1st Accelerators Technology Sector Workshop

Engineering Design Tools and Processes Project Management Methodologies and Tools

Chair: Mike Lamont

Interconnecting knowledge, experience, methods, people & data to foster learning & collaboration

ATS Accelerators and Technology Sector

Defining and executing cryogenic systems for DUNE

Caroline Fabre

on behalf of the CERN Neutrino Platform and Fermilab partners

ATS

Accelerators and Technology Sector

Credits: Johan Bremer; Michel Chalifour; Filippo Resnati

Content

The DUNE project

Technical challenges and prototyping

Working in a collaboration

Cryogenic systems: from the definition to the execution

Engineering activities & methodology

Management activities

QA activities in contract execution

Conclusion

made of matter?

oscillations

ATS Accelerators and **Technology Sector**

Neutrinos from

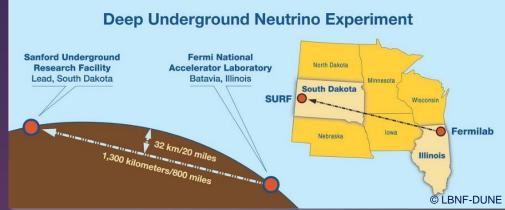
Fermi National

One of four

detector modules of the

Deep Underground Neutrino Experiment

in Illinois


Accelerator Laboratory

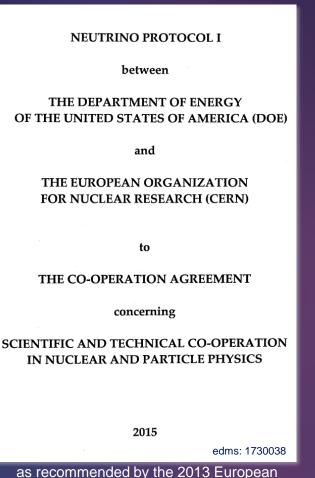
Facility and cryogenic support systems

© LBNF-DUNE

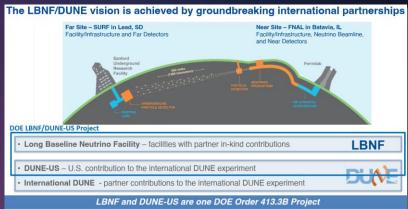
The DUNE project

Neutrino beam from Fermilab to Sandford lab - straight through the earth, no tunnel necessary -

Liquid argon-based detector w 70 kT total argon mass



Co-operation framework between CERN and US-DOE


The CERN Neutrino Platform project:

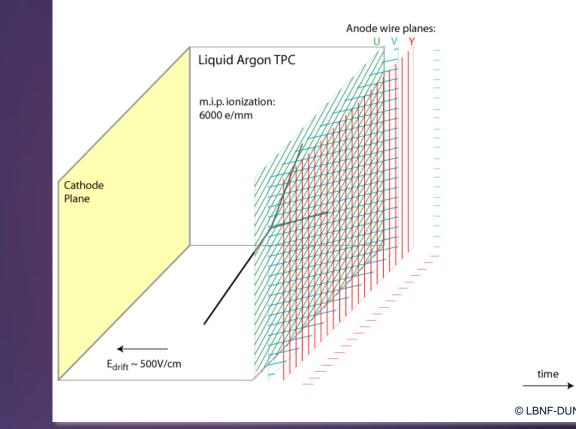
- To provide a test facility at CERN for large detector prototypes and demonstrators (protoDUNE)
- To support activities related to the construction and operation of the Fermilab SBN program (ICARUS, SBND)
- To contribute to the design, construction and operation of DUNE

Strategy for Particle Physics

David Montanari LLBNE and ES Cryonenics Overvie

04 05 23

LBNF/DUNE



Detection principle

Liquid Argon Time Projection Chamber:

- Neutrino interacts with argon atoms
- Secondary particles liberate valence electrons
- Electrons are collected to the anode wires
- Scintillation light is detected by photomultipiers

 \rightarrow Reconstruct 3D image of the interaction

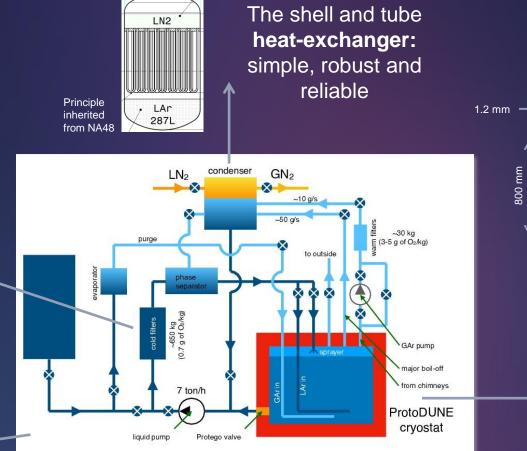
Requirements

- To guarantee a «long» free electron life-time : → Very pure argon : < 100 (30) ppt O2 equiv.
 > 3 (10) ms
- 2. To put a 300 kV HV field
- 3. To have a uniform reaction over the sensitive volume
- 4. To preserve detector properties
- 5. To guarantee highest safety levels for use in underground caverns
 - 62 0 15 m 14 m CERN building 156

- \rightarrow No boiling over the sensitive volume
 - → A limited T° difference over the detection volume < 1 K</p>
 - \rightarrow Continuously operated over long periods
 - \rightarrow Contain the argon under all circumstances

4 cryostats LAr: 12 500 m³ – 17 kton x 500 compared to ATLAS LAr calorimeter

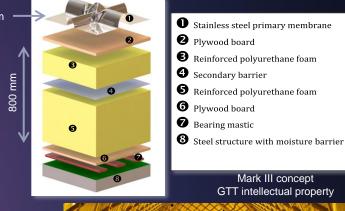
Developments for cryostat and cryogenics


The argon purification principle

circulation on active copper pellets

Purification @ 87 K: oxidation of Cu-226 (Cu coated Al₂O₃)

Regeneration @ 420 K: reduction w 2.5% H₂ in Ar


The pre-ODH alarms

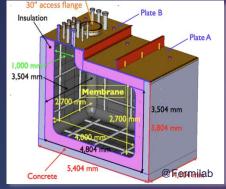
The cryogenic system principle


Credits: F. Resnati

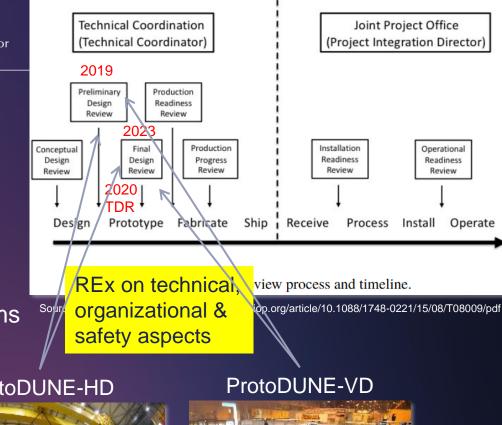
The membrane cryostat principle developed from a qualified technique for LNG tankers

Mark III concept GTT intellectual property

NP04 cryostat before detector integration


ATS

Prototyping


- LBNF cryogenics design developed by Fermilab
- based on the principles developed at ProtoDUNE by NP
- including the Return of Experience
- through **continuous interactions** of the NP and LBNF teams
- and formal participation to reviews

26 T **Program finished** (CERN)

35 T Program finished (Fermilab)

ProtoDUNE-HD

740 T Cool-down in June 2018 (NP04, CERN)

740 T Cool-down in Dec. 2018 (NP02, CERN)

Experiment-Facility

Joint Project

Office (JPO)

nterface Group (EFIG)

Working in a collaboration

- 1st time large scale delivery to a host lab outside CERN via in-kind contribution
- Share of expertise started 2013
- Responsibility
- What is needed for the equipment to be accepted in a US-lab ? (see next slides)
- How do we integrate into the project organization?

DUNE

Spokespersons/Technical and

Resource Coordinators

Technical

Coordination

Project Office

Far Detector

Production

Near Detector

Production

Source: DUNE TDR

Figure 2.1. LBNF/DUNE organization.

Integration

Project Integration Director/South

Dakota Services Division (SDSD) Head

Integration Office

Facility Support &

Services (SDSD)

Far Site

Installation

Near Site Installation

LBNE

Project Director/

Project Manager

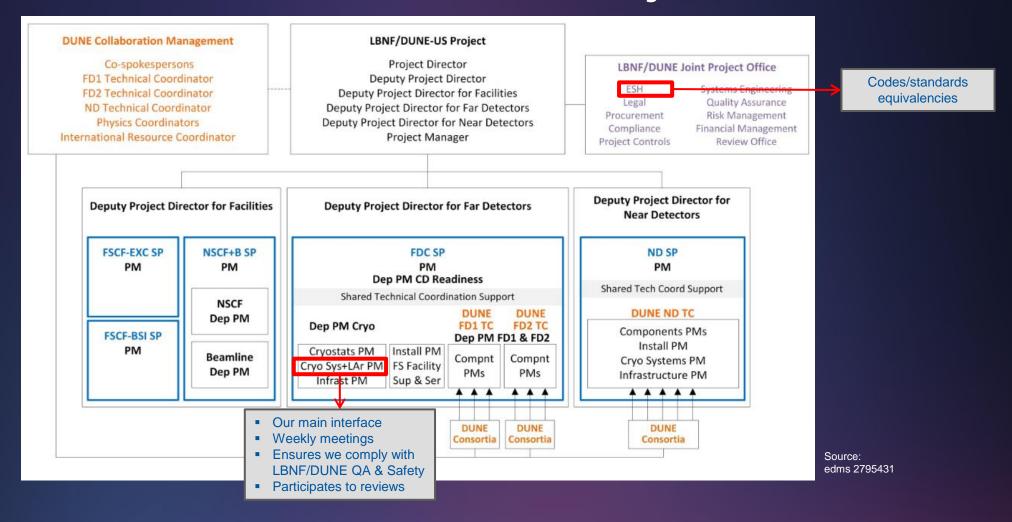
Conventional

Facilities

Beamline

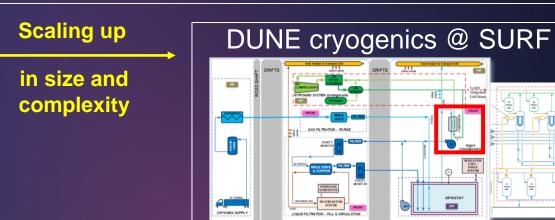
LBNF

Project Office

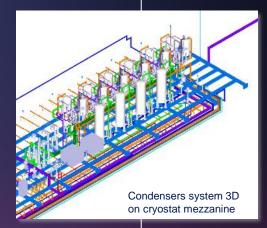

Cryogenics

Cryostat

10


CERN/NP in the LBNF-DUNE-US Project

1st Accelerator Technology Sector Workshop Speaker: Caroline Fabre

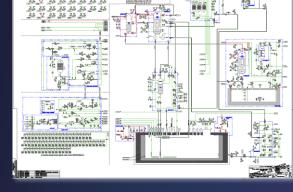


- a set of vacuum insulated valve-boxes and interconnecting transfer-lines
- Cryogenic systems
- including instrumentation, filters, pumps, heat exchangers ...
- for liquid argon and liquid nitrogen @ temperatures ranging from 80 K to 420 K

several similar units working in parallel

- 22 valve boxes
- ~700 m transfer-lines
 - w diam. up to DN250
- ~ 135 cryogenic valves
 - ranging DN40 to DN150

© Fermilab


From

concept

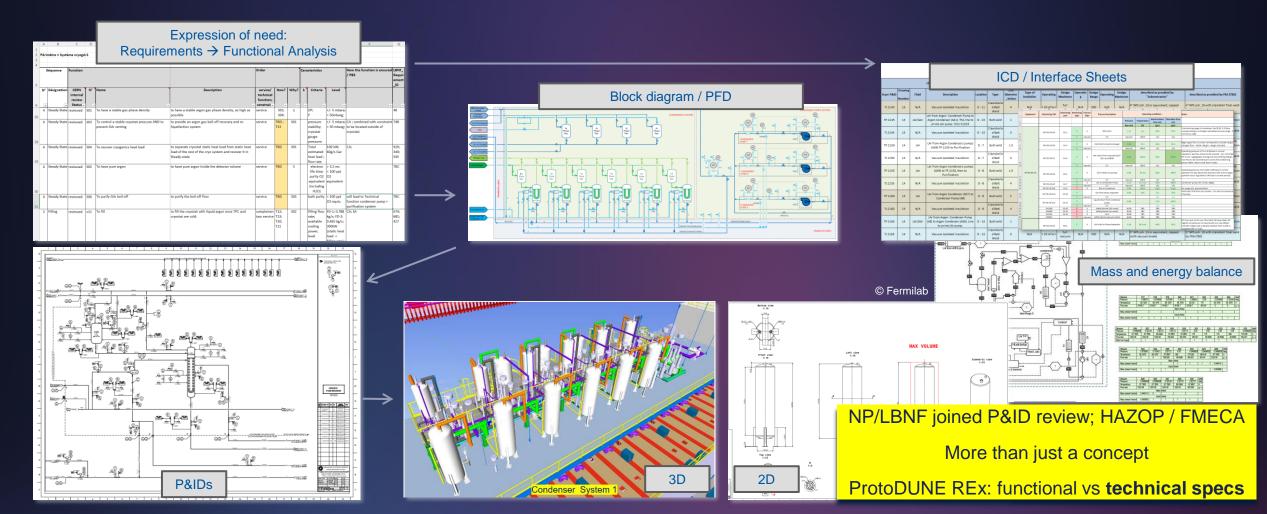
То

functional

equipment

The installed cryogenic system @ EHN1

From the definition to the execution



 Approach: adopt a methodology and a level of formalism appropriate to efficiently deliver the cryogenic system, with the allocated resources

Engineering activities & methodology (1/2)

Engineering activities & methodology (2/2)

Technical specification

- NP responsibility
- PRR / spec committee
- w participation of LBNF partners
- Validate requirements
- Sets the ground for acceptance by LBNF
- \rightarrow Ready for industrial consultation

Organisation européenne pour	r la recherche nucléaire						
EDMS No.: 1685438							
Document Ref: NP-00.00.00 CETS-001	IT-4200/RCS-PRJ-DI/NP04						
Invitati	ion to Tender						
Technical Specification Design, manufacturing and installation of four cryogenic systems for the Neutrino Platform proximity cryogenics Abstract							
This technical specification concerns	the design, manufacturing and installation of						
	EDAN No.: 165438 IT 4208765 PRI J DANO4 Table of 1 1. NTRODUCTION 1. Introduction CEN.						

Conditioning Lifting, handling and transpor Tools Installation Environmental Conditions

QUALITY ASSURANCE

viations and non-confo

Neutrino Platform Cryogenics Document Ref .: NP-00.00.00-CETS-001

Table of Contents ERN se CERN Technology Department and to the CERN Cryogenics G

trino Division and Cryogenic

o Platform Cryogenics Document Ref.: NP-00.00.00-CETS-001	IT-4200/RCS-PRJ-DI/
4.3.6 Dimensional controls	
4.3.7 Factory inspection	
4.3.8 Transport accelerations	4
4.3.9 CERN or Fermilab incoming inspection	
4.3.10 Hydraulic continuity control	4
4.3.11 Control of external supports	
4.4 Documentation	
4.4.1 Communication and documentation plan	
4.4.2 Submission, Review and Approval of Documentation	4
4.4.2.1 Documentation Management	
4.4.2.2 Project Documentation List	
4.4.3 Documentation type	
4.4.4 Naming and numbering	
4.4.5 Document deliverables	
4.4.6 CAD deliverables	
4.5 Design and scheduling tools	
5. REGULATORY REQUIREMENTS	
5.1 CERN Safety Requirements	
5.2 Fermilab Safety Requirements	
53 Seismic hazard at CERN	
5.4 Seismic hazard at Fermilab	5
5.5 Codes and standards	5
5.6 Hazards Analysis and Risk assessment	5
5.7 Equipment identification	5
5.8 Exchange of documentation files	5
6. ACCEPTANCE TESTS	
6] General	3
6.2 Warm Acceptance Test (WAT) for all transfer lines and valve boxes	
6.3 Cold Acceptance Tests (CAT) for all transfer lines and valve boxes	
6.4 Acceptance Criteria	
7. PERFORMANCE OF THE CONTRACT	
7.1 Long Lead Items	
7.2 Delivery Schedule	
7.3 Working on the CERN Site	
7.3.1 General Requirements	
7.3.2 Safety coordination	
7.3.3 Specific Safety Requirements	
7.4 Working on the Fermilab Site	
7.4.1 General requirements	
7.4.2 Safety coordination	
7.5 Personnel	6
7.6 Contract Follow-Up and Progress Monitoring	
7.7 Acceptance and Warranty	
8. CERN CONTACT PERSONS	

Basic design

Management activities

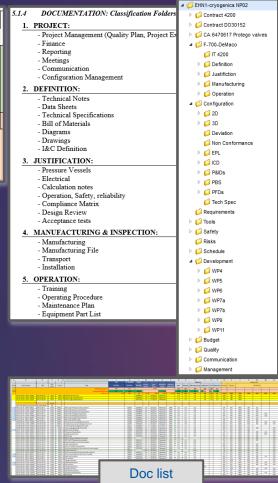
Simple tools, sufficient to handle sub-project of this scale

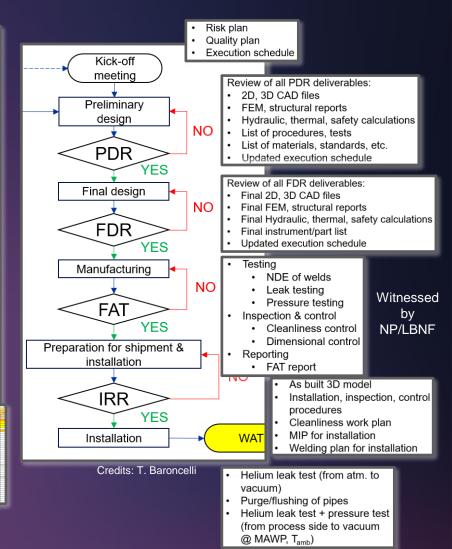
				_		PBS		
LBNF Prox	cimity Cryo	genics Con	densation	System	_		_	
		PBS p	proposal					#
Level 0	Level 1	Level 2	Level 3	Level 4	Level 5	product name		Comments
project	sub-project	system	sub	family	Product			
level	level	level	system					
FD	01	00	00	00	00	Common	com	mon components to the Far Detector 1
FD	01	CR	00	00	00	Common	com	mon components to the proximity CRyogenic syst
FD	01	CR	CS	00	00	Common	com	mon components to the Condensation System
FD	01	CR	CS	LN	00	Common	com	mon components to the Nitrogen transfer Lines
FD	01	CR	CS	LA	00	Common	com	mon components to the Argon transfer Lines
FD	01	CR	CS	SN	00	Common	com	mon components to the N2 phase Separator
FD	01	CR	CS	PN	01	N2 phase separator 1	N2 p	hase separator system 1
FD	01	CR	CS	PN	02	N2 phase separator 2	N2 p	hase separator system 2
FD	01	CR	CS	PN	03	N2 phase separator 3	N2 p	hase separator system 3
FD	01	CR	CS	PN	04	N2 phase separator 4	N2 p	hase separator system 4
FD	01	CR	CS	PN	05	N2 phase separator 5	N2 p	hase separator system 5
FD	01	CR	CS	PN	06	N2 phase separator 6	N2 p	hase separator system 6
FD	01	CR	CS	SA	00	Common	com	mon components to the Ar phase Separator
FD	01	CR	CS	DH	00	Common	com	mon componenents to the De-superHeater
FD	01	CR	CS	CA	00	Common	com	mon components to the Argon Condensers
FD	01	CR	CS	CA	01	Condenser 1	Cond	denser 1
FD	01	CR	CS	CA	02	Condenser 2	Cond	Jenser 2
FD	01	CR	CS	CA	03	Condenser 3		denser 3
FD	01	CR	CS	CA	04	Condenser 4	Cond	denser 4
FD	01	CR	CS	CA	05	Condenser 5	Cond	denser 5
FD	01	CR	CS	CA	06	Condenser 6	Cond	denser 6
FD	01	CR	AC	00	00		Liqui	id argon circulation
FD	01	CR	AC	MC	00		Main	circulation box
FD	01	CR	AC	CC	00	Common	com	mon components to the Condenser Circulation b

		OBS					
	Organisation of the Neutrino			rk pac	kage (WP):		
				NDDC	1		
				NPPC	J		
WP	name	NP01	NP02	NP03	NP04	WA105	
1	Contracts		MC	R-JBR			
2	Quality		MC	R-JBR			
3	Project Management		JBR-MCR				
4	Process	CFE-Fermilab	CFE	CFE-Fermilab	CFE		
5	Instrumentation		NVR-CFE				
	Control, Electrical-Cabling						
6	cabinets	Fermilab	MPI-ROI	Fermilab	MPI-ROI		
	Assembly, Integration and tests						
7a			JCS-PCT		JCS-PCT		
	Assembly, Integration and tests						
7b		MCR-PCT		MCR-PCT			
8	Risks and Availability Analysis						
9	Operation	Fermilab	CERN	Fermilab R-PCT	CERN		
10	Safety						
11	Mechanical]				

She will provide support to the following activities:

- WP5: Provide support to review strategy with main control loops.
- WP9: Provide support to Operation for Process Diagnostic and Optimisation.



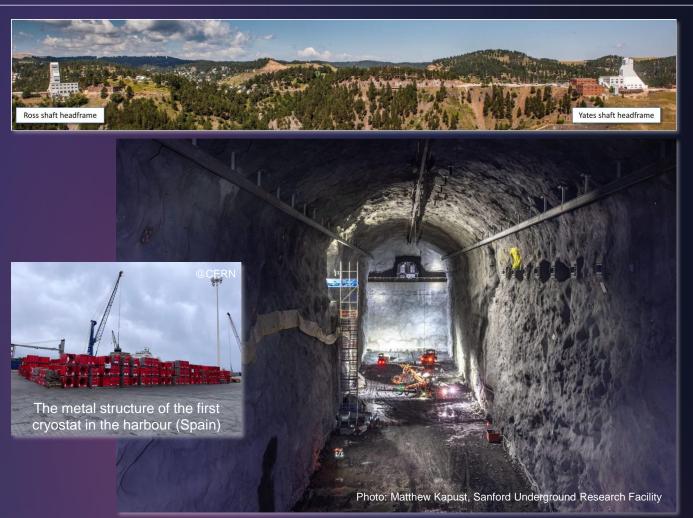


QA activities in contract execution

	Project stages								
			Procurement	Installation	Testing/Acceptance	Operation			
	Preliminary design	Detailed design / Final design	Purchase and production						
Ζ				<	A PAC	FAC			
	Kick-off	PDR	FDR; MRR; IRR;	Delivery	Provisional	Final			
	meeting		FAT		Acceptance	Acceptance			

- Documentation deliverable at each Milestone defined in specs
- Deviations requests: joined examination by NP/LBNF
- Reviews and acceptance tests are Hold Points -> verification of compliance w requirements

Conclusion


Run medium size sub-project with:

- standard PM practices;
- methodology and level of formalism appropriate to efficiently deliver the cryogenic system, with the allocated resources;

simple tools;

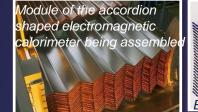
 continuous interactions within a <u>collaboration</u> framework (both for including REx and for acceptance by LBNF)

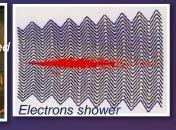
https://news.fnal.gov/2024/02/excavation-of-colossal-caverns-for-fermilabs-dune-experiment-completed/

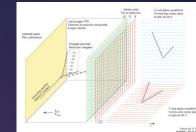
First cryostat filling is foreseen to begin in Q2 2028...

and complete 1 year later, after argon delivery by 1000 road trucks !

BACK-UP SLIDES

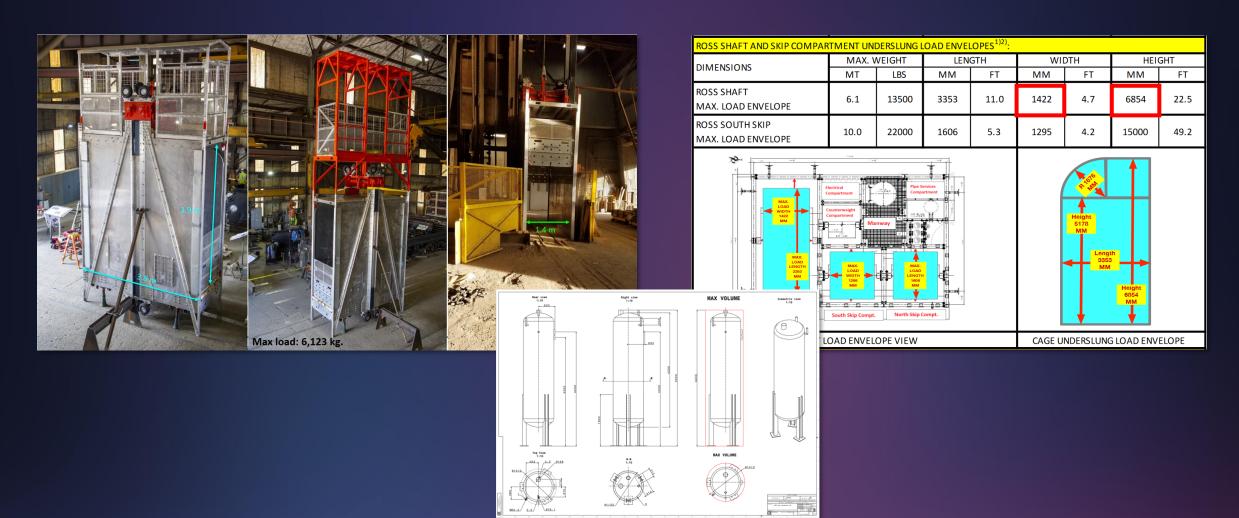

ATS


Accelerators and Technology Sector

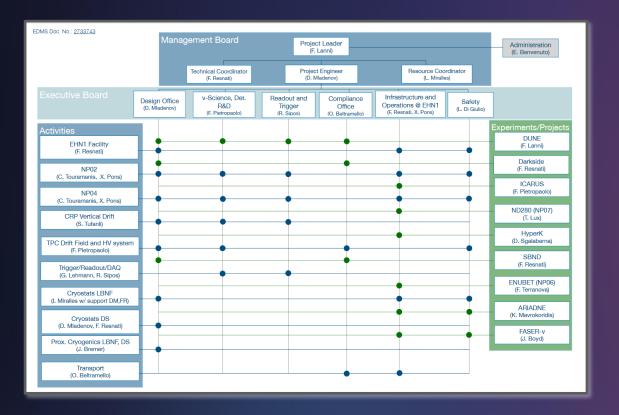


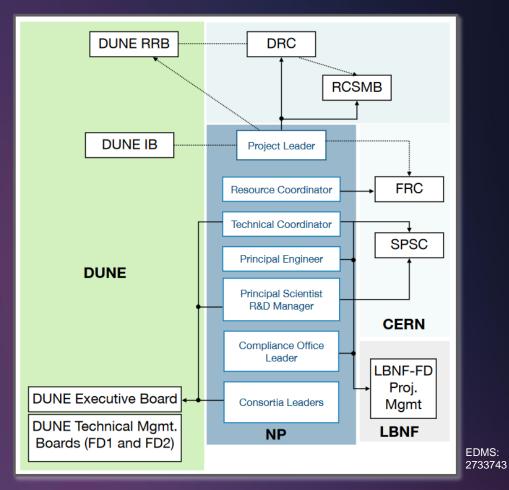
Cryogenics expertise for liquefied rare gases detectors

Cryogenics as active "medium" of detectors for particles energy measurements like Liquid Ionization Chambers


Reconstructed 3D image of the neutrino interaction

	Calorimeters	Time Projection Chambers			
Requirements	ATLAS	ProtoDUNE	DarkSide-20k	DUNE	
to maximize the number of events	100 m ³	560 m ³	500 m ³	4 x 12 000 m ³	
→ a large volume of a dense noble liquid	LAr	LAr	LAr	LAr	
to have a uniform reaction over the sensitive volume	88.3 K	87.5 K	87.5 K	87.5 K	
→ a limited T° difference over the detection volume	DT < 700 mK	DT < 500 mK		DT < 1 K	
to put a HV field over the sensitive argon volume	2 kV field	18 kV	-	300 kV	
→ a subcooled bath to prevent bubbles	2 mm drift gap	3.6 m drift gap		6 m drift gap	
to guarantee a sufficiently long free electron lifetime → a pure liquid (oxygen equiv. purity)	> 0,15 ns	> 3 ms	> 3 ns	> 10 ms	
	< 2 ppm	< 100 ppt	< 100 ppb	< 30 ppt	
to reduce the noise level (cosmic particles)	-100 m	-10 m	- 1.4 km	- 1.5 km	
→ in underground areas	@ CERN	@ CERN	@ LNGS	@ Sandford Lab	
to preserve detector properties	Since 2005	2019	2024	beg 2028	
→ continuously operated over long periods	17 years	1 year	years	years	
Commonalities Scaling in size and complexity					


Perspectives towards DUNE proximity cryogenic system


This is how everything has to go down: personnel and material !

Neutrino Platform Organization

