

## The Landscape of Unfolding with Machine Learning Known, upgraded and new tools

arXiv: 2404.18807



- Mapping distributions: more efficient diagonal transport from reco to unfolded
- Generative unfolding: closer to truth, but more complex to train

## Unfolding to parton level: $t\bar{t}$ semileptonic decay



Percent-level precision in the 6-dimensional phase space

Complementarity of methods allow for closure checks

Percent-level
precision in the full
19-dimensional
phase space
Mass resonances



and angular correlations well reproduced

- Trained classifier shows great improvement in precision

SPONSORED BY THE



Federal Ministry of Education and Research

*"Generative Precision Networks for Particle Physics"* with Anja Butter

Nathan Huetsch<sup>1</sup>, <u>Javier Mariño Villadamigo<sup>1</sup></u>, Alexander Shmakov<sup>2</sup>, Sascha Diefenbacher<sup>3</sup>, Vinicius Mikuni<sup>3</sup>, Theo Heimel<sup>1</sup>, Michael Fenton<sup>2</sup>, Kevin Greif<sup>2</sup>, Benjamin Nachman<sup>3,4</sup>, Daniel Whiteson<sup>2</sup>, Anja Butter<sup>1,5</sup>, and Tilman Plehn<sup>1,6</sup>

Institut für Theoretische Physik, Universität Heidelberg, Germany
Department of Physics and Astronomy, University of California, Irvine, USA
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, USA
Berkeley Institute for Data Science, University of California, Berkeley, USA
LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Germany



**UNIVERSITÄT HEIDELBERG** ZUKUNFT SEIT 1386