
Novel radiators

- Develop new materials with tunable properties (e.g. ref index)
 - Can change bulk material properties
 - Can introduce new interference effects with very different properties
- In this proposal start small
 - Make modification of bulk material (avoids potential issues with low photon yields and high dispersions)
 - Tune the refractive index to sqrt(2)
 - Gives huge angular separations between particle across wide momentum range
 - Requires very different geometries to existing detectors
 - Requires different reconstruction

Novel radiators

- Task list (non-exhaustive)
 - Material tests: radiation hardness, mechanical stability, optical quality, gas absorption, manufacture QA, etc
 - Mechanical coupling to material given large angle acceptance and material dimensions
 - Simulation studies of the new geometries and optics
 - Optimisation of photon detector characteristics required (plane size, pixel size, wavelength ranges, etc)
 - Proof-of-concept reconstruction in plausible applications
- This would easily occupy one funded RA, plus non negligible commitment of CG resources from a couple of groups

Novel radiators

- Link/collaboration with UK industry
 - Short term: materials are manufacturable with standard techniques by several UK manufactures
 - Long term: will develop links (maybe CASE students) on manufacturing more complex structures at scale
- Shared interest of the proposed work among other UK institutions
 - Beyond Imperial, informal interests have been expressed by academics at Bristol, Edinburgh and RAL
 - (both HEP and CM communities)
- List of beneficiaries
 - Benefits to HEP, but also any use of particle detection (beam monitoring rad therapy/mu tomography)
 - Robust and light materials \rightarrow space based applications, e.g. solar wind monitoring
 - CMT groups (new classes of material excitations to explore)
- The importance for this R&D to be considered now (instead of next year)
 - Currently still time to make an impact on the next round of LHC detector upgrades