

MT electronics: design/prototyping needs for the TDR

On behalf of the MT Readout Electronics team

Pratik Gheewalla, Ashley Greenall, Stephan Eisenhardt, <u>Mike Perry</u> – 10/7/24

Overview of design for new baseline

- 12 row self-contained (single/pair) column units
- 1.0 x10³⁴ significantly reduces data links from MightyPix
 - Reduced component count (IpGBT, VTRx+, etc)
 - Reduced flavours
 - Simplified interconnect

10 row, 4 sub-modules

1.0 x10³⁴ New readout board

Serial Powering of MightyPix

- Follow same approach as Atlas ITK implementation
- 12 chips/column simplifies modularity
 - Split into smaller sub-modules made up of 4 chips/group (Quads) – shown below
 - Dual column *cw* 6 Quads, Single column *cw* 3 Quads
 - Approx 1.4A draw/quad sets min. shunt current that a single chip should be able to sustain for redundancy
- Align SP chain to HDI board and a column pair
 - 9 to 12 quads per chain

For reference, from ATLAS Phase II Upgrade ITk Pixels:

- Serial Power (SP) modules come as quads
- Up to 16 modules per SP chain
- Two HV lines per chain
 - One HV for up to 8 modules

MightyPix HV bias

- ATLAS: Sensor HV should be aligned to a specific SP chain with no mixing across chains
- ITk Pixels specify 2 x HV per serial chain
 - If adopted, HV channel count can be between 8 to 16 for a Long module side

- Add HV switch to increase modularity of single HV line
 - Works well for dual column with ability to switch a column off if required
- Used in Atlas ITK but needs development for this application

Readout (HDI) Board

- Adopted 3 data + 1 config/control IpGBT as baseline unit (Instead of 7+1)
 - Less efficient use of components but improves readout granularity
 - Small HDI PCB reduces cost and complexity
 - Can still be partially populated
 - Power is provided separately by DCDC on cheaper flex PCB technology with fewer layers
- Architecture and logical connectivity is well defined
- Physical interfaces to be defined
- Power domain complexity to be studied

Possible component arrangements

MightyPix Flex and Interconnect

- FPC interconnect connects from Readout board to Sensor assembly Flex
- Wirebonding from Sensor assembly Flex to MightyPix
- Routing from IpGBTs to MightyPix currently undefined
- MightyPix2 Pinout undefined
- Plan to work forwards from IpGBTs to:
 - Define FPC connector
 - Define routing on Sensor assembly Flex
 - Negotiate MightyPix pad assignment with chip designers
 Will take many iterations!
- Currently undefined and being investigated:
 - Physical properties/shape of FPC
 - Choice of FPC connector
 - FP connector orientation
 - How to protect wirebonds
 - How many flavours are required

6

Optimisation vs Commonality

- 1.5 luminosity required significant optimisation of link distribution to fit in limited space
- 1.0 luminosity allows for a large reduction of flavouring / assembly complexity
- Where to draw the line between optimisation and number of flavours?
- Example:
 - Optimised approach has up to 4 different long modules
 - Low-rate modules have fewer readout boards and readout boards with fewer IpGBTs populated
 - Common module approach has 1 long module type but more wasted bandwidth / Backend channels

Updated prototype board plan

- Board is now universal so hopefully immune to further changes
- Build board as envisaged for final modules
- Board will have additional ports for debugging purposes (I2C, etc)
- Allows for full system test including
 - Connector effect on signal integrity and reliability
 - Test routing density and establish minimum suitable layer count
 - Characterise transmission line (flex links)
 - Test power integrity
 - Serial powering tests
 - Test architecture
 - Test readout chain
- Should be versatile enough to be a generic readout
 - E.g. Test with other FE chips
- High priority! Production anticipated Early August

Readout Board QC System

- ~1600 (+spares) Readout HDI boards will be produced.
 - Complex object with fine pitch BGA components
 - ~55 differential pairs on FPC connectors
 - 4x10Gbps pairs to backend
 - etc
- Need a plug & play system to verify full functionality
- E.g. FPGA system to
 - Read signals & Inject signals on FPC connector
 - Interface to VTRx+ connector (Without VTRx+)
 - Check for <u>a</u> signal or verify full signal integrity?

Summary of Remaining Development work

- Serial power chain
 - Element size and chain length
 - Testing and verification of implementation Relies to some extent on MightyPix2 delivery (Submit early 2025)
- HV switch development
- DCDC module derived from Atlas Strips design
- Study of optimisation level
- Readout board development
 - Define physical interface
 - Study PDN
 - Complete layout and routing of prototype
 - Full suite of tests
- MightyPix sensor assembly
 - Routing affected by serial power unit size, MightyPix pinout, readout board pinout
 - Number of flavours to be determined by optimisation approach
- FPC interconnect
 - Routing depends on above
 - Study physical constraints
- QC
 - Readout board validation
 - Systems to test various stages of assembly

Objects to be developed

- Prototype items:
 - Readout prototype board
 - DCDC module (For readout board)
 - Flex(es) or interfaces for non-MT FE chips to test serial powering and comms with readout board
 - Flex to interface to MightyPix2
 - HV switch test board
 - Readout board QC system
- Production items:
 - Readout board
 - MightyPix assembly flex (Multiple flavours)
 - HV switch
 - Interconnect
 - Data/Control FPC (Readout to MightyPix assembly)
 - Power (Serial power between MightyPix assemblies)
 - Cabling