1st Accelerators Technology Sector Workshop

Engineering Design Tools and Processes Project Management Methodologies and Tools

Chair: Mike Lamont

Interconnecting knowledge, experience, methods, people & data to foster learning & collaboration

ATS
Accelerators and
Technology Sector

Improving future designs by learning from radioactive waste-management experiences

Jean-Louis Grenard
SY-STI-TCD

ATS

Accelerators and Technology Sector

Outlook

- Beam Intercepting Devices in a few words
- BIDs design process
- Constraints for final disposal
- ALARA principle
- Return of Experience
- Dry runs and Mock-ups
- Take Home message

Primary Beam Intercepting Devices in a few words

Systems witch intercept beam from a fraction its entirety

Interactions of beam with systems (partial e.g. collimators, full e.g. targets and beam dumps)

- Beam cleaning and control → Collimators, Scrapers, Strippers, Slits
- Particle production → Targets
- Safety functions → Beam Stoppers, Beam Dumps

Devices protect delicate equipment, must withstand operation and accident failure scenarios

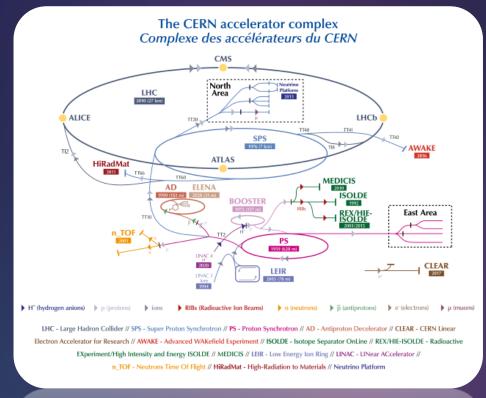
Built to receive high energy deposition and subsequent thermal load

Residual radioactivation is a result of the interaction of the beam with the BID systems

CERN's most radioactive equipment

INTERCEPTING THE BEAMS

SY-STI Beam Intercepting Devices Overview



LHC collimators ~120

AD target

n_TOF target

ISOLDE target ~30 targets/years

~300 ASSETs with a large diversity
From a couple of kg to several 10th of tons


LHC Beam Dumps

SPS Beam Dumps

PS Internal Dump

Beam stoppers

Beam Intercepting Devices Lifecycle

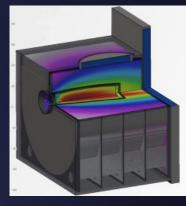
Different stakeholders across the lifecycle:

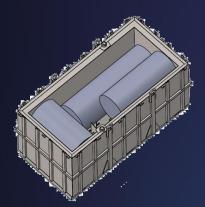
- Design offices
- Workshops
- Control teams
- Installation teams
- Radiation protection
- Transport and Handling
- Cooling and Ventilation
- Operation

Stakeholders brings along the lifecycle:

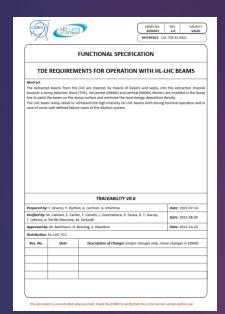
- Expertise
- Integrate their standard subsystems
- Integrate their return of experience

BIDs design

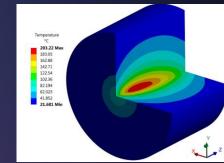

Functional specification BE-OP/ABP SY-ABT BE-EA



Initial concept SY-STI



cement and I disposal


Replacement and Final disposal evaluation HSE-RP SY-STI

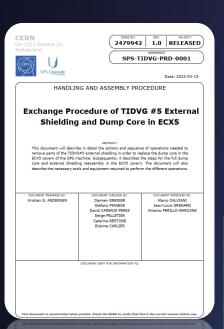
Energy deposition and Thermomechanical studies SY-STI

Radiation Protection assessment and optimization HSE-RP

System design SY-STI EN-MME

Constraints for final disposal

By regulations CERN must send radioactive wastes to final repository


- Different requirements from the 2 host states authorities (type, size of containers...)
- Radioactive waste to be sorted safely for very long term (hundreds of years)
- (Chemical) Reactions to be considered between packing and stored material (e.g. water-aluminium cracks creation)
- Very long process (15 years to dispose the n_TOF target #1)
- Requirement to have all documentation attached to ASSET →

ALARA principle

Time Procedures, Training, Tools

LHC External Dump autopsy

Distance Tools, Shielding

Shielding Concrete, Marble, Iron, Lead

SPS Internal Beam Dump (shielding open)

ALARA BY DESIGN

Return of experience installation / removal

Preparation

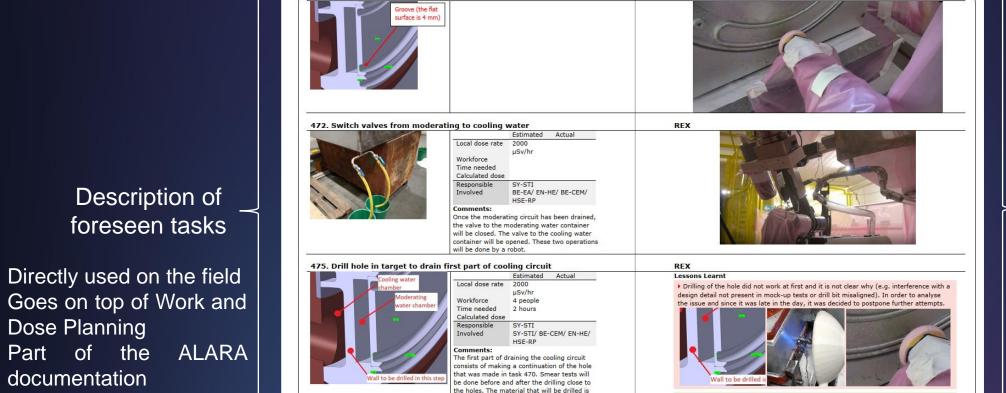
- Simulations
- Definition of a sequence
- Review(s) by internal and external experts

Execution

Records during the installation

End of activity

- Documentation of Return of Experience
- As built documentation (3d models, procedures)



Joint work by different stakeholders

Return of experience installation / removal

EN-AW-5083

Intervention was performed in the following working day.

Description of as executed including changes and lessons learnt

2424848 1.0 RELEASED

EDMS: TOF-TAR-ER-0001

Dose Planning

of

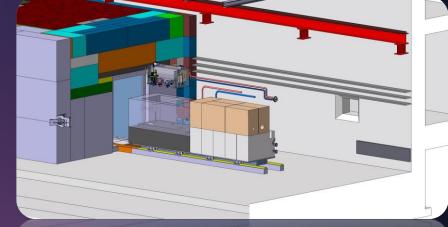
documentation

Description of

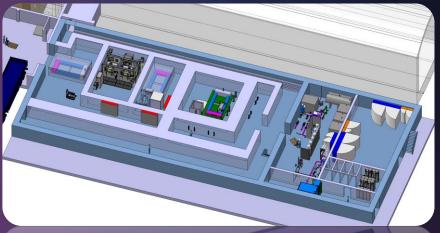
Dry runs and Mock-ups

As part of ALARA principle

- Demonstrate feasibility
- Assess methodology
- Additional chance to further optimize process
- Teams training
- Demonstrate remote handling capability
- Check recovery plans


Implementation of the Return of Experience in new

designs


How are we going to implement this for future facilities?

The case of HI-ECN3 Beam Dump Facility Project

- Design jointly merging functional requirements with requirements of the Host States authorities for final disposal
- Design ready for material separation & waste packaging
- Infrastructure for waste packaging foreseen as part of target complex
- Remote handling largely implemented as per dose rates increases

BDF target handling in case of replacement

BDF target complex building with service cell

Take Home message

- Design of the systems should be integrated around the lifecycle in its entirety
- ALARA principle must be included in the design from the beginning
- Integration of different stakeholders in the Return of Experience
- Waste packaging for final disposal to be considered from the beginning of a Project
- Methodology for the handling of radioactive objects required for whole lifecycle
- Full set of documentation to be kept along lifecycle of the systems.

Design and Lifecycle:
The 2 keys parameters to handle radioactive systems

Remote Handling Design guidelines

Several CERN modules developed

- Handling life cycle
- Checklist
- Fasteners
- Guides systems

American Nuclear Society - Design Guides

Remote Handling - ITER code of Practice

More to come with ongoing projects

All those to ease dismantling once radioactive

