RPC gas status and TS1 plans

G.Aielli, D.Boscherini, E.Pastori

RPC gas distribution: racks

Rack channel map

RPC Bypass situation												
Ch	61	62	63	64	65	66	67	68	69			
1	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers			
2	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers			
3	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers			
4	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers			
5	Bypass	Chambers	Chambers	Chambers	FREE	Chambers	Chambers	Chambers	Chambers			
6	Bypass	Chambers	Chambers	Chambers	FREE	Chambers	Chambers	Chambers	Chambers			
7	Bypass	Chambers	Chambers	Chambers	FREE	Chambers	Chambers	Chambers	Chambers			
8	Bypass	Chambers	Chambers	Chambers	FREE	Chambers	Chambers	Chambers	Chambers			
9	Chambers	Bypass *	Chambers	BI Chamber *	Chambers	Chambers	Bypass *	Bypass *	Chambers			
10	Chambers	Bypass *	Chambers	Bypass *	Chambers	Chambers	Bypass *	Bypass *	Chambers			
11	Chambers	Bypass *	Chambers	Bypass *	Chambers	Chambers	FREE *	Bypass *	Chambers			
12	Chambers	Bypass	Chambers	Bypass *	Chambers	Chambers	FREE *	Bypass *	Chambers			
13	Bypass	FREE (NQ)	Chambers	FREE (NQ) *	Bypass	FREE (NQ NF)	FREE *	Bypass *	Bypass			
14	Bypass	Bypass	Chambers	Bypass *	Bypass	FREE (NQ NF)	FREE *	Bypass *	Bypass			
15	Bypass	Bypass *	Chambers	Bypass *	Bypass	FREE (NQ NF)	FREE *	FREE *	Bypass			
16	Chambers	FREE *	Chambers	FREE *	Chambers	Dummy	FREE *	FREE *	Dummy			
17	Chambers	FREE *	FREE *	FREE *	Chambers		FREE *	FREE *				
18	Chambers	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
19	Chambers	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
20	Chambers	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
21	Bypass	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
22	Bypass	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
23	Bypass	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
24	Bypass	Chambers	FREE *	Chambers	Chambers		FREE (NQ NF)	FREE (NQ NF)				
25	Chambers	Chambers	FREE *	Chambers	Bypass		FREE (NQ NF)	FREE (NQ NF)				
26	Chambers	Dummy	FREE *	Dummy	Bypass		Dummy	Dummy				
27	Chambers		FREE *		Bypass							
28	Chambers		FREE *		Bypass							
29	Chambers		FREE *		Chambers							
30	Chambers		FREE *		Chambers							
31	Chambers		FREE *		Chambers							
32	Dummy		Dummy		Dummy							

+Rack bypass

FREE	Channel empty with quicks and flowcells
FREE (NQ)	Channel empty with flowcells but no quicks
FREE (NQ NF)	Channel empty without quicks and flowcells
*	Channels previewed for PHASE 2 - RUN 4

RPC gas distribution: manifolds to chambers

output manifold

gas distribution to the chambers

input manifold output manifold

RPC gas distribution description

- 3714 RPC gas gaps are present in ATLAS
- total gas volume is 15 m³
- gas distributed by 128 input manifold lines (up to 24 RPC layers each) with an overpressure of ~10 mbar falling on input impedances which determine the input flow
- gas recuperated by 128 output manifolds connected to a pump regulating the RPC internal pressure
- recuperated gas is purified and reinjected in the system
- A gas layer is connected through 2 inlets and 2 outlets
- There are 2280 independent gas layers
- Per each 2 gas layers there is an output flow meter
- The RPC gas gap is kept at max 3 mbar above the atmospheric pressure

Flow status: fresh gas from mixer

Total flow: ~3500 l/h

Fresh gas injection at end of YETS: ~980 l/h

ATLRPCMON:gas_RPC_Mixer.TotalF988.373779

Flow status: flowcells in - out

Flowcells input – ouput (I/h)

Flow status: flowmeters

Flowmeters values (backward=[0.0,0.5], forward=[0.5,3.0] V)

Flowmeter values distribution (row values)

- allowed range: 0.0 2.5 V
- $0.5 V \rightarrow \text{no flow}$
- $(0.0, 0.5) \rightarrow$ backward flow
- $(0.5, 2.5) \rightarrow$ forward flow
- ~0 or ~3 V → faulty readout/flowmeter

Flow status

Manifold lines with largest leaks (absolute value)

PLC OK	RPC Gas Chan	v. 5.0 /	v. 5.0 ACR Version on ATLRPCSCS:				Show Channels Close				
Dip Gas Channels —											
Gas Channel	RPC Alias	RpcFlow	InFlow	OutFlow	Rel Diff %	Diff	RpcFsm	Mask	inF-calib	outF-calib	outF-scale *
Rack65_Channel22	Sector/6/Ly_Gas/BMS06CO.Ly1	21.04	23.10	12.5	45.68	10.6	80000fe0	0	18.70	8.80	0.98
Rack61_Channel31	Sector/15/Ly_Gas/BOL.C. 15.Ly 0	7. 12	19.70	9.8	50	9.9	80000fc0	0	15.29	5.60	0.99
Rack62_Channel5	Sector/16/Ly_Gas/BMS16CO.Ly0	12.06	23.29	14.3	38.46	8.999	80000fe0	0	18.10	9.50	0.99
Rack66_Channel11	Sector/14/Ly_Gas/BOS. C. 14.Ly0	14.77	25.10	15	40.07	10.1	80000fe0	0	21.29	11.50	1.06
Rack66_Channel4	Sector/12/Ly_Gas/BOS. C. 12.Ly 1	20.45	25.00	14.69	41.03	10.3	80000fe0	0	20.89	10.80	0.75
Rack63_Channel5	Sector/1/Ly_Gas/BML01CO.Ly0	20.44	25.29	15.8	37.4	9,499	80000fe0	0	20.89	11.89	0.96
Rack65_Channel31	Sector/7/Ly_Gas/BOL.C.07.Ly0	8.04	19.50	8.8	54.59	10.69	80000fc0	0	15.20	5.10	0.90
Rack68_Channel2	Sector/3/Ly_Gas/BML03CO.Ly1	13.17	26.79	15.19	43.12	11.59	80000fe0	0	23.20	10.80	1.01
Rack63_Channel14	Sector/9/Ly_Gas/BOL.A.09.Ly 1	5.05	18.39	7. 199	60.54	11.19	80000fc0	0	13.89	2.60	1.08
Rack63_Channel6	Sector/1/Ly_Gas/BML01CO.Ly1	9.14	25.70	15.5	39.53	10.2	80000fe0	0	21.29	10.50	1.00
Rack61_Channel20	Sector/13/Ly_Gas/BML13CO.Ly1	14.38	22.79	11	51.52	11.79	80000fc0	0	18.39	8.00	1.06
Rack63_Channel12	Sector/9/Ly_Gas/BML09PI.Ly 1	7.92	21.00	10	52.13	11	80000fc0	0	16.60	6.20	0.99
Rack68_Channel5	Sector/7/Ly_Gas/BML07CO.Ly0	13.39	28.10	17	39.36	11.1	80000fe0	0	24.89	12.60	1.07
Rack65_Channel16	Sector/7/Ly_Gas/BOL.C.07.Ly1	11.05	23.89	12.5	47. 49	11.39	80000fe0	0	19.29	9.10	0.91
Rack61_Channel18	Sector/13/Ly_Gas/BML13PI.Ly1	11.09	22.60	10.89	51.54	11.7	80000fc0	0	17.89	7. 20	1.01
Rack64_Channel8	Sector/2/Ly_Gas/BMS02PI.Ly 1	12.59	23.20	11.5	50.21	11.7	80000fc0	0	18.79	7. 30	1.06
Rack67_Channel4	Sector/15/Ly_Gas/BML15PI.Ly1	12.58	24.79	14.8	40.16	9.999	80000fe0	0	20.10	9.70	1.01
Rack63_Channel7	Sector/1/Ly_Gas/BML01PI.Ly0	10.10	23.60	11	53, 16	12.6	80000fc0	0	19.20	7.40	1.06
Rack68_Channel4	Sector/3/Ly_Gas/BML03PI.Ly 1	12.20	27.89	14.5	47.85	13.39	80000fe0	0	23.29	8.90	1.11
Rack67_Channel7	Sector/11/Ly_Gas/BML11PI.Ly0	18.94	25.89	11.6	54.99	14.29	80000fc0	0	20.79	9.40	1.01
Rack61_Channel29	Sector/15/Ly_Gas/BOL.A.15.Ly0	6.27	20.20	7.4	63.05	12.8	80000fc0	0	15.79	4.20	1.01
Rack65_Channel19	Sector/5/Ly_Gas/BML05PI.Ly0	18.93	29.10	15.5	46.57	13.6	80000fe0	0	24.60	11.00	1.03
Rack67_Channel5	Sector/11/Ly_Gas/BML11CO.Ly0	18.23	33.29	21.5	35.32	11.79	80000fe0	0	28.70	14.20	1.05
Rack63_Channel11	Sector/9/Ly_Gas/BML09PI.Ly0	6.80	21.70	7.9	63.3	13.8	80000fc0	0	17.39	4.50	0.96
Rack66_Channel9	Sector/14/Ly_Gas/BOS. A. 14.Ly0	15.39	25.20	11.19	55.33	14	80000fc0	0	21.39	7.50	0.93
Rack63_Channel9	Sector/9/Ly_Gas/BML09CO.Ly0	9.58	24.60	10.8	55.87	13.8	80000fc0	0	19.70	6.60	0.93
Rack63_Channel8	Sector/1/Ly_Gas/BML01PI.Ly1	7.67	24.70	10.6	56.85	14.1	80000fc0	0	20.10	6.10	0.95
Rack66_Channel8	Sector/13/Ly_Gas/BOL.C.13.Ly1	9.35	26.10	12.89	50.38	13.2	80000fc0	0	22.39	11.10	0.80
Rack67_Channel3	Sector/15/Ly_Gas/BML15PI.Ly0	15.89	26.10	11.19	56.87	14.9	80000fc0	0	21.50	6.90	1.00
Rack66_Channel5	Sector/13/Ly_Gas/BOL.A.13.Ly0	14.02	30.79	16.29	46.92	14.5	80000fe0	0	26.79	14.70	0.73
Rack67_Channel8	Sector/11/Ly_Gas/BML11PI.Ly1	16.55	30.60	15.89	47.88	14.7	80000fe0	0	25.89	12.20	0.96
Rack61_Channel19	Sector/13/Ly_Gas/BML13CO.Ly0	10.44	27, 39	13.89	49.09	13.5	80000fe0	0	23.10	10.19	1.04
Rack63_Channel3	Sector/1/Ly_Gas/BOL.C.01.Ly0	7.14	17, 39	2.4	85.71	14.99	80000f80	0	12.89	-1.09	0.92
Rack67_Channel2	Sector/15/Ly_Gas/BML15CO.Ly1	12.38	29.39	12.6	56.94	16.79	80000fc0	0	24.50	9.40	0.95
Rack65_Channel20	Sector/5/Ly_Gas/BML05PI.Ly 1	27.63	30.50	13.1	56.86	17.39	80000fc0	0	26.00	9.60	0.96

Flow status: rack summary

Flow status: rack summary

Values (I/h) corrected via removal of flow in by-passed channels

				Output flow from flowmeter sum	c	flowmeters flowcells (I/h)			
Dip Gas Rack ————	2%								
Gas Rack	In Pres	Reg Pres	Ch Pres	RpcFlow	InFlow	OutFlow	Rel Diff %	Diff _	
Rack61	4. 102	1.086	0.31	128.7	544.3	175 415.2	23.71	129.1123	-50
Rack62	4.053	1.579	0.192	173.6	352.5	171 295.2	16.25	57. 29 64	0
Rack63	4. 239	0.627	0.261	132.2	347.9	187 189.2	45.61	158.7 153	-50
Rack64	3.926	-0.34	0.1	251.1	327.9	208 252.8	22.87	75 74	40
Rack65	3.887	-0.46	0.095	387.5	542.6	332 421.9	22.24	120.6 125	50
Rack66	6.105	0.378	0.183	224.6	340.2	226 243.3	28.44	96.8 92	0
Rack67	4.737	0.471	0.412	133.3	317.5	130 230	27.54	87.49 87	0
Rack68	3.956	-0.27	0.109	122.1	426.8	142 352.2	17.45	74.5 72	-20
Rack69	6.915	0.09	0.188	160	255.7	139 191.5	25.09	64.2 58	20
Total Input Flow/Fresh:	3442	979.1	RackSums:	1715	3457	1710 2588	25.14	869.3848	
unchanged with or	without by-r	oass chann		aulty flowme		by-passes, calibration,			и

1. Le

3. Differences: -50 values could be due to failures in 2 flowmeter chains, +40,50 to be checked

Leak variation per manifold channel (flow-cells)

△Leak(RUN_2023) = -180 l/h

△Leak(YETS_2023-2024) = -50 l/h

Channels with |leak variation| > 5 l/h (both periods together)

```
BOS.A.16.Lv0
                    diff RUN 2023 = -0.700001
                                                          diff YETS 2023-2024 = -5.8
BMS..10CO.Ly1
                     diff RUN 2023 = 1.5
                                                     diff YETS 2023-2024 = -6.1
                    diff RUN 2023 = -1.9
                                                     diff YETS 2023-2024 = -6.2
BOS.A.16.Ly1
BOS.C.16.Ly1
                    diff RUN 2023 = 0.2
                                                    diff YETS 2023-2024 = -5.6
                    diff RUN 2023 = -0.500001
                                                          diff YETS 2023-2024 = -5.7
BOL.A.01.Lyl
BOL.C.01.Ly0
                    diff RUN 2023 = -1.5
                                                     diff YETS 2023-2024 = 8
BML..01CO.Ly1
                     diff RUN 2023 = 0.9
                                                      diff YETS 2023-2024 = 6.6
                                                      diff YETS 2023-2024 = -8.9
BOS.A.02.Ly0
                    diff RUN 2023 = -1.9
                                                   diff YETS 2023-2024 = -7.4
BMS..04PI.Ly0
                     diff RUN 2023 = 0
BOL.C.07.Ly1
                    diff RUN 2023 = -5.9
                                                      diff YETS 2023-2024 = 1.8
BML..05CO.Ly1
                     diff RUN 2023 = -3.1
                                                      diff YETS 2023-2024 = -5.6
BML..05PI.Lv0
                     diff RUN 2023 = -6.8
                                                      diff YETS 2023-2024 = -4.8
BML..05PI.Ly1
                     diff RUN 2023 = -7.7
                                                      diff YETS 2023-2024 = -0.799999
BOL.C.07.Ly0
                    diff RUN 2023 = -3.9
                                                      diff YETS 2023-2024 = 5.4
BOS.A.14.Ly1
                    diff RUN 2023 = -1
                                                   diff YETS 2023-2024 = -5.1
BOS.C.14.Lv1
                    diff RUN 2023 = -2
                                                   diff YETS 2023-2024 = -5.3
BOL.A.13.Ly1
                    diff RUN 2023 = -3.3
                                                      diff YETS 2023-2024 = -9.5
BML..15PI.Ly0
                     diff RUN 2023 = -5.6
                                                      diff YETS 2023-2024 = -0.9
BML..03CO.Ly1
                     diff RUN 2023 = -6.7
                                                      diff YETS 2023-2024 = 1.5
BML..03PI.Ly0
                     diff RUN 2023 = -3.1
                                                      diff YETS 2023-2024 = 5.5
BML..03PI.Ly1
                     diff RUN 2023 = -10.2
                                                       diff YETS 2023-2024 = 0.6
BML..07CO.Ly0
                     diff RUN 2023 = -6.9
                                                      diff YETS 2023-2024 = 0.5
BML..07CO.Ly1
                     diff RUN 2023 = -1.6
                                                      diff YETS 2023-2024 = 5.2
                    diff RUN 2023 = -1
                                                   diff YETS 2023-2024 = -5.3
BOS.A.04.Ly0
                    diff RUN 2023 = -2.6
                                                      diff YETS 2023-2024 = -11
BOS.A.04.Ly1
BOS.C.04.Ly0
                    diff RUN 2023 = -9.53674e-07
                                                              diff YETS 2023-2024 = -5.7
BOS.C.04.Ly1
                    diff RUN 2023 = -0.900001
                                                          diff YETS 2023-2024 = -5.4
```

repaired with resin at end of YETS, flowmeters have good values reconnection problems? → to be checked

Flowmeters in RUN_2023

Start of 2023 data taking (2023-03-27)

flow-gaps-20230327.txt hist1

Entries 1164
Mean 1.375
Std Dev 1.371
Underflow 0
Overflow 111

End of 2023 data taking 2023-10-29

Difference (start - end) of 2023 data taking

Flowmeters in YETS_2023-2024

Start of 2023-24 YETS (2023-10-29)

End of 2023-24 YETS 2024-03-15

Difference (start – end) of 2023-24 YETS

Activity list (proposal)

TS1

- 1) Check guick connectors at rack level with sniffer [gas-group]
- 2) Check point of leaks found with sniffers by gas group [RPC-team]
- 3) Check line reconnections for (a subset of) repaired chambers [RPC-team]
- 4) Check lines with flowmeter with bad value (i.e. very low or no flow) [RPC-team]
- 5) Pilot test for spotting leaks outside the chambers: [gas-group + RPC-team]
 - a) test lines downstream the chambers overpressure on output manifold with open input → spot leaks on output lines and faulty valves
 - b) test lines upstream the chambers set low pressure on an input line closing the chambers at the impedance use secondary system to select a single line?

YETS

- 1) Development of a flowmeter system in view of an installation on each rack line (A.Ozbey) [RPC-team + gas-group]
- 2) Removal of bypass from flowmeters (installed in view of a very large flow) [RPC-team]
- 3) Calibration of flowcells (if rack upgrade ongoing, to minimize stop-and-start) [gas-group]
- 4) O2 sensor installed locally on each rack [gas-group]
- 5) <u>Tests for spotting leaks outside the chambers</u> [gas-group + RPC-team]
- 6) Upgrade of old racks (protect chambers by pressure spikes, possibility to save gas, ...) need funding approval by muons/ATLAS [gas-group]

Check lines with flowmeter with bad value

Flowmeters with too low flow (i.e. <0.6V) → currently ~250

- each line to be checked
- preliminary check at end of YETS on 40 cases corresponding to repaired chambers, about half of them have shown problems, i.e. line still leaking
 - 1) chamber repair validated with pressure test, possible pipe reconnection problems
 - 2) broken flowmeters
 - 3) valve problems

Being defined:

- → person-power
- → detailed instructions

Leak search: instructions

- 1. Check input and output pipe connections up to manifold
- 2. Check flowmeter integrity
- 3. Measure flowmeter readout with voltmeter
- 4. Test valve functionality
- 5. Check all connections with sniffer
- 6.

