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INTRODUCTION TO STATISTICS



WHAT IS DATA ANALYSIS? 5

“Data analysis is a process for obtaining raw data and converting it into 
information useful for decision-making by users. Data are collected and 
analyzed to answer questions, test hypotheses or disprove theories.” 

RAW DATA DATA ANALYSIS USABLE INFORMATION

๏ Data analysis uses statistics for presentation and interpretation (explanation) 
of data

๏ A mathematical foundation for statistics is the probability theory



DATA ANALYSIS GENERAL PICTURE 6

1

Physical  
phenomena 

Described by a theory

EXPERIMENT

Sampling reality
2

3
Data sample 
x = (x1,x2,…,xN) 

x is a multivariate random 
variable

5 Results 
๏ parameter estimates 
๏ confidence limits 
๏ hypothesis tests

4

ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



Mathematical (axiomatic) definition

Classical definition

Frequentist definition

Bayesian (subjective) definition

PROBABILITY DEFINITION 7

“Unfortunately, statisticians do not agree on basic principles.” 
- Fred James

What is probability anyway?



๏ Developed in 1933 by Kolmogorov in his “Foundations of the Theory of 
Probability”

๏ Define an exclusive set of all possible elementary events xi
๏ Exclusive means the occurrence of one of them implies that none of the others occurs

๏ For every event xi, there is a probability P(xi) which is a real number satisfying 
the Kolmogorov Axioms of Probability:
I)
II)
III)

๏ From these properties more complex probability expressions can be deduced 
๏ For non-elementary events, i.e. set of elementary events
๏ For non-exclusive events, i.e. overlapping sets of elementary events

๏ Entirely free of meaning, does not tell what probability is about 

P(xi) ≥ 0
P(xi or xj) = P(xi) + P(xj)

∑ P(xi) = 1

MATHEMATICAL DEFINITION 8



๏ Experiment performed N times, outcome x occurs N(x) times 

๏ Define probability: 

๏ Such a probability has big restrictions:
๏ depends on the sample, not just a property of the event 
๏ experiment must be repeatable under identical conditions 
๏ For example one can’t define a probability that it’ll snow tomorrow

๏ Probably the one you’re implicitly using in everyday life

๏ Frequentist statistics is often associated with the names of Jerzy Neyman and 
Egon Pearson

FREQUENTIST DEFINITION 9

P(x) = lim
N→∞

N(x)
N



๏ Define probability: P(x) = degree of belief that x is true

๏ It can be quantified with betting odds: 
๏ What’s amount of money one‘s willing to bet based on their belief on the future occurrence of 

the event

๏ In particle physics frequency interpretation often most useful, but Bayesian 
probability can provide more natural treatment of non-repeatable phenomena 

BAYESIAN DEFINITION 10



๏ Define conditional probability: P(A|B) = P(A⋂B)/P(B)
๏ probability of A happening given B happened
๏ for independent events P(A|B) = P(A), hence P(A⋂B)=P(A)P(B)

๏ From the definition of conditional probability Bayes’ theorem states:

๏ T is a theory and D is the data
๏ P(T)  is the prior probability of T: the probability that T  is correct before the data D was 

seen
๏ P(D|T) is the conditional probability of seeing the data D given that the theory T is true. 

๏ P(D|T) is called the likelihood.
๏ P(D) is the marginal probability of D.

๏ P(D) is the prior probability of witnessing the data D under all possible theories 
๏ P(T|D)  is the posterior probability: the probability that the theory is true, given the data 

and the previous state of belief about the theory

BAYES’ THEOREM 11

P(T |D) =
P(D |T)P(T)

P(D)



๏ Random event is an event having more than one possible outcome
๏ Each outcome may have associated probability
๏ Outcome not predictable, only the probabilities known

๏ Different possible outcomes may take different possible numerical values x1, 
x2, ...  

๏ The corresponding probabilities P(x1), P(x2), ... form a probability 
distribution

๏ If observations are independent the distribution of each random variable is 
unaffected by knowledge of any other observation 

๏ When an experiment consists of N repeated observations of the same random 
variable x, this can be considered as the single observation of a random vector 
x, with components x1, x2, …, xN

RANDOM VARIABLES 12



๏ Rolling a die:
๏ Sample space = {1,2,3,4,5,6}
๏ Random variable x is the number rolled

๏ Discrete probability distribution:

DISCRETE RANDOM VARIABLES 13

P(x)

x



๏ A spinner:
๏ Can choose a real number from [0,2n]
๏ All values equally likely
๏ x = the number spun
๏ Probability to select any real number = 0
๏ Probability to select any range of values > 0

๏ Probability to choose a number in [0,n] = 1/2
๏ Probability to select a number from any range Δx is Δx/2n
๏ Now we say that probability density p(x) of x is 1/2n  

๏ More general:

CONTINUOUS RANDOM VARIABLES 14

P(A < x < B) = ∫
B

A
p(x)dx



๏ Let x be a possible outcome of an observation and can take any value from a 
continuous range

๏ We write f(x;θ)dx as the probability that the measurement’s outcome lies 
betwen x and x + dx

๏ The function f(x;θ)dx is called the probability density function (PDF)
๏ And may depend on one or more parameters θ

๏ If f(x;θ) can take only discrete values then f(x;θ) is itself a probability
๏ The p.d.f. is always normalised to a unit area (unit sum, if discrete)
๏ Both x and θ  may have multiple components and are then written as vectors

PROBABILITY DENSITY FUNCTION 15

P(x ∈ [x, x + dx] |θ) = f(x; θ)dx

∫
∞

−∞
f(x; θ)dx = 1



PROPERTIES OF THE PDF 16

๏ Probability density function (PDF) = f(x)dx 

๏ Expectation:
๏ Expectation of any random function g(x): 

๏ Expectation of x is the mean:

๏ Variance:

๏ E(x) is usually a measure of the location of the distribution
๏ V(x) is usually a measure of the spread of the distribution

E(g) = ∫ g(x)f(x)dx

μ = E(x) = ∫ xf(x)dx

V(x) = σ2 = E[(x − μ)2] = ∫ (x − μ)2 f(x)dx



๏ The most important distribution in statistics because of the Central Limit 
Theorem:

๏ N(0,1) is called standard Normal density

๏ Properties of the Gaussian distribution:

๏ Mean:

๏ Variance:

NORMAL OR GAUSSIAN DISTRIBUTION 17

N(x; μ, σ) =
1

σ 2π
e− (x − μ)2

2σ2

< r > = E(r) = μ

V(r) = σ2



NORMAL DISTRIBUTION PROPERTIES 18

n area ± nσ
1  0.682689
2 0.954499
3 0.997300
4 0.999936
5 0.999999



๏ Central limit theorem:
๏ If we have a set of N independent variables xi, each from a distribution with mean μi and 

variance σi2, then the distribution of the sum X = Σ xi 
๏ has a mean <X> = Σ μi,
๏ has a variance V(X) = Σ σi2,
๏ becomes Gaussian as N→∞.

๏ Therefore, no matter what the distributions of original variables may have 
been, their sum will be Gaussian in a large N limit

๏ Example:
๏ measurements errors
๏ human heights are well described by a Gaussian distribution, as many other anatomical 

measurements, as these are due to the combined effects of many genetic and environmental 
factors

๏ student test scores

CENTRAL LIMIT THEOREM 19
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Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed

2.12 Central Limit Theorem 39

1x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1000

2000

3000

4000

5000

2)/
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

3)/
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

4)/
4

+x
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6)/
6

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 50

500

1000

1500

2000

2500

3000

3500

4000

10)/
10

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed

2.12 Central Limit Theorem 39

1x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1000

2000

3000

4000

5000

2)/
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

3)/
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

4)/
4

+x
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6)/
6

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 50

500

1000

1500

2000

2500

3000

3500

4000

10)/
10

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed

2.12 Central Limit Theorem 39

1x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1000

2000

3000

4000

5000

2)/
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

3)/
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

4)/
4

+x
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6)/
6

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 50

500

1000

1500

2000

2500

3000

3500

4000

10)/
10

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed

2.12 Central Limit Theorem 39

1x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1000

2000

3000

4000

5000

2)/
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

3)/
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

4)/
4

+x
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6)/
6

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 50

500

1000

1500

2000

2500

3000

3500

4000

10)/
10

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed

2.12 Central Limit Theorem 39

1x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1000

2000

3000

4000

5000

2)/
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

3)/
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

4)/
4

+x
3

+x
2

+x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6)/
6

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 50

500

1000

1500

2000

2500

3000

3500

4000

10)/
10

+ ... +x
1

(x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed



๏ The parameters of a PDF are constants that characterise its shape: 

๏ where x is measured data, and θ are parameters that we are trying to estimate (measure)

๏ Suppose we have a sample of observed values 
๏ Our goal is to find some function of the data to estimate the parameter(s) 

๏ we write the parameter estimator with a hat  

๏ we usually call the procedure of estimating parameter(s): parameter fitting

⃗x = (x1, x2, ⋯, xn)

̂θ( ⃗x)

PARAMETER ESTIMATION 21

f(x; θ) =
1
θ

e− x
θ



๏ Consistent
๏ Estimate converges to the true  

value as amount of data increases

๏ Unbiased
๏ Bias is the difference between expected  

value of the estimator and the true value  
of the parameter

๏ Efficient
๏ Its variance is small

๏ Robust
๏ Insensitive to departures from  

assumptions in the PDF

PROPERTIES OF A GOOD ESTIMATOR 22

̂θ more data θtrue

b = E( ̂θ) − θtrue = 0



๏ Be careful: statistic is not statisticS! 
๏ Any new random variable (f.g. T), defined as a function of a measured sample 

x is called a statistic 

๏ For example, the sample mean   is a statistic!  

๏ A statistic used to estimate a parameter is called an estimator
๏ For instance, the sample mean is a statistic and an estimator for the population mean, which 

is an unknown parameter
๏ Estimator is a function of the data 
๏ Estimate, a value of estimator, is our “best” guess for the true value of parameter

๏ Some other example of statistics (plural of statistic!): sample median, variance, 
standard deviation, t-statistic, chi-square statistic, kurtosis, skewness, …

T = T(x1, x2, . . . , xN)

x̄ =
1
N ∑ xi

STATISTIC 23



๏ Gives consistent and asymptotically unbiased estimators
๏ Widely used in practice

HOW TO FIND A GOOD ESTIMATOR? 24

THE MAXIMUM LIKELIHOOD METHOD

THE LEAST SQUARES (CHI-SQUARE) METHOD

๏ Gives consistent estimator 
๏ Linear Chi-Square estimator is unbiased
๏ Frequently used in histogram fitting 



๏ Assume that observations (events) are independent 
๏ With the PDF depending on parameters θ: 

๏ The probability that all N events will happen is a product of all single events 
probabilities:
๏

๏ When the variable x is replaced by the observed data xOBS, then P is no 
longer a PDF

๏ It is usual to denote it by L and called L(xOBS;θ) the likelihood function 
๏ Which is now a function of θ only  

๏ Often in the literature, it’s convenient to keep X as a variable and continue to 
use notation L(X;θ) 

f(xi; θ)

P(x; θ) = P(x1; θ)P(x2; θ)⋯P(xN; θ) = ∏P(xi; θ)

L(θ) = P(xOBS; θ)

THE LIKELIHOOD FUNCTION 25



๏ The probability that all N independent events will happen is given by the 
likelihood function 

๏ The principle of maximum likelihood (ML) says: The maximum likelihood 
estimator  is the value of  for which the likelihood is a maximum!

๏ In words of R. J. Barlow: “You determine the value of  that makes the probability 
of the actual results obtained, {x1, ..., xN}, as large as it can possible be.”

๏ In practice it’s easier to maximize the log-likelihood function 

๏ For p parameters we get a set of p likelihood equations:   

๏ It is often more convenient the minimise -lnL or -2lnL

L(x; θ) = ∏ f(xi; θ)

̂θ θ
θ

ln L(x; θ) = ∑ ln f(xi; θ)
∂ ln L(x; θ)

∂θj
= 0

THE MAXIMUM LIKELIHOOD METHOD 26



๏ Never ever (really, don’t ever do it!) quote measurements without confidence 
intervals

๏ In addition to a “point estimate” of a parameter we should report an interval 
reflecting its statistical uncertainty. 

๏ Desirable properties of such an interval:
๏ communicate objectively the result of the experiment 
๏ have a given probability of containing the true parameter 
๏ provide information needed to draw conclusions about the parameter 
๏ communicate incorporated prior beliefs and relevant assumptions

๏ Often use ± the estimated standard deviation (σ) of the estimator 
๏ In some cases, however, this is not adequate: 

๏ estimate near a physical boundary
๏ if the PDF is not Gaussian

CONFIDENCE INTERVALS 27



๏ Let some measured quantity be 
distributed according to some PDF 

, we can determine the probability 
that x lies within some interval, with 
some confidence C:

๏ We say that x lies in the interval [x-,x+] 
with confidence C

f(x; θ)

P(x− < x < x+) =

x+

∫
x−

f(x; θ)dx = C

CONFIDENCE INTERVAL DEFINITION 28



๏ If  is a Gaussian distribution with mean μ and variance σ2:
๏
๏
๏
๏

f(x; θ)
x± = μ ± 1 ⋅ σ C = 68 %
x± = μ ± 2 ⋅ σ C = 95.4 %
x± = μ ± 1.64 ⋅ σ C = 90 %
x± = μ ± 1.96 ⋅ σ C = 95 %

GAUSSIAN CONFIDENCE INTERVALS 29



๏ In a measurement two things involved:
๏ True physical parameters: 

๏ Measurement of the physical parameter (parameter estimation): 

๏ Given the measurement  what can we say about  ?

๏ Can we say that  lies within  with 68% probability?
๏ NO!!! 

๏  is not a random variable! It lies in the measured interval or it does not!

๏ We can say that if we repeat the experiment many times with the same sample 
size, construct the interval according to the same prescription each time, in 
68% of the experiments  interval will cover .

θtrue

̂θ
̂θ ± σθ θtrue

θtrue ̂θ ± σθ

θtrue

̂θ ± σθ θtrue

MEANING OF THE CONFIDENCE INTERVAL 30



๏ There are two ways to obtain confidence intervals for the parameter estimated 
by the Maximum Likelihood method

๏ Analytical way:
๏ If we assume the Gaussian approximation we can estimate the confidence interval by matrix 

inversion:

๏ If the likelihood function is non-Gaussian and in the limit of small number of events this 
approximation will give symmetrical interval while that might not be the case

๏ Possible to solve by hand only for very simple PDF cases, otherwise numerical solution needed
๏ Matrix inversion done with HESSE/MINUIT algorithm in ROOT

๏ From the Log-Likelihood curve

cov−1(θi, θj) =
∂2 ln L
∂θi∂θj θ= ̂θ

CONFIDENCE INTERVALS FOR THE ML METHOD 31



๏ Extract  from log-likelihood scan using:

                          

๏ This is the same as looking for 

σ ̂θ

lnL( ̂θ ± N ⋅ σ ̂θ) = lnLmax −
N2

2
2lnLmax − N2

CONFIDENCE INTERVALS FOR THE ML METHOD 32

2ln L
2(lnL)max - 1
2(lnL)max  

2(lnL)max - 4

2(lnL)max - 9

̂θ + 3σ̂θ + 2σ̂θ + 1σ̂θ̂θ − 1σ̂θ − 2σ̂θ − 3σ θ



๏ The Log-Likelihood function can be asymmetric
๏ for smaller samples, very non-Gaussian PDFs, non-linear problems,…

๏ The confidence interval is still extracted from the Log-Likelihood curve using 
the same prescription
๏ This leads to asymmetrical confidence interval that should be used when quoting the final result

CONFIDENCE INTERVALS FOR THE ML METHOD 33

θ̂ Uθθ Δ+ˆLθθ Δ−ˆ

2ln L

2(lnL)max - ΔL

2(lnL)max  

θ

CL ΔL

68.27 1

95.45 4

99.73 9
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