# 1st Accelerators Technology Sector Workshop

Engineering Design Tools and Processes Project Management Methodologies and Tools

Chair: Mike Lamont

Interconnecting knowledge, experience, methods, people & data to foster learning & collaboration



ATS Accelerators and Technology Sector

## Engineering design tools and processes for cryogenics

Andrew Lees (TE-CRG-ME)



ATS

Accelerators and Technology Sector



### Cryogenics

- The branch of physics dealing with the production and effects of very low temperatures (https://en.oxforddictionaries.com/definition/cryogenics; Oxford Dictionaries)
- All scientific and technological disciplines dealing with temperatures below 120 K (http://dictionary.iifiir.org/search.php; International Dictionary of Refrigeration)

Key enabling technology for accelerators and physics experiments

| Gas      | Boiling<br>point<br>(K) @ P <sub>atm</sub> | Inventory<br>at CERN<br>(t) | Consumed<br>per year<br>(t) |
|----------|--------------------------------------------|-----------------------------|-----------------------------|
| Krypton  | 119.8                                      | 24                          |                             |
| Methane  | 111.6                                      | -                           |                             |
| Oxygen   | 90.2                                       | -                           |                             |
| Argon    | 87.3                                       | 1800                        |                             |
| Nitrogen | 77.4                                       |                             | 7100                        |
| Neon     | 27.1                                       | - 11                        |                             |
| Hydrogen | 20.3                                       | < 1                         |                             |
| Helium   | 4.2                                        | 160                         | 35                          |



### **Cryogenics at CERN: Overview**



Stand -by



### **Cryogenics at CERN: Equipment**

Refrigeration



Design of cryogenic machines and the architecture used to cool them

Large and complex systems which incorporate a broad variety of equipment

## Compres



To design, build and operate, multiple disciplines must be mastered:

- Thermo-hydraulic and process
- Mechanics, design and layout
- Instrumentation, electronics & control
- Project management
- Maintenance, operation and logistics

SM18 GHe Storage





bling





### The Cryogenics Group (TE-CRG) at CERN



- Design, construction, commissioning, operation and maintenance of the cryogenic systems for CERN accelerators, detectors and cryogenic test facilities
- Low-temperature developments and tests at the Central Cryogenic Laboratory
- Supply of cryogenic fluids on the CERN site
- Consultancy and support in cryogenic design and cryogenic instrumentation.



# Projects in the Cryogenics Group

| <ul> <li>Function &amp; Concept</li> <li>⇒ Functional requirement</li> <li>⇒ R &amp; D<br/>(CRG-CL)</li> <li>⇒ Process flow diagram &amp; Piping and<br/>Instrumentation Diagram<br/>(CRG-ME, CRG-CL)</li> <li>⇒ Process definition &amp; Functional analysis<br/>(CRG-OP, CRG-IC &amp; CRG-ME, (CRG-CL)</li> </ul> | Procurement ⇒ Technical specification<br>(CRG-ME, CRG-CL & CRG-IC) ⇒ Costing<br>(CRG-ME, CRG-CL & CRG-IC) ⇒ Contract placement<br>(IPT) | Installation<br>⇒ Site management<br>(CRG-OP, CRG-ML, CRG-ME &<br>CRG-IC)<br>⇒ Inspection<br>(CRG-ME, CRG-IC, HSE, EN-MME &<br>BE-GM) | Operation &<br>Maintenance<br>⇒ Operation<br>(CRG-OP & CRG-ML)<br>⇒ Support<br>(CRG-ME & CRG-IC)<br>⇒ Logistics |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Design<br>⇒ Mechanical design and integration<br>(CRG-ME)<br>⇒ Thermo-mechanical                                                                                                                                                                                                                                    | Manufacture & Contract<br>⇒ Mechanical<br>(CRG-ME & EN-MME)<br>⇒ Electrical & Instrumentation                                           | Commissioning<br>⇒ Pressure test<br>(CRG-ME, HSE)<br>⇒ Leak test                                                                      | (CRG-ML)                                                                                                        |
| <ul> <li>(CRG-ME)</li> <li>⇒ Dynamic process simulation<br/>(CRG-OP &amp; CRG-ME)</li> <li>⇒ Electricity, control and instrumentation</li> </ul>                                                                                                                                                                    | <ul> <li>(CRG-IC)</li> <li>⇒ Contract follow-up<br/>(CRG-ME, CRG-IC, CRG-CL &amp; IPT)</li> <li>⇒ Quality assurance</li> </ul>          | (CRG-ME & TE-VSC)<br>⇒ Functional tests<br>(CRG-OP, CRG-ML, CRG-ME,<br>CRG-CL & CRG-IC)                                               |                                                                                                                 |







### **Cryogenic Engineering Tools & Methods**

#### Standardised methods available to the section/group:

⇒ Based on rules, standards and past practice at CERN

#### Streamlined engineering approach:

- ⇒ Improved efficiency, confidence in results and accessibility
- ⇒ Best practice guidelines for CRG-ME projects but not rigid set of rules

Each section in Cryogenics Group has developed and uses a set of tools to perform their work, this presentation focuses on the tools used by TE-CRG-ME.

| Subject                                     |                                 | Guideline | Checklist | ΤοοΙ | Report<br>Templates | Library |
|---------------------------------------------|---------------------------------|-----------|-----------|------|---------------------|---------|
| Cryogenic Process                           | P&ID Symbols for CRG            | Х         |           |      | Х                   |         |
|                                             | Control valve sizing            | Х         | Х         | Х    | Х                   |         |
|                                             | Pressure drop                   | Х         | Х         |      |                     | Х       |
|                                             | Ecosim. dynamic simulation      |           |           | Х    |                     | Х       |
| Thermo-mechanical<br>engineering and design | Design and Layout               |           |           | Х    |                     |         |
|                                             | Mechanical Analysis             |           |           | Х    |                     |         |
|                                             | Protection against overpressure | Х         |           | Х    | Х                   |         |
|                                             | Application of pressure codes   | Х         | Х         |      |                     |         |
| Mechanical Intervention                     | Standard CRG components         |           |           |      |                     | Х       |
|                                             | Standard CRG methodology        | Х         |           |      |                     |         |







**P&ID** Standard:

0.0.0.0.0.0.0.0.0.0.0.0.0.

### Cryogenic process

#### Piping & Instrumentation Diagram (P&ID):

- ⇒ The basis of all cryogenic projects!
- $\Rightarrow$  Produced using AutoCAD  $\rightarrow$  now BricsCAD with PLM
- ⇒ Guideline → Standardise the symbols used on P&ID across CRG (EDMS 1281594)

Used throughout Project:

- During the design phase to study and define thermo-hydraulic behaviour
- During the commissioning phase to validate control strategies
- During the operation phase to train new operators and verify control improvements



⇒ Mixture of ISO norms and CERN legacy

Could be extended to any similar equipment

- Commercial software used in combination with "CRYOLIB" cryogenic library
- "CRYOLIB" was initially developed at CERN in 2006 and commercialised today (KT agreement)



### **Cryogenic Process**

Pressure drop calculations & control valve sizing:

Fundamental part of process design

- ⇒ Guideline → Standardises TE-CRG-ME methodology (EDMS 2376016)
- ⇔ Checklists → To ensure methodology is correctly applied (EDMS 2306030)
- ⇒ Sizing tool → To aid calculation (EDMS 2306046)



#### TE-CRG-ME tool kits are based around:

- ⇒ Guidelines → bringing together procedures from norms and standards, CERN best practice and manufacturer guidelines.
- ⇒ Checklist → helping to guide engineer through the design process
- $\Rightarrow$  Tools  $\rightarrow$  to simplify calculation





# Thermo-mechanical Engineering and Design



### Thermo-mechanical Design & Analysis

#### Integration, studies and component design:

- ⇒ 3D Design tools → Catia V5 with SmarTeam
- ⇒ Transition to PLM in collaboration with CAD Services





#### **Thermo-mechanical Analysis**

- $\Rightarrow$  Finite Element Analysis tool  $\rightarrow$  ANSYS
- Development of complex mechanical systems e.g., CCC Cryostat / HL-LHC QXL Jumper

DFBA Gimble Bellows Analysis

⇒ Component benchmarking studies e.g., flexible hose stiffness study







CCC Cryostat Antiproton Decelerator



### **Cryogenic Pressure Equipment**

Safety sensitive equipment  $\rightarrow$  Highly regulated for design, production and maintenance





### **Cryogenic Pressure Equipment**

#### **Protection against overpressure:**

- ⇒ Guideline → Standardises TE-CRG-ME methodology (EDMS 2105567)
- ⇔ Checklist → To ensure methodology is correctly applied (EDMS 2105522)
- $\Rightarrow \begin{array}{l} \text{Sizing tool} \rightarrow \text{To aid calculation} \\ (EDMS 2105521) \end{array}$

#### Mechanical design:

- ⇒ Guideline → Standardises TE-CRG-ME methodology (EDMS 2402943)
- ⇔ Checklist → To ensure methodology is correctly applied (EDMS 2402959)

Designed to accompany and engineer through the design, manufacture and testing of pressure equipment, to avoid missing crucial aspects.

These tools do not replace the norms, they are designed to assist the engineer to comply with existing codes and standards.

Important tool for young engineers in their understanding of the PED and harmonized standards.





B163 Cryogenic Valve Box



16

Credits: A. Wanninger & A. Perin



# **Cryogenic Construction** Methods and Components



The development of our cryogenic library is ongoing.

ATS Accelerators and Technology Sector

### **Cryogenic Construction Methods and Components**

These standard components and designs are available for use

#### Standard CRG Co

- ⇒ Thermalised pipe
- ⇒ Pumping ports for
- ⇒ Spinning rotor vac
- ⇒ He Guard system
- ⇒ Mechanical integration cryogenic instrumentation



#### Transfer Line Pumping Port

Constrained work in SM18 6 KW Coldbox

#### Mechanical interventions on Cryogenic Systems

outside CRG.

- ⇒ Management of confined spaces.
- Significant experies
- ⇒ In-house manufa
- ⇒ Mechanical support for CKG systems

- Mechanical support activities are managed using INFOR EAM:
- ⇒ Spare part management
- ⇒ Work requests and follow-up



B163 cryogenic system and LHe Dewar



### Conclusion

To fulfil our role in the cryogenics group at CERN, TE-CRG-ME has developed tools, guidelines and standards in the areas of:

- ⇒ Cryogenic process
- ⇒ Thermo-mechanical engineering and design
- ⇒ Cryogenic construction methods and components

Our aim is to continue to develop a wide-ranging tool kit to provide tools and reference designs for most aspects of cryogenic engineering

#### Current areas of development:

- ⇒ Tool kits are by nature in continuous evolution
- ⇒ We aim to include future developments and trends in cryogenic applications
  - Different temperatures
  - Different cryogens and cooling mechanics

**1st Accelerators Technology Sector Workshop** Speaker: Name

1.F.D



10

ATS Accelerators and Technology Sector

20

iseli

# Thanks for Listening



### **Pressure Equipment**

