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STATISTICS AND MACHINE 
LEARNING



๏ A key task in most of physics measurements is to discriminate between two or 
more hypotheses on the basis of the observed experimental data. 
๏ a new particle called the Higgs boson exists?
๏ students cheated on the exam?

๏ This problem in statistics is known as hypothesis test, and methods have 
been developed to assign an observation considering the predicted probability 
distributions of the observed quantities under the different possible 
assumptions.

๏ A hypothesis H specifies the probability for the data, i.e., the outcome of the 
observation, here symbolically: x

๏ The probability for x given H is also called the likelihood of the hypothesis, 
written L(x|H). 
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๏ Goal is to make some statement based on the observed data x as to the 
validity of the possible hypotheses. 

๏ Consider e.g. a simple hypothesis H0 and alternative H1

๏ In statistical literature when two hypotheses are present, these are called null hypothesis (H0) 
and alternative hypothesis (H1)

๏ A test of H0 is defined by specifying a critical region W of the data space such 
that there is no more than some (small) probability α, assuming H0 is correct, to 
observe the data there, i.e., 

                                                
๏ If x is observed in the critical region, reject H0. 

๏ α is called the size or significance level of the test
๏ Critical region is also called “rejection” region; complement is acceptance 

region.

P(x ∈ W |H0) ≤ α
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๏ In general there are an infinite number of possible critical regions that give the 
same significance level α

๏ The choice of the critical region for a test of H0 needs to take into account the 
alternative hypothesis H1

๏ Roughly speaking, place the critical region where there is a low probability to be found if H0 is 
true, but high if H1 is true

TEST DEFINITION 6



ERROR TYPES 7

True state
H0 is true H1 is true

Decision
Accept H0

Right decision
Probability = 1-α

(significance level)

Wrong decison 
Type II error

Probability = β

Reject H0
Wrong decision

Type I error
Probability = α

Right decision
Probability = 1-β

(power) 

β

β
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CHOOSE NULL (MANDATORY) AND ALTERNATIVE HYPOTHESIS (OPTIONAL)1.

FIND RELEVANT TEST STATISTIC T2.

DERIVE THE DISTRIBUTION OF THE TEST STATISTIC T FOR DIFFERENT HYPOTHESIS3.

DEFINE CONFIDENCE LEVEL AND CRITICAL REGION. DIVIDE THE DISTRIBUTION IN TWO REGIONS4.

COMPUTE THE OBSERVED VALUE OF TEST STATISTIC5.

REJECT OR ACCEPT HYPOTHESIS BASED ON THE OBSERVED TEST STATISTIC6.



๏ Using input data define a single test statistic t(x1,…,xN) whose value reflects 
the agreement between data and the hypothesis

๏ Using Monte Carlo simulate many (M) experiments trying to test the null 
hypothesis H0
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๏ Obtain a probability density function (PDF) of the test statistic t, given null 
Hypothesis (H0) is true,  g(t |H0)

X1(X11,…,X1N)

X2(X21,…,X2N)

XM(XM1,…,XMN)

…

T1

T2

TM

…
}

g(t|H0)

t



๏ Now we have to divide the distribution in two regions: 
๏ where H0 is rejected with CL α

๏ where H0 is not rejected with CL 1-α

๏ tcritical is the value of test statistic diving the                                                     
two regions

๏ We talk only about rejecting the null                                                         
hypothesis H0, not about accepting any                                                       
other hypothesis

๏ We should decide about two regions before looking at the observed 
value of the test statistics

๏ Now we can calculate the observed test statistic tobs and decide:
๏ If tobs > tcritical: reject H0

๏ If tobs < tcritical: do not reject H0 
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g(t|H0)

ttcritical

α
1−α



๏ Knowing the PDF of our test statistic we can answer one important question:
๏ What is the probability to obtain the value of t equal or greater than the value 

tobs we observed?

            

๏ This probability is the so-called p-value
๏ p-value is defined as the probability to find t in the region of equal and lesser 

compatibility with H0 than the level of compatibility observed with actual data

P(t ≥ tobs) =
∞

∫
tobs

g(t |H0)dt

P - VALUE 11

g(t|H0)

ttobs
p-value



๏ For easier understanding p-values can be converted to significance

SIGNIFICANCE 12

One tailed     
p-value Significance Gaussian area ±nσ Probability of 

outcome: 1 in 
0.159 1  0.68268949  6.3
0.023 2 0.95449974 44

0.00135 3 0.99730020 740
3.17·10-5 4 0.99993666 31,574
2.87·10-7 5 0.99999943 3,488,556

๏ For example: if you were to measure something with 5σ significance that 
means that either the null hypothesis is wrong (highly likely) or that due to 
statistical fluctuations your data sample corresponds to one in 3.5 million and 
the null hypothesis is correct (possible but extremely unlikely)



๏ Suppose the result of a measurement for an individual event is a collection of 
numbers x(x1,…,xN):
๏ x1 = number of muons
๏ x2 = mean pT of jets
๏ x3 = missing energy, ... 

๏ x follows some N-dimensional joint PDF, which depends on the underlying 
particle process that produced final detected particles

๏ For each theory we consider we will have a hypothesis for the pdf of x, 
, 

๏ We call H0 the background hypothesis (the event type we want to reject) and it can be for 
example a hypothesis that particles are produced if SM is valid

๏ H1 is signal hypothesis (the type we want), and i this example it can be a hypothesis that 
particles are produced if SUSY is valid

f(x |H0) f(x |H1), . . .
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๏ Suppose we have a data sample with two kinds of events, corresponding to 
hypotheses H0 and H1 and we want to select those of type H1

๏ We can use Monte Carlo simulation to simulate events according to both 
hypothesis to better understand what are the similarities and differences and 
to understand how to define the test statistic

๏ How can we use Monte Carlo simulation to decide for what observed data we 
are going to accept/reject null/alternative hypothesis? 

๏ Perhaps if events pass ‘cuts’:
๏
๏

xi < ci

xj < cj
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๏ Or maybe use some other sort of decision boundary: 
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๏ The big natural question that arises: Can we do this in an optimal way?



๏ How can we choose a test’s critical region in an ‘optimal way’? 
๏ The performance of a selection criterion can be considered optimal if it 

achieves the smallest misidentification probability for a desired value of the 
selection efficiency

๏ A test statistic that ensures the optimal performance in this sense is provided 
by the Neyman–Pearson lemma:

๏ Optimal test statistic is defined as the ratio of the likelihood functions 
evaluated for the observed data sample x under the two hypotheses H0 and 
H1:

                                               

๏ where c should be set in order to achieve the required Confidence Level (CL)

t(x) =
L(x |H1)
L(x |H0)

> c
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๏ If the N variables  that characterise our problem are independent, 
the likelihood function can be factorised into the product of 1D marginal PDFs:

                         

๏ This allows in many cases to simplify the computation 
๏ Even if it is not possible to factorise the PDFs into the product of 1D marginal 

PDFs (i.e. the variables are not independent), the product can still be used as a 
discriminant 
๏ will differ from the exact likelihood ratio and hence it will correspond to worse performance 
๏ the simplicity of this method can justify its application in spite of the suboptimal performances 

x(x1, . . . , xN)

t(x) =
L(x(x1, . . . , xN) |H1)
L(x(x1, . . . , xN) |H0)

=

N
∏
i=1

L(xi |H1)

N
∏
i=1

L(xi |H0)
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๏ The optimal test statistic for hypothesis testing:

๏

๏ Very often unobtainable in real-life cases. One of the biggest problem is that 
 is very often multidimensional (N >> 1)

๏ Machine Learning is our effort to approximate the likelihood ratio (LR)
๏  One of key ideas is to build an algorithm that can “learn” the likelihood from training data and 

then apply the LR test statistic to distinguish data from different hypothesis with (close to) optimal 
performance

t(x) =
L(x |H1)
L(x |H0)

> c

xN
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BLACK BOX
Machine Learning
AI
BDT
Neural Networks



๏ The distortions to distributions occur when the values of measured variables 
are subject to random fluctuations due to the limited resolution of the 
measuring device 

๏ The procedure of correcting for these distortions is known as unfolding
๏ Has applications in optical image reconstruction, radio astronomy, crystallography, medical 

imaging, particle physics, and many others…
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= ⊗

Reconstruction

Unfolding



๏ Consider you want to measure Higgs boson differential cross section as a 
function of its pseudorapidity:
๏ you are measuring the number of Higgs boson candidates produced in different pseudorapidity 

bins
๏ due to imperfect detector you will get a distorted shape
๏ some events will migrate to different bins
๏ some events won’t be reconstructed
๏ some events without Higgs will be counted in
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๏ In order to compare the result with theoretical 
prediction or with other experiments we need 
to somehow revert

๏ Several possible ways to do it

and generates the following minimal set of processes

g g → H g g , g g → H q q̄ ,

q q̄ → H q q̄ , q q̄ → H q′ q̄′ . (4)

The other processes are obtained by performing the ap-
propriate symmetry transformation.
The ultraviolet (UV), the infrared, and the collinear

singularities are regularized using dimensional reduction
(DRED). UV divergences have been renormalized in the
MS scheme. In the case of LO [NLO] contributions we de-
scribe the running of the strong coupling constant with
one-loop [two-loop] accuracy, decoupling the top quark
from the running.

The effective Hgg coupling, see Appendix A, leads to
integrands that may exhibit numerators with rank r larger
than the number n of the denominators, i.e. r ≤ n+1. In
general, for these cases, the parametrization of the residues
at the multiple-cut has to be extended as discussed in
Ref. [47]. As a consequence, the decomposition of any
one-loop n-point amplitude in terms of master integrals
(MIs) acquires new contributions, reading as,

Mone-loop

n = An + δAn . (5)

The term An corresponds to the standard decomposition
for the case of a renormalizable theory (r ≤ n), while the
additional contribution δAn enters whenever r ≤ n + 1.
Their actual expressions can be found in Eqs. (2.16) and
(6.11) of [47].
The extended integrand decomposition has been imple-

mented in the samurai library. In particular, the coeffi-
cients multiplying the MIs appearing in An and δAn are
computed by using the discrete Fourier transform as de-
scribed in Refs. [45, 53].

In the case of Higgs plus jets production, higher rank
numerators arise from diagrams where the Higgs boson is
attached to a pure gluonic loop. However, as shown in
Appendix B, the rank-(n + 1) terms of an n-point inte-
grand are proportional to the loop momentum squared, q2,
which simplifies against a denominator. Therefore, they
generate (n−1)-point integrands with rank r = n−1. Con-
sequently, the coefficients of the MIs in δAn have to vanish
identically, as explicitly verified. Since δAn in Eq. (5) does
not play any role, the integrand reduction can be also per-
formed with the current public version of samurai, which
does not contain the extended decomposition - hence, im-
plying a lighter reduction, with fewer coefficients involved.
We remark that, within the integrand reduction algo-

rithm, it is possible to benefit immediately from the pres-
ence of powers of q2 in the numerators, without any alge-
braic cost: the contribution of those terms is automatically
taken into account by the integrand reconstruction of the
subdiagrams (because they give no contribution on the
corresponding massless cut). On the contrary, within a
tensor reduction algorithm, these terms would cancel only
after the algebraic manipulation of the integrand.

The numerical values of the one-loop amplitudes of the
processes (4) in a non-exceptional phase space point are
collected in Appendix C. The values of the double and the
single poles conform to the universal singular behavior of
dimensionally regulated one-loop amplitudes [61–65]. Af-
ter appropriate crossing to the H → 4-parton decay kine-
matics, we compared our results with the ones presented
in Table I of Ref. [26], finding excellent agreement. Fur-
thermore, converting our results for the Hjj-production
channels from DRED to the ’t Hooft-Veltman scheme, we
are in perfect agreement with the most recent version of
MCFM (v6.4).

Figure 1: Transverse momentum pT of the Higgs boson.

Figure 2: Pseudorapidity η of the Higgs boson.
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๏ We define a response matrix  as:

                      ,     

๏ where  is the expected observed value, and  is the true value.

๏ We have observed data 

Rij

νi =
M

∑
j=1

Rijμj Rij = P(observed in bin i | true value in bin j)

νi μj

⃗n(n1, . . . , nN)

RESPONSE MATRIX 21



๏ To account for undetected events we introduce efficiency: 

                       

๏ To account for observed events that come from background processes:

                                                            

N

∑
i=1

Rij = P(observed anywhere | true value in bin j) = ϵj

νi =
M

∑
j=1

Rijμj + bi

EFFICIENCY AND BACKGROUND 22



๏ An obvious method for unfolding is to invert the matrix  with 
an obvious choice for estimators 

μ = R−1(ν − b)
̂μ = R−1( ̂ν − b) ≈ R−1(n − b)

INVERTING THE RESPONSE MATRIX 23

๏ This estimator also comes from ML method:

๏

๏ In a simple example without background this 
method has a catastrophic failure
๏ due to data being random variables and hence 

subject to statistical fluctuations this method is 
unreliable ( )

๏ Method is mathematically correct but can 
lead to useless results
๏ the idea is to improve the method uncertainty by 

sacrificing the correctness a bit (just like in the case 
of the Neyman-Pearson Lemma and LR)

ln L(μ) =
N

∑
i

ln P(ni |νi)

̂ν ≠ n

μ ν

n ̂μ



๏ There are several ways of improving the unfolding by matrix inversion

๏ Correction factors are defined as 
๏ The correction factors are determined by running the Monte Carlo program 

once with and once without the detector simulation, yielding model predictions 
for the observed and true values of each bin

๏

̂μi = Ci(ni − bi)

Ci =
μMC

i

νMC
i
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๏ statistical errors in the correction factors are                                                 
negligible if it is possible to generate enough                                                 
Monte Carlo data

๏ Problem: results are model dependent (because 
you are unfolding under the assumption that your 
Monte Carlo is the right description of nature)



๏ An alternative approach is to impose in some way a measure of smoothness 
on the estimators for the true histogram. This is known as regularisation of 
the unfolded distribution. 

๏ One considers some region around the Likelihood maximum
๏

๏ We define a measure of smoothness by introducing a regularisation function 

๏ Goal is to maximize  with the constraint that likelihood remains in the 
nearby maximum region that we defined. This is equivalent to maximizing:
๏
๏

๏ Many different choices of regularisation functions 

ln L(μ) ≥ ln Lmax − Δ ln L

S(μ)
S(μ)

L̃(μ, α) = α[ln L(μ) − (ln Lmax − Δ ln L)] + S(μ)
Φ(μ) = α ln L(μ) + S(μ)

S(μ)
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