

TORCH status of MCP-PMT and test results

LHCb UK Upgrade 2 meeting, 9–10 July 2024

Alexander Davidson and Marion Lehuraux on behalf of the TORCH collaboration

Quick introduction to TORCH

- Aim to provide low momentum (2–15 GeV/*c*) particle identification using time-of-flight.
- Use Cherenkov radiation from 1 cm thick quartz radiator as a timing signal.
- Photons are propagated to the periphery of the detector by total internal reflection.
- Micro-Channel-Plate Photo-Multiplier Tubes (MCP-PMTs) are used as a fast photon detector.
- A single photon timing resolution of around 70 ps is needed to reach 15 ps per track.

Micro-channel-plate photomultipliers

- Cherenkov photons get converted to electrons by the cathode.
- Secondary electrons are produced by a emissive layer coated on the MCP's surface and pore walls.
- Chevron structure is used to reduce ion feedback.
- Due to high electric field strength this device has a intrinsically fast time response.

Micro-channel-plate photomultipliers

- Ongoing effort to simulate the MCP-PMT in <u>CST studio</u>:
 - Electric field structure / mapping.
 - Propagating electrons through said field with secondary production from wall collisions. Achieving the MCP gain effect.
 - Charge-sharing between readout pads.

E-field

TORCH MCP-PMTs

- Current TORCH prototype use custom 53-by-53mm MCP-PMTs with 64-by-64 pads [JINST 10 (2015) C05003] that are ganged to form 8-by-64 pixels.
- Readout connectors are mounted on an external PCB and connected via anisotropic conductive film.
- Anode is capacitively coupled with charge sharing between pixels.
 - Exploit charge sharing to achieve an effective 128-by-8 granularity.
- MCP coated with ALD for extended lifetime.

Capacitively coupled readout

Motivation for layout for new MCP-PMT

Pixel occupancy from FTDR $(at 1.4x10^{34} \text{ cm}^{-2}\text{s}^{-1})$

- At Upgrade 2 luminosities per-pixel occupancy becomes large.
- In FTDR granularity is increased to compensate (up-to 32-by-64).
- Aim to reduce occupancy with directly coupled PMT output:
 - Reduces charge-sharing and detector Ο occupancy.
 - Requires increased granularity in Ο fine-pixel direction to compensate for loss of centroiding.

NEW anode layout

- New MCP-PMT has a 53 × 53 mm² active area with an anode with 96-by-96 pads.
- Pads are ganged into a 16-by-96 arrangement.

Backside of the anode after assembly but before soldering.

Alex Davidson: Upgrade 2 TORCH MCP status

Charge sharing studies with an 8-by-64 MCP-PMT

- Sweeping laser over 4 pixels reading out to a oscilloscope via a breakout board.
- Pulse height distribution fitted with Polya model to estimate gain.
- Will complete similar studies on 16-by-96.

8-by-64 directly coupled MCP-PMT

First measurements from the new MCP-PMT

- First measurements performed at Photek on the bare MCP-PMT (before soldering/potting).
- Response looks good:
 - QE is significantly improved from earlier TORCH MCP-PMTs.
 - Gain from calibrated light-source varies as expected.

Laser soldering

- Due to density of connections on anode and the need to limit extended periods of heating, connectors are soldered using laser jet soldering.
- Solder balls are heated by a laser, and fired under pressure to hit target.
- 2 MCP-PMT with the Laser soldering company, waiting on confirmation of completion and shipment back to Photek.

Image [accessed on 04/07/24]

Images show a successful run of one of 16 connectors added on a test anode.

New readout adaptor board

TORCH electronics

Adaptor

- Adaptor board has been developed to instrument 64 of the 96 outputs on a single column.
 - Unconnected channels are \bigcirc terminated.
- Original plan to develop new electronics using FastIC and picoTDC shelved due to availability of ASICs.
- No plans to test the new MCP-PMT in test beam next year at present.

New analog breakout board

• We are also developing analog breakout boards for use with an oscilloscope.

e.g. boards in use at Photek:

Towards understanding Ion feedback

- MCP-PMT lifetime is limited by ion-feedback.
 - Current devices do not meet needs of TORCH in upgrade 2.
- Work started to understand contribution from different ions using a MCP-PMT (mcp 240) with poor vacuum quality.
- Premliminary, the first after pluse loooks to be He with the group after being 0 and H_20

Warwick lab setup

- Aim to characterize MCP-PMTs for TORCH (old and new version).
- Uses a fast pulsed 405 nm picosecond LASER to shoot photons at MCP-PMT.
- Synch. output used for trigger and time reference.
- Analog readout of few pixels using fast oscilloscope with breakout board.
- OR Digital readout of the entire detector using the existing TORCH electronics (NINO + HPTDCs).

Warwick lab setup

- Aim to characterize MCP-PMTs for TORCH (old and new version).
- Uses a fast pulsed 405 nm picosecond

Laser setup and Power calibration

density filter

wheel

- Using a hamamatsu PMT, plus a counting unit to check for light leaks and laser count rates.
- Setting the Variable neutral density filter to get the region of signal photon, count rate = 10%laser rate.
- Making sure the count rate is stable, overnight.

Alex Davidson: Upgrade 2 TORCH MCP status

Preliminary temperature results

- TORCH electronics prone to heating due to the high power requirements.
- Check temperature to make sure we can run with current setup and lid closed.
- Running under the assumption that if kept lower than 30°C no cooling measures need to put in place.

Time reference

- Test and validation of test bench trigger line.
- Can see injected signals on time reference channels at the expected rate and delay \checkmark

Summary & next steps

Photek

- Vacuum sealing of new MCP-PMT complete ✓
- Expect new MCP-PMT to be shipped to CERN within the next few weeks.
 With also the availability of a second MCP-PMT to be loaned out by Photek for further testing.

Warwick

- Trigger line tested and validated \checkmark
- Ongoing temperature checks ✓
- MCP-PMT installed ✓

Thank you for listening

Towards understanding Ion feedback

- ALD coating of MCP-PMT pores significantly enhances lifetime.
- Photonis have demonstrated longer lifetimes using more advanced ALD coatings.

Power calibration

- Using a hamamatsu PMT and counting unit to check for light leaks in the box.
- Secondly setting up the PMT to face the laser.
- Finding the optimum working voltage for this PMT at constant threshold.
- Setting the Variable neutral density filter to get the region of signal photon, count rate = 10% laser rate .
- Making sure the count rate is stable, overnight.

