with Anja Butter

Nathan Huetsch1, Javier Mariño Villadamigo1, Alexander Shmakov2,
Sascha Diefenbacher3, Vinicius Mikuni3, Theo Heimel1, Michael Fenton2, Kevin Greif2, Benjamin Nachman3,4,

Daniel Whiteson2, Anja Butter1,5, and Tilman Plehn1,6

1 - Institut für Theoretische Physik, Universität Heidelberg, Germany
2 - Department of Physics and Astronomy, University of California, Irvine, USA
3 - Physics Division, Lawrence Berkeley National Laboratory, Berkeley, USA

4 - Berkeley Institute for Data Science, University of California, Berkeley, USA
5 - LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

6 - Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Germany

