Towards 4D Vertexing

David Bacher

Department of Physics University of Oxford

10th July, 2024

The Timepix4 telescope

Timepix4 telescope

- Test sensor + ASIC assemblies
- Proof of concept of a 4D tracker
- Design specifications
 - $2\,\mu\text{m}$ pointing resolution
 - $\bullet\,<\,50\,\mathrm{ps}$ track-time resolution
 - operation at 1 Mtracks/s to 10 Mtracks/s

The Timepix4 readout ASIC

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 µm	55 x 55 µm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448	
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA		
		Event Packet	48-bit	64-bit	
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm²/s	
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ² /s	
TOT energy resolution			< 2KeV	< 1Kev	
TOA binning resolution			1.56ns	195ps <mark>8x</mark>	
TOA dynamic range			409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)	
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps) 32x	
Target minimum threshold			<500 e [.]	<500 e-	

Llopart²⁰²²

Plane assemblies

- Eight telescope planes with n^+ -on-p planar silicon sensors:
 - $4 \times 300 \,\mu\text{m}$ sensors for spatial resolution (angled)
 - $4 \times 100 \,\mu\text{m}$ sensors for temporal resolution (perpendicular)
 - Sensor upgrades are anticipated (LGAD, 3D, ...)
- Several DUT assemblies
 - 50 µm, 100 µm, 200 µm and 300 µm n^+ -on-p planar silicon
 - $300 \,\mu\text{m} \, p^+$ -on-n planar silicon
 - $\bullet~2\times250\,\mu m$ iLGAD sensors with $55\,\mu m$ and $110\,\mu m$ pitch (Timepix3 sized)
 - $2 \times TI-LGAD$ sensors (single trench and double trench)
 - 3D sensor
- All bump-bonded to Timepix4.2 ASICs

Telescope configuration

Assembly cooling

- All assemblies have a 3D-printed titanium cooling block
- \bullet Cooled using glycol at $20\,^{\circ}\mathrm{C}$
- \bullet Could go to $-20\,^\circ{\rm C}$ in the future
- Plan to mill PCB to have direct thermal contact with Timepix4

Telescope configuration

- Telescope installed at H8 beamline at SPS
- $180 \,\mathrm{GeV}$ mixed hadron beam
- Finished commissioning of telescope in 2023
- First testbeam in May 2024 focussing on DUT studies (iLGAD, TI-LGAD, 3D)

David Bacher

Time reference system Micro channel plate detectors

- Separate time reference system to study telescope timing
- Two MCP-PMTs in coincidence
- Current resolution per MCP-PMT: 17 ps
- Combined resolution: 12 ps

- Charge sharing is non-linear for planes at normal incidence
- Reconstructed cluster positions systematically wrong for multi-pixel clusters
- Variable $\eta = \frac{Q_L Q_R}{Q_L}$ quantifies charge asymmetry for multi-pixel clusters
- Can use η -distribution to correct the reconstructed cluster position

η -corrections

- η -correction done with two iterations (depends on alignment)
- \bullet Unbiased residuals improve from $7\,\mu\text{m}$ to $5.6\,\mu\text{m}$ on thick planes
- \bullet Unbiased residuals improve from $15\,\mu\text{m}$ to $14.3\,\mu\text{m}$ on thin planes Thick plane

 $\operatorname{TABLE:}$ List of the standard selection requirements for the track reconstruction.

Requirement	Default value	Description
Cluster time window	$< 100 \mathrm{ns}$	Maximum time difference of hits within the
		same cluster
Cluster width in x and y	≤ 2	Rejects large clusters from δ -rays, nuclear in-
		teractions, etc.
Track time window	$< 5\mathrm{ns}$	Clusters within 5ns are considered for the
		pattern recognition
Number of clusters in time window	= 1 per plane	Rejects multiprong interaction vertices
Number of clusters per track	= 8	Maximizes track precision
Opening angle	$< 0.01{ m mrad}$	Angle that defines the reconstruction window
		from plane to plane, assuming straight tracks
Fit χ^2/ndof	< 10	Cut on χ^2 divided by the number of degrees
		of freedom for track quality

Tracking efficiency

- Measure cluster efficiency per plane using selection requirements
- Total tracking efficiency as product of all individual plane efficiencies
- Uncertainties from variation across different runs
- Thick planes have lower efficiency due to cluster width cut (needed for better spatial resolution)

TABLE: Single plane cluster efficiencies and the total tracking efficiency of the telescope.

Assembly (thickness)	Cluster efficiency
N10 (100 μm)	$98.72 \pm 0.02\%$
N18 (300 μm)	$93.2 \pm 0.2\%$
N22 (300 μm)	$93.37 \pm 0.12\%$
N33 (300 μm)	$93.80 \pm 0.19\%$
N34 (300 μm)	$91.66 \pm 0.17\%$
N35 (100 μm)	$98.52 \pm 0.19\%$
N36 (100 μm)	$98.9 \pm 0.3\%$
N38 (100 μm)	$98.00 \pm 0.03\%$
Telescope	$70.6 \pm 0.4 \%$

Alignment

• Check unbiased residuals as a function of position on the sensor to spot alignment issues

Spatial resolution

- Compare biased residuals in simulation and data to per-plane resolutions of all planes
- \bullet Use simulation to predict pointing resolution at DUT position

- Per plane resolutions
 - x: $(3.3 \pm 0.3) \,\mu\text{m}$ (thick planes), $(14.4 \pm 0.5) \,\mu\text{m}$ (thin planes)
 - y: $(3.5\pm0.3)\,\mu$ m (thick planes), $(14.3\pm0.5)\,\mu$ m (thin planes)
- Pointing resolution at DUT
 - x: $(2.32 \pm 0.12) \,\mu\text{m}$
 - y: $(2.38 \pm 0.12) \,\mu{\rm m}$

- Apply per-pixel corrections due to timewalk and VCO frequency variations
- Timewalk
 - \bullet Preamplifier has fixed rise-time \rightarrow Time-to-threshold (TtT) amplitude dependent
 - Correct by fitting TtT distribution as function of charge per pixel with $TtT = \frac{a}{(Charge+b)^c} + d$
- VCO frequency corrections
 - Timepix4 timestamps given by 640 MHz voltage controlled oscillator (VCO) shared by 8 pixels
 - Variations of VCO frequencies lead to incorrect timestamps
 - Apply correction per VCO

Track Time resolution

LGADs on Timepix4 as DUT (very preliminary)

- Low-gain avalanche diodes (LGADs) use charge multiplication to deliver larger input signals
- \bullet Small pixel size cannot be achieved in standard LGAD technology ($\sim 100\,\mu\text{m}$ dead area between pixels)
- Inverted LGADs (iLGADs) solve this by placing the gain layer on the backside
 - Sensors produced by Micron and provided by Glasgow ($250\,\mu\text{m}$ thickness)
- \bullet Trench-Isolated LGADs (TI-LGADs) reduce the dead area to $\sim 10\,\mu\text{m}$
 - \bullet Sensors produced by FBK for RD50 (50 μm depletion depth)

iLGAD time resolution (very preliminary)

- iLGAD needs to be operated in h^+ -collecting mode
- Long drift time due to large thickness $(250 \,\mu\text{m})$
- Need to operate at large threshold to not cross threshold from non-amplified signal already
- Cannot operate at threshold large enough (19 ke)
- Best time-resolution at edge of pixel: $240 \, \mathrm{ps}$
- Working to understand behaviour better and extract better time resolution

t [ns]

-2.5

TI-LGAD time resolution (very preliminary)

- \bullet TI-LGAD operated in $e^-\mbox{-collecting}$ mode
- Small drift time due to small thickness (50 µm)
- Time resolution worse at edge or pixel due to trenches
- Best time-resolution at of pixel: $150 \, \mathrm{ps}$
- Working to understand behaviour better and extract better time resolution

VELO simulation status

Current status (scoping document)

- Baseline model layout with 32 stations (Scenario X)
- \bullet Scoped Scenario H with 28 stations, reduced $\eta\text{-coverage}$ and thicker RF-foil
- Problems present: Modules are currently spaced too closely for realistic installation
- Reconstruction for qualifying the detector fully present and working (full 4D tracking and 4D vertexing)

Path towards TDR

- Conceptual stage
 - Alternative designs to be proposed and tested against baseline
 - Adopt if alternative gives better results
- Start simulating more realistic detector scenarios (pixel dead areas, inefficiencies, actual spatial and time resolutions, etc.)

Space for ideas ("blue sky")

- \bullet Many things (e.g. clustering) will move from the FPGAs to the ASIC
- Free computing space for ideas on FPGAs (spatial ordering, support pattern recognition, etc.)

