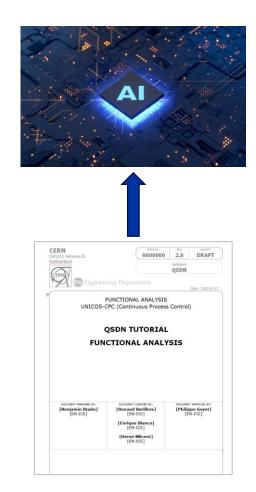
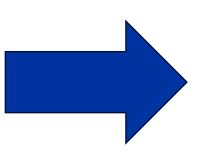
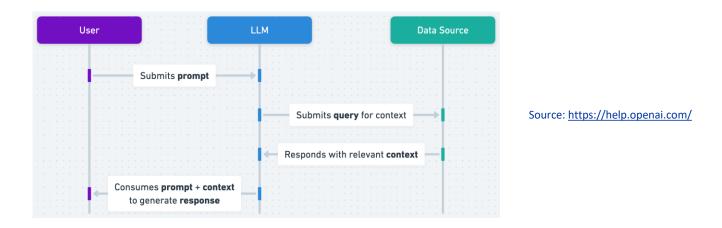


Leveraging AI in UNICOS CPC

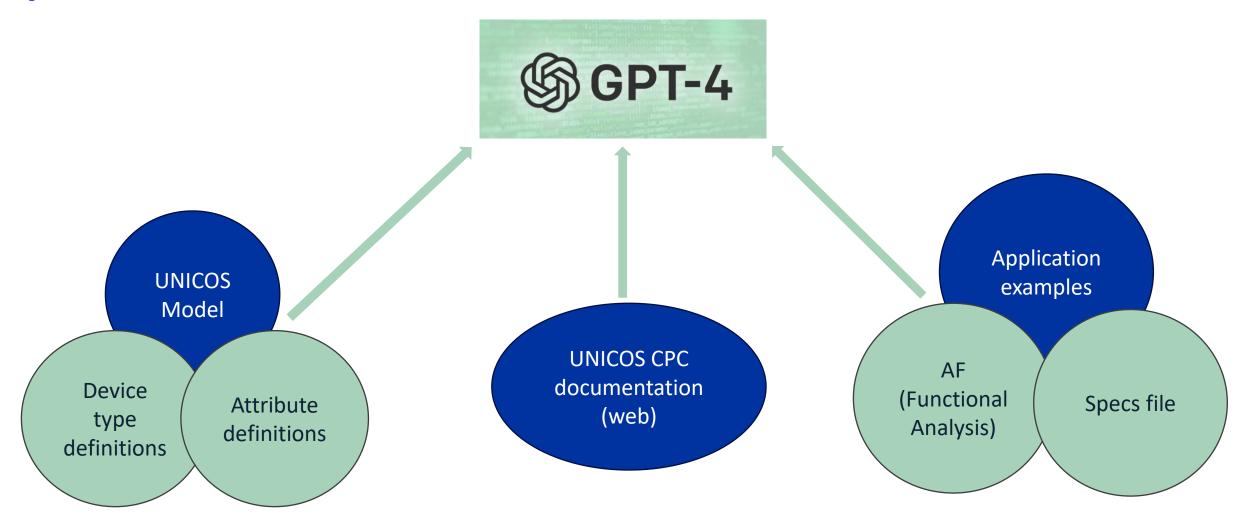

Loreto Gutiérrez Prendes


UNICOS-CPC engineering workflow

Introducing AI in UNICOS-CPC



1	2	3	4	5	6	7	8	9	10	11	12	13
Name	Analoginput											
Package	CPC											
Object Type Family	IOObjectFamily											
Description	Analog Input Device											
Version	\$LastChangedRevision\$											
Default value					0.0	100.0	0	27648	0.0	0.0		
Help	Help	Help	Help	Help	Help	Help	Help	Help	Help	Help	Help	Help
Device	eldentification	DeviceDocumentation		FEDevice			arameters					
Name	Expert Name	Description *	Electrical Diagram	Remarks	Range Min 🔻	Range Max 🔻	Raw Min	Raw Max *	Deadband (%) *	Filtering Time (*	FE Encoding Ty	InterfacePara
TEST WT1	TESTS7 WT1	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT2	TESTS7_WT2	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT3	TESTS7_WT3	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST WT4	TESTS7 WT4	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST WT5	TESTS7 WT5	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST WT6	TESTS7 WT6	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST WT7	TESTS7 WT7	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT8	TESTS7_WT8	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT9	TESTS7 WT9	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT10	TESTS7 WT10	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST WT11	TESTS7 WT11	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST WT12	TESTS7 WT12	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST WT13	TESTS7 WT13	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST_WT14	TESTS7_WT14	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST_WT15	TESTS7_WT15	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	10		
TEST_WT16	TESTS7_WT16	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST_WT17	TESTS7_WT17	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST_WT18	TESTS7_WT18	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST_ZT19	TESTS7 ZT19	feedbacks			0	100	0	10000	0.1	0.0		
TEST_ZT20	TESTS7_ZT20	feedbacks			0	100	0	10000	0.1	10		
TEST_ZT29	TESTS7_ZT29	feedbacks			0	100	0	10000	0.1	0.0		
TEST WT21	TESTS7 WT21	used to test feedbac	k PIDs (0-500W)		0	500	0	10000	0.1	0.0		
TEST WT22	TESTS7 WT22	used to test feedbac			0	500	0	10000	0.1	0.0		
TEST PT1	TESTS7 PT1	re sensor controlled b			0	10	0	10000	0.1	0.0		
TEST PT2	TESTS7 PT2	re sensor controlled b			0	10	0	10000	0.1	10		
TEST PT3	TESTS7 PT3	e sensor controlled b			0	10	0	10000	0.1	0.0		
TEST PT4	TESTS7 PT4	e sensor controlled b			,	10	0	10000	0.1	0.0		


Methods to teach the LLM about UNICOS CPC

- **1. Fine-tuning:** Modify the model permanently with custom information, producing a new model. Costly solution (if not open-source). Limits the model's reusability.
- 2. Retrieval-Augmented Generation (RAG): RAG is valuable for use-cases where the model needs knowledge which is not included in the information the model has learned from

3. Prompt-engineering: Submit prompts to the LLM in a way that maximizes the quality of the model's answer. Context can be included with every prompt so that the model knows the details of our system.

Prompt engineer GPT4 about UNICOS CPC: provide context

Process input context

UNICOS model XML device type definitions and attribute descriptions

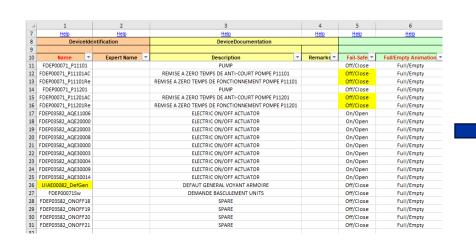
Can be fed directly to the model as they are plain text.

UNICOS CPC documentation Remove irrelevant information

- Most of it an be fed directly to the model as it is plain text.
- Images have to be omitted as the model does not take images via the API yet. We can either use the model in another form to describe the images in text or do it ourselves.

Functional Analysis (AF) Use pandoc to convert .docx to .md

• Images have to be omitted as the model does not take images via the API yet. A lot of information is held in images in some AFs, like the relationship between units, or the PID (Process and Instrumentation Diagram). This information is hard to convert into words.


Process input context

From .xlsx to plain text (JSON)

UNICOS CPC Expert Template

Problems:

- JSON file is too large (~100k lines for large app) rethink format?

 Use RAG?
- GPT 4 turbo limited to 128k tokens (1 token ~ 4 chars). Large contexts make the model 'hallucinate' and partially ignore the information in the middle.

GPT4 for UNICOS CPC

1st prompt

This is the UNICOS CPC Context and some examples

I'm a UNICOS CPC expert now, how can I help you?

2nd prompt

Please, transform this functional analysis to a UNICOS specification

I have generated the following JSON file from your AF...

3rd prompt

The alarms are not configured properly; you need to focus on...

GPT4 for UNICOS CPC

GPT 4 Limit: 8k tokens

GPT 4-Turbo Limit: 128k tokens

1st prompt
This is the UNICOS CPC Context and some examples

I'm a UNICOS CPC expert now, how can I help you?

This is the UNICOS CPC Context and some examples + I'm a UNICOS CPC expert now, how can I help you? + Please, transform this functional analysis to a UNICOS specification

I have generated <this JSON file> from your AF...

This is the UNICOS CPC Context and some examples + I'm a UNICOS CPC expert now, how can I help you? + Please, transform <this functional analysis> to a UNICOS specification + I have generated <this JSON file> from your AF... + The alarms are not configured properly; you need to focus on...

Challenges / Future work

- **Context is** currently **too large** to feed at every prompt, so prompt engineering on its own might not be optimal. **RAG** or fine tuning may be more adequate. Still prompt (AF) and the answer (JSON spec) remain huge.
- Explain more in detail to the model how we pass from the AF to the specs, as passing all the
 information in raw format has not worked well. Explain the structure of the AF (e.g. each chapter
 corresponds to a PCO), provide the IOList (like they do in Cooling&Ventilation with CoVeET)... or even
 reuse these tools built by the operation groups that already automate the generation of the base
 specs.
- Find small applications with meaningful examples. Likely use **custom made applications** with a few examples for every device type, instead of real applications that have hundreds of objects which are all the same. Provide an additional database where the model can search for extra example when it needs to (RAG).
- Use open-source models to test out fine-tuning "for free".
- Find a solution for the information lost in the images that cannot be directly interpreted by the model.

home.cern