Mighty Tracker: Latest news from MightyPix and milestones for 2024-26

Eva Vilella On behalf of many people... (see next slide)

4th Mighty Tracker Workshop at Liverpool

2-4 Jul 2024

126 Mount Pleasant, Lecture Theatre 113 Europe/London timezone

https://indico.cern.ch/event/1403159/overview

Overview

Timetable Contribution List

Registration

Participant List

Videoconference

Contact

vilella@hep.ph.liv.ac.uk
 A.J.Reid@liverpool.ac.uk
 hannah.melia@liverpool...

Material that I will show today taken from last week's workshop... Many thanks to everybody who prepared slides Travel to Liverpool

The workshop will be held at Liverpool

It will start on **Tuesday 2nd July** in the morning and will end on **Thursday 4th July** in the afternoon.

The workshop will be held **in-person on the University** campus in the Liverpool city centre. The room is <u>Lecture</u> <u>Theatre 113 at 126 Mount Pleasant</u> (map). Remote attendance (via zoom) will be arranged for those who cannot travel, but attendance in person is highly encouraged.

Registration is now open with deadline of 23rd June. You are kindly asked to register quickly and indicate whether you will be attending in person.

A workshop dinner will be held on Wednesday 3rd. Participants are expected to pay directly for their dinner. Further information will be provided at a later date.

There is no registration fee, but registration is required for everyone attending to determine the number of participants (size of the room) and participation to the workshop dinner.

By train

	2024	2025	2026
TSI	MightyPix1, TelePix2 tests		
		P2Pix tests	
AMS	07.2024 P2Pix submission (full area)	MightyPiz	<2 tests
		Q1 2025 MightyPix2 submission (fu	l area)
		.F-MightyPix tests	
LFoundry	05.2024 LF-MightyPix (MPW)		

	2024	2025		2026
TSI	MightyPix1, TelePix2 tests			
		P2Pix tests		
AMS	07.2024 P2Pix submission (full area)	MightyPiz	x2 tests	▶ ●
		Q1 2025 MightyPix2 submission (fu	l area)	Q3 2026? MightyPix3
		F-MightyPix tests		submission (full area)
LFoundry	05.2024 LF-MightyPix (MPW)			(iuii ai ca)

	2024	2025		2026
TSI	MightyPix1, TelePix2 tests			
		P2Pix tests		
AMS	07.2024 P2Pix submission (full area)	MightyPiz	x2 tests	
		Q1 2025 MightyPix2 submission (fu	l area)	Q3 2026? MightyPix3
		F-MightyPix tests		submission
LFoundry	05.2024 LF-MightyPix (MPW)		RadPix test	(full area)
		Q2 2025		Q4 2026?
		RadPix1 submission	(MPW)	RadPix2?

9-10 July 2024 – LHCb UK Upgrade 2 meeting @ Birmingham – Eva Vilella

MightyPix specifications

Pixel size	< 100 μm x 300 μm			
Efficiency	> 99.99%			
Timing resolution	~ 3 ns			
In-time efficiency	> 99% within 25 ns window			
Radiation tolerance	3x10 ¹⁴ 1 MeV n _{eq} /cm ² (NIEL) & 40 MRad (TID)			
Power	< 150 mW/cm ²			
Data transmission	4 links of 1.28 Gb/s each			
Compatibility with the LHCb readout system				

MightyPix1

First HV-CMOS sensor chip dedicated to the Mighty Tracker					
Technology	TSI 180 nm				
Chip size	0.5 cm x 2 cm (prototype size) ¼ of final MightyPix size → ¼ width, full column length				
Pixel size	50 μm x 165 μm				
Readout electronics	CMOS amplifier & CMOS comparator				
 First prototype compatible with LHCb readout system Runs with LHC clock at 40 MHz Uses lpGBT protocol Meets TFC and ECS requirements 					

TelePix2

HV-CMOS sensor chip for fast-timing beam telescope				
Technology	TSI 180 nm			
Chip size	1.3 cm x 2 cm (prototype size)			
Pixel size	25 μm x 165 μm			
Readout electronics	CMOS amplifier & CMOS comparator (same as MightyPix1)).		
High digital po	ower consumption (~1.5 W)			

Evaluation

- MightyPix1 lab measurements
 - Time resolution fulfills specifications
 - Design mistakes already been corrected for LF-MightyPix
 - Trying to reproduce data rate simulations
- TelePix2 test beam in March
 - Unirradiated \rightarrow fulfills in-time efficiency without any corrections
 - Irradiated → high leakage current (insufficient cooling) limited
 HV biasing
 - Pixel rings were used for HV
- TelePix2 'express' test beam in May
 - Study HV-bias dependency
 - Unirradiated samples only
- TelePix2 lab measurements
 - TelePix2 and MightyPix1 have similar time resolution

9-10 July 2024 – LHCb UK Upgrade 2 meeting @ Birmingham – Eva Vilella

Evaluation

- TelePix2 test beam in December (planned)
 - Goal is to measure efficiency of irradiated TelePix2 at high HV-bias with proper cooling
 - Neutron irradiation (Ljubljana) \rightarrow 1x10¹⁴, 5x10¹⁴ and 1x10¹⁵ 1 MeV n_{eq}/cm²
 - − Proton irradiation (Bonn) \rightarrow 1x10¹² \rightarrow 1x10¹⁴ 1 MeV n_{eq}/cm²

- TSI discontinued the 180 nm HV-CMOS process in 2023
- Alternative: TSI designs can be produce by AMS
 - Small design translation
 - P2Pix submission to AMS in 07.2024, which LHCb can use to learn
 - P2Pix is based on TelePix and MuPix (similar to MightyPix, except for the digital periphery)
- Issue: AMS cannot offer deep p-well layer on short notice
 - Pixels cannot have CMOS comparator
 - P2Pix will be fabricated without p-implant
 - P2Pix will use nMOS comparator
 - Question if nMOS comparator is good enough for the Mighty Tracker (timing?)
 - It might be possible to have the p-implant in MightyPix2

nMOS comparator

- Used in previous chips (*e.g.* ATLASPix3)

Simulated results – A comparative study

	тw	MC @1.5k	Curr comp	Curr amp		Amplitud e	C	ENC	T
CMOS	9.2ns	9n	2u	6u	84x84	1.8	182fF		0C
NMOS	8.8ns	8.3n	3.5u	6u	84x84	493m	215fF-8f		0C
Res	9.9ns	7.5n	3.5u	6u	84x84	580m	215fF+18f		0C
PMOS	8.6n	8.26n	3.5u	6u	84x84	800m	215fF-8f		0C
BigFast	18n	NN	2u	2x15u	200x200	1.8	374f-100f		0C
NMOS Optimized lay	8.4ns	8.0n	3.5u	6u	84x84	517mv	215fF-18f = 197fF		0C
PMOS with 1.8v gate Optimized lay Vminus 730mV	8.3n (8.6n pfb)	6.17n 6.12n* (840mV) 6.4n with pos fb	3.5u	6u	84x84	800m	215fF-18f = 197fF		0C
Res optimized 1.8v	9n	6.6n	3.5 <mark>u</mark>	6u	84x84	545m 2.1 -520m	215+6f		0C

9-10 July 2024 – LHCb UK Upgrade 2 meeting @ Birmingham – Eva Vilella

Plans moving forward

- Test nMOS comparator in P2Pix
- If results are good, suggestion to use nMOS comparator in MightyPix2
- Even though if p-implant is possible with AMS, MightyPix2 might re-use circuits from P2Pix (including nMOS comparator) if they perform good enough in measurements

Production chip	o for P2 experiment in Mainz	
Technology	AMS 180 nm	
Chip size	2 cm x 2.2 cm (production size)	
Pixel size	84 μm x 84 μm	
Readout electronics	CMOS amplifier & nMOS comparator	
 MuPix based digital periphery (no lpGBT protocol or TFC & ECS commands either) Up to 2 ns timing resolution 		

• Use this chip to evaluate AMS performance before MightyPix2 subbmission

LF-MightyPix

Test chip with i		
Technology	LFoundry 150 nm	
Chip size	4 mm x 3.5 mm (prototype size)	
Pixel size	100 μm x 100 μm	
Readout	nMOS amplifier & CMOS comparator	
electronics		*
 Runs with LHC Uses lpGBT pro Meets TFC and I2C for slow cor Data transmiss Reduced hit da Double Data Rational Statements Chip ring from 		

RD50-MPW4 – Design

- Significant improvements
 - For high breakdown voltage and high radiation tolerance
 - Multiple ring structure around the chip edge
 - Substrate backside-biasing to high voltage
- Fabrication details
 - 150 nm High Voltage CMOS LFoundry (LF15A)
 - P-type substrate with nominal 3 k Ω ·cm high resistivity
 - 280 µm thin
 - Backside processed via third party (Ion Beam Services)

Chip contents

- Pixel matrix with FE-I3 style readout
 - 64 x 64 pixels
 - 62 μm x 62 μm pixels with large collection electrode
- Digital periphery (I2C slow control, data transmission)
- Tests structures (e-TCT, DLTS)

€.4 mm

Chip delivered in Q1 2024 Evaluation is going very well

RD50-MPW4 - Evaluation

- Test beam at DESY in April
 - Unirradiated samples only
 - Topside and backside biased samples
 - High efficiency >99.99% achieved
- Irradiation campaign
 - − Neutron irradiation (Ljubljana) → $1x10^{14}$, $3x10^{14}$, $1x10^{15}$, $3x10^{15}$, $1x10^{16}$ and $3x10^{16}$ 1 MeV n_{eq}/cm²

100.0

99.5

98.5

98.0

[%] 3 99.0

- Samples can be biased to very high HV (room T)
- Lab measurements with irradiated samples
 - 3x10¹⁵ unprocessed sample (topside biasing only)
 - S-curve measurements show electronics are functioning
 - Test beam booked for September at DESY

From RD50-MPW4... to RadPix

- UK designed HV-CMOS chip for LHCb
 - Liverpool and RAL TD
- Re-uses pixel matrix and chip rings from RD50-MPW4
 - Attractive because designs are readily available and tested
 - Existing expertise
 - New pixel size (100 μm x 100 μm), meets LHCb specifications and will help reduce power consumption
 - Optimised front-end electronics (fast-timing, power consumption)
- Re-uses digital periphery from LF-MightyPix1
- Integrate voltage regulators for serial powering
 - Existing and tested IP blocks

Summary

- New promising results towards meeting MightyPix specifications
 - MightyPix1, TelePix2
- New chips already submitted (or being submitted now)
 - LF-MightyPix, P2Pix
- Planned submissions
 - MightyPix2, RadPix