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LECTURES OUTLINE

1) Introduction to Statistics

2) Statistics and Machine Learning
3) Classical Machine Learning

4) Introduction to Deep Learning
5) Advanced Deep Learning



STATISTICS AND MACHINE
LEARNING




INTRODUCTION TO HYPOTHESIS TESTING 4

® A key task in most of physics measurements is to discriminate between two or
more hypotheses on the basis of the observed experimental data.

® a new particle called the Higgs boson exists?

® Students cheated on the exam?

@ This problem in statistics is known as hypothesis test, and methods have
been developed to assign an observation considering the predicted probability
distributions of the observed quantities under the different possible
assumptions.

® A hypothesis H specifies the probability for the data, i.e., the outcome of the
observation, here symbolically: x

@ The probabillity for x given H is also called the likelihood of the hypothesis,
written L(xIH).



TEST DEFINITION :

® Goal is to make some statement based on the observed data x as to the
validity of the possible hypotheses.

@ Consider e.g. a simple hypothesis Ho and alternative Hj

@ In statistical literature when two hypotheses are present, these are called null hypothesis (Ho)
and alternative hypothesis (H1)

@ A test of Ho is defined by specifying a critical region W of the data space such
that there is no more than some (small) probability a, assuming Ho is correct, to
observe the data there, I.e.,

Pxe W|H, £ «a
@ If X Is observed in the critical region, reject Ho.

@ a Is called the size or significance level of the test

@ Critical region is also called “rejection” region; complement is acceptance
region.



TEST DEFINITION :

@ In general there are an infinite number of possible critical regions that give the
same significance level a

@ The choice of the critical region for a test of Ho needs to take into account the
alternative hypothesis Hj

® Roughly speaking, place the critical region where there is a low probability to be found if HO is
true, but high if H1 is true
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ERROR TYPES

True state

Decision

Accept Hy

Reject H

Hy is true

H, is true

l1- =99




HYPOTHESIS TESTING PROCEDURE

CHOOSE NULL (MANDATORY) AND ALTERNATIVE HYPQTHESIS (OPTIONAL)

~3- 3

2. FIND RELEVANT TEST STATISTIC T

~
DERIVE THE DISTRIBUTION OF THE TEST STATISTIC T FOR DIFFERENT HYPOTHESIS

4. DEFINE CONFIDENCE LEVEL AND CRITICAL REGION. DIVIDE THE DISTRIBUTION IN TWO REGIONS

COMPUTE THE OBSERVED VALUE OF TEST STATISTIC

REJECT OR ACCEPT HYPOTHESIS BASED ON THE OBSERVED TEST STATISTIC




TEST STATISTIC PDF

® Using input data define a single test statistic t(xi,...,xn) whose value reflects
the agreement between data and the hypothesis

® Using Monte Carlo simulate many (M) experiments trying to test the null
hypothesis Ho

g(1|Hy)
X1(X"1,...XW)
X2(X2,. ... X2) —_—
XM(XM;,. ... XMy) —_— 7

@ Obtain a probability density function (PDF) of the test statistic t, given null
Hypothesis (Ho) is true, g(7| H)



OBSERVED TEST STATISTIC 10

® Now we have to divide the distribution in two regions:
@ Where Hy is rejected with CL a g(t|Hy);

® Wwhere Hy is not rejected with CL 1-a

® tcritical IS the value of test statistic diving the
two regions

® We talk only about rejecting the null
hypothesis Hp, not about accepting any

other hypothesis

tcritical {

@ We should decide about two regions before looking at the observed
value of the test statistics

® Now we can calculate the observed test statistic tops and decide:
O |f tobs > Tcritical: rejeCt H()

@ |f tobs < tcritical: do not rejeCt H()



P - VALUE 1

® Knowing the PDF of our test statistic we can answer one important question:

® What is the probability to obtain the value of t equal or greater than the value
tobs We observed? g(l|Hy)

P(t>t,)= [ g(t| Hy)dt

[

obs

@ This probability is the so-called p-value Lobs t

@ p-value is defined as the probability to find t in the region of equal and lesser
compatibility with Ho than the level of compatibility observed with actual data



SIGNIFICANCE

@ For easier understanding p-values can be converted to significance

One tailed C e : Probability of
Significance Gaussian area +no :
p-value outcome: 1 in
0.159 1 0.68268949 6.3
0.023 2 0.95449974 44
0.00135 3 0.99730020 740
3.17-10° 4 0.99993666 31,574
2.87-107 5 0.99999943 3,488,556

® For example: if you were to measure something with 50 significance that
means that either the null hypothesis is wrong (highly likely) or that due to
statistical fluctuations your data sample corresponds to one in 3.5 million and
the null hypothesis is correct (possible but extremely unlikely)



HYPOTHESIS TESTS EXAMPLE IN HEP E

® Suppose the result of a measurement for an individual event is a collection of
numbers X(Xi,...,XN):

® X1 =number of muons
® X2 =mean pT of jets
® X3 = Mmissing energy, ...

@ X follows some N-dimensional joint PDF, which depends on the underlying
particle process that produced final detected particles

@ For each theory we consider we will have a hypothesis for the pdf of x,
fex| Hy), fx | HY), . ..

® We call Hp the background hypothesis (the event type we want to reject) and it can be for
example a hypothesis that particles are produced if SM is valid

® Hi is signal hypothesis (the type we want), and i this example it can be a hypothesis that
particles are produced if SUSY is valid



HYPOTHESIS TESTS IN HEP 14

® Suppose we have a data sample with two kinds of events, corresponding to
hypotheses Ho and Hi and we want to select those of type Hj

® We can use Monte Carlo simulation to simulate events according to both
hypothesis to better understand what are the similarities and differences and
to understand how to define the test statistic

® How can we use Monte Carlo simulation to decide for what observed data we
are going to accept/reject null/alternative hypothesis?

® Perhaps if events pass ‘cuts’

@Xj<Cj




HYPOTHESIS TESTS IN HEP

® Or maybe use some other sort of decision boundary:

linear or nonlinear

@ The big natural question that arises: Can we do this in an optimal way?



NEYMAN-PEARSON LEMMA 16

® How can we choose a test’s critical region in an ‘optimal way’?

® The performance of a selection criterion can be considered optimal if it
achieves the smallest misidentification probability for a desired value of the
selection efficiency

@ A test statistic that ensures the optimal performance in this sense is provided
by the Neyman—-Pearson lemma:

® Optimal test statistic is defined as the ratio of the likelihood functions
evaluated for the observed data sample x under the two hypotheses Hy and

H1:

t()C) — M > C
L(x| Hy)

® Where ¢ should be set in order to achieve the required Confidence Level (CL)



LIKELIHOOD RATIO DISCRIMINANT 17

@ If the N variables x(x,, . . ., x) that characterise our problem are independent,
the likelihood function can be factorised into the product of 1D marginal PDFs:

N
I(x.|H
L(x(xl—xN)‘Hl)_ll;[l Gl Hy

L(x(xq{,...,xy) | Hp) N Lx:|H
il;ll (xl‘ ())

@ This allows in many cases to simplify the computation

H(x) =

® Even if it is not possible to factorise the PDFs into the product of 1D marginal
PDFs (i.e. the variables are not independent), the product can still be used as a
discriminant

@ Will differ from the exact likelihood ratio and hence it will correspond to worse performance

@ the simplicity of this method can justify its application in spite of the suboptimal performances



LIKELIHOOD RATIO AND ML 18

® The optimal test statistic for hypothesis testing:

L(x|H,)

o =Ty

@ Very often unobtainable in real-life cases. One of the biggest problem is that

xVis very often multidimensional (N >> 1)

® Machine Learning is our effort to approximate the likelihood ratio (LR)

® One of key ideas is to build an algorithm that can “learn” the likelihood from training data and
then apply the LR test statistic to distinguish data from different hypothesis with (close to) optimal

performance
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UNFOLDING 19

® [he distortions to distributions occur when the values of measured variables
are subject to random fluctuations due to the limited resolution of the
measuring device

® T'he procedure of correcting for these distortions is known as unfolding

® Has applications in optical image reconstruction, radio astronomy, crystallography, medical
imaging, particle physics, and many others...

Reconstruction

5 =4 3 2 -1 0 1 2 3 4 5
Haconstruciad cistribubon X

Reconstructed distribution x; _ Physics distribution y;
(detector-level) : article-level
Unfolding parace-ev

Al A ) |
D =
Prysics distribution y
'




PROBLEM FORMULATION 20

@ Consider you want to measure Higgs boson differential cross section as a
function of its pseudorapidity:

® Yyou are measuring the number of Higgs boson candidates produced in different pseudorapidity

bins o

@ due to imperfect detector you will get a distorted shape 2 T y_ om0

® some events will migrate to different bins < 2;— LTC:TRVO;fmj;d;V; o e N0

® some events won'’t be reconstructed CF S S = -

® some events without Higgs will be counted in 22 pilEnpsnnilEy E

® In order to compare the result with theoretical T
prediction or with other experiments we need S e — =
to somehow revert | e AR A

® Several possible ways to do it

Figure 2: Pseudorapidity n of the Higgs boson.



RESPONSE MATRIX

21

o We define a response matrix K;; as:

M
U; = Z R;u; , R; = P(observed in bin i|true value in bin j)

j=1

@ Where 1; is the expected observed value, and y; Is the true value.

o We have observed data n(n,, . . ., ny)
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EFFICIENCY AND BACKGROUND

@ To account for undetected events we introduce efficiency:

N
Z R;; = P(observed anywhere | true value in bin j) = ¢;
=1
@ To account for observed events that come from background processes:

M

J=1
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INVERTING THE RESPONSE MATRIX 3

o An obvious method for unfolding is to invert the matrix 4 = R~ (v — b) with
an obvious choice for estimators i = R~ (0 — b) ~ R™'(n — b)
® This estimator also comes from ML method:

N 2‘;00_/4] @ | ;OOO_I/[ e i
InL(u) = Z In P(n;|v;)
@ l 1000 -
® In a simple example without background this
method has a catastrophic failure N I :
0 02 04 06 08 1 o 02 04 06 08 1
@ due to data being random variables and hence
subject to statistical fluctuations this method is ) ———— 10000 ————r————
unreliable (U # n) 2000 | 12 @1t H @
® Method is mathematically correct but can ) _rhqﬁ Lmd% "
lead to useless results o |l PG
@ the idea is to improve the method uncertainty by

0 : 1 | : -10000

sacrificing the correctness a bit (just like in the case 0 02 04 06 08 1 0 02 04 06 08 I
of the Neyman-Pearson Lemma and LR)




THE METHOD OF CORRECTION FACTORS 24

® There are several ways of improving the unfolding by matrix inversion
@ Correction factors are defined as ji; = C.(n, — b))

® The correction factors are determined by running the Monte Carlo program
once with and once without the detector simulation, yielding model predictions
for the observed and true values of each bin

CMS Preliminary ggH powheg JHUgen 125 GeV (Vs = 13 TeV)

o
O,
Y

MC =
C, = Hi g
MC = 2
® % =
@ statistical errors in the correction factors are = 15
negligible if it is possible to generate enough

Monte Carlo data 1

@ Problem: results are model dependent (because
you are unfolding under the assumption that your
Monte Carlo is the right description of nature) %

0.5




REGULARISED UNFOLDING 25

@ An alternative approach is to impose in some way a measure of smoothness
on the estimators for the true histogram. This is known as regularisation of
the unfolded distribution.

@ One considers some region around the Likelihood maximum
o InL(y) >InL  —AlnL

® We define a measure of smoothness by introducing a regularisation function
S(u)

@ Goal is to maximize S(u) with the constraint that likelihood remains in the
nearby maximum region that we defined. This is equivalent to maximizing:

o L(u,a) = alln L(u) — (In L, — Aln L)] 4 S(u)
© P(u) = alnL(y) + S(u)
@ Many different choices of regularisation functions S(u)



UNFOLDING EXAMPLE - HIGGS BOSON 26

do”/dyy LpbJ

— —

- e ®

Ratio to NNLO

HN3LO + NNLOJET pp-H+X Js= 13 TeV
| | | | | | |
== N3|_0 CMS Preliminary ggH powheg JHUgen 125 GeV (Y5 = 13 TeV)

2o === NNLO ~ 25 L B N B = CMS Prellmmary 137.1 fb* (13 TeV)
= — P8 - — 4. LI L B B (L AL B B LINNL L AL (LN A B B LB v_:
NLO 8 T 0 9 A e ° ] Data (stat @ sys. unc.) 5

o~ LO ()] : CQ\ID : 4 Systematic uncertainty B

| Wi ) :ha 2 — 08 ~ T 35 SN ggoH (NNLOPS) + XH :
/_F-_-l T [uR;UF] = (4,3,1) My — 4 =='w ~ % ag-sH (POWHEG) + XH ]
b - X B = 3 [ XH = VBF + VH + ttiH (POWHEG) E

e 0.7

CE = T ) E (LHC HXSWG YR4, m =125.09 GeV) K
- Pz i ] ]
-] 1.5 — 0.6 E§g E
= ] © E
i — - 0.5 :

.........................

Yz
[l

o
N
Ratio to NNLOPS

X Y 0.5 1 1.5 2 2.5
] : o 05 1 15 2 25 ly(H)
N I | I | | | I _ IY(H)l(gen-)




UNFOLDING EXAMPLE - IMAGING




UNFOLDING EXAMPLE - MEDICAL IMAGING

(a) Motion Blurred MRI Image (b) Deblurring vsing Lucy-Richardson Algorith  (c¢) Deblurring vsing Regularized Filter

(d) Deblurring vsing Weiner Filter ( ) Deblurring by Proposed method (Blind Deconvolution Algorithm



UNFOLDING AND ML
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