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LECTURES OUTLINE

1) Introduction to Statistics

2) Statistics and Machine Learning
3) Classical Machine Learning

4) Introduction to Deep Learning
5) Advanced Deep Learning



CLASSICAL MACHINE LEARNING

*inspiration and examples from M. Donega and M



https://indico.phys.ethz.ch/event/37/contributions/302/attachments/235/372/20230320_IPAML.pdf
https://www.youtube.com/watch?v=p17C9q2M00Q&list=PLD0F06AA0D2E8FFBA&index=8

ML GOAL REMINDER /

® The optimal test statistic for hypothesis testing:

L(x|H,)

o =Ty

@ Very often unobtainable in real-life cases. One of the biggest problem is that

xVis very often multidimensional (N >> 1)

® Machine Learning is our effort to approximate the likelihood ratio (LR)

® One of key ideas is to build an algorithm that can “learn” the likelihood from training data and
then apply the LR test statistic to distinguish data from different hypothesis with (close to) optimal

performance
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LIKELIHOOD RATIO - HISTOGRAMS 5

@ We usually don’t have explicit formulae for the pdfs f(x|s), f(x| b), so for a
given X we can't evaluate the LR

® Instead we may have MC models for signal and background processes, so we
can produce simulated data x"(x;, . . . , Xy) and xb(x{’, e x]l\’,)

@ Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).

® One possibility is to generate MC data and construct histograms for both
signal and background and use them to approximate the Likelihood ratio

: | N(alb) = f(xlb) 1

N(xIs)

N(xls) = f(x|s) —s
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LIKELIHOOD RATIO - MULTIDIMENSIONAL 6

® Suppose problem has 2 variables:
@ Approximate pdfs using N(x, y|s), N(x,y|b) in corresponding bins

@ But if we want M bins for each variable, then in N-dimensions we have MN cells; can’t generate
enough training data to populate

> | >

@ The idea is to try to estimate the probability densities f(x|s) and f(x | ) with
something better than histograms and use the estimated PDFs to construct an
approximate likelihood ratio.



K-CLOSEST NEIGHBOURS

@® We count the number of events in local

neighbourhood of x and do a majority vote
@ The distance definition is important

@ can be tricky in case of multidimensional problems with
variables in different units and ranges 0R55 Ny

® Consider a small volume V centred around
X = (’xla "'9XD)

® Suppose from N events we find K inside volume V

Ve
P
RO’-’

® We can estimate PDF as:

2 () —
o PX) I

® There are 2 free parameters that we introduced (K,V). If you fix K and
determine V from data it is called K-nearest neighbours



KERNEL DENSITY ESTIMATOR :

® There are 2 free parameters that we introduced (K,V). If you fix V and
determine K from data it is called Kernel Density Estimator

® We have to define a volume around a point

@ Let’s look at a simple example of placing a 1d Gaussian “kernel” with a
standard deviation h centred around each point

Binned data KDE

0.15
0.15

® We can estimate PDF as:
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@ This very smart method again
suffers from the problem of scaling
with dimensionality... = T ! p
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FISHER DISCRIMINANT

N
@ Consider a linear function of N input variables y(x) = Z WiX;
i=1
@ For a given choice of the coefficients w(wy, . .., wy) and two different
samples (signal and background) we will get PDFs f(y | s) and f(y|b)

\s)
% B W&(%\L)
egt} Cw\\’]
® The Fisher method aims at finding an hyperplane in the n-dimensional space

which gives the best expected separation between two random variables sets
whose PDFs in the multivariate space are known.




FISHER DISCRIMINANT 10

@ To get large difference between means and small widths for f(y | s) and
f(y| b), maximise the difference squared of the expectation values divided by
the sum of the variances:

B 2
Tow) = (E(y|s) — E(y|D)) oJ(w) _ 0

Viyls)+ V(y|b) ow
@ The resulting coefficients wi define a Fisher discriminant.

® If the pdfs of the input variables, f(x|s) and f(x | b), are both multivariate
Gaussians with same covariance but different means, the Fisher discriminant

J(x|s)
f(x|b)

is y(x) ~ In and the Fisher discriminant provides an optimal statistical

test



FISHER DISCRIMINANT 1

@ Fisher discriminant is only optimal when signal and background are Gaussians
with same covariance and different means

® Can be almost useless in other cases

@ We can try finding a transformation x(xi, . .., xy) = @Xx)(D(x), ..., Py(x))
that transformed variables can be separated with the Fisher discriminants

@ Unreliable and often impossible to guess
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LEARNING ALGORITHM

12

@ General idea is to simply learn the PDF from given data

TRAINING SET

*labeled signal and background

LEARNING ALGORITHM

Buiuied)

TEST STATISTIC



LEARNING ALGORITHM

13

@ General idea is to simply learn the PDF from given data
® And use it to find (close to) optimal test statistic for future hypothesis testing

INPUT TEST STATISTIC
*not used in training

Prediction

—_—



DECISION TREES 14

@ Classification tree analysis is when the predicted outcome is the class
(discrete) to which the data belongs

® For example if a particle is electron or not

® Regression tree analysis is when the predicted outcome can be considered a
real number

® For example, four-momentum of electron
@ Training and testing data sample needs to be provided

@ During training different weights are assigned to each node according to
importance (discriminating power) of different variables

@ Decision trees are a complicated combination of linear cuts that achieve optimal separation
power

@ Additional techniques like boosting, gradient boosting, pruning used to
further improve stability and performance



DATASHEET

Machine learning
demystified
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DECISION TREES CLASSIFICATION 16

® We are given a 2D training dataset (x1,X2) x>
and each point is labeled as signal or
background

® |dea Is to separate the classes placing
simple cuts (binary decisions):
® x;> cut or Xi< cut

® Do this in several steps making sure each
time misclassification is minimised




DECISION TREES CLASSIFICATION

® Choose the variable that provides the greatest x»

iIncrease In the separation measured in the node 1
two daughter nodes relative to the parent. S
® The same variable may be used at several nodes or bg S b S bb h
ignored 1.0 " >
. . . S
® Define a metric for the separation: > b S
S S
W, b
ng l node 2 b

the Gini index= P(1-P); P =
® . .
zsig Wi T Zbkg Wi

® The Gini index has a maximum for P=0.5 (random separation) and minimum
for P=1 or 0 (maximum separation).

@ In this example:

@ QGini index of parent node is 0.249
@ Node 1 =0.248 and Node 2 =0.240



DECISION TREES CLASSIFICATION

® Continue by dividing further new nods with  x;
additional simple (binary) cuts that minimise
the misclassification

1.0




DECISION TREES CLASSIFICATION

® Continue by dividing further new nods with  x;
additional simple (binary) cuts that minimise
the misclassification

1.0




DECISION TREES CLASSIFICATION

® Continue by dividing further new nods with  x;
additional simple (binary) cuts that minimise
the misclassification

1.0




DECISION TREES CLASSIFICATION

® Finish once every region contains a X2
“minimum” (predefined) number of points

® Now we can build a binary tree: b s

X9 > 1.0

—:i—




DECISION TREES CLASSIFICATION

® Finish once every region contains a X2
“minimum” (predefined) number of points

® Now we can build a binary tree: b s

X9 > 1.0




DECISION TREES CLASSIFICATION

® Finish once every region contains a X2
“minimum” (predefined) number of points

® Now we can build a binary tree:




DECISION TREES CLASSIFICATION

® Finish once every region contains a X2
“minimum” (predefined) number of points

® Now we can build a binary tree: b s

X9 > 1.0

P ——

4

X1 > 1.5




DECISION TREES CLASSIFICATION

® Finish once every region contains a X2
“minimum” (predefined) number of points

® Now we can build a binary tree:




DECISION TREES CLASSIFICATION

® Classify the tree leaves using the majority x>
vote

X2>1.0 1.0
4 N\
x1>1.5 X1 > 1.7
Y O\ v O\




DECISION TREES CLASSIFICATION

® Classify the tree leaves using the majority  x;

vote
Root node
X9 > 1.0 1.0
Br? nrﬁ
Internal node Internal node
x1>1.5 x1>1.7
1.0 1.5 X1
Y\ Z 12 1.7

x1>1.0 (3,0) x1> 1.2 (0,3)

/ \ Leaf (node)
(3,1) (0,3)

Leaf (node) Leaf (node)

Leaf (node)



DECISION TREES CLASSIFICATION

® All that is left is to apply your trained DT to xz
real data!

1.0
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DECISION TREES REGRESSION

® We are given a 2D training dataset (x,y) vy
and our goal is to predict y value for
each new data point x

® This time we need to predict a
continuous value (instead of binary)




DECISION TREES REGRESSION

30

® Amazingly, the same logic works!
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DECISION TREES REGRESSION

® Continue by dividing further new nods vy
with additional simple (binary) cuts that
minimise the error




32

DECISION TREES REGRESSION

® Continue by dividing further new nods vy
with additional simple (binary) cuts that
minimise the error




DECISION TREES REGRESSION

33

® Continue by dividing further new nods vy
with additional simple (binary) cuts that
minimise the error

0.6 1.2 2.0




DECISION TREES REGRESSION

34

® Repeat until every region (leaf) contains vy

a “minimum” number of points that is R,
predefined
O
© 0

0.6 1.2 2.0




DECISION TREES REGRESSION

35

® Average of the points in each region y
gives you the prediction y(x) R:

oo
1.2 ©
0.7
0.5
04 I

3.5 x,




DECISION TREES REGRESSION

@ Build a binary tree! y

36

Root node 1.2

x> 2.0

o6 °
Branches Brancf 0.7
N 0.5
Internal node Internal node O 4
x> 1.2 x> 2.5

Y\ e N\ 39 X1

x> 0.6 x> 3.5
/ \ Leaf (node)  Leaf (node) ; h
[:]

Leaf (node) Leaf (node)

Leaf (node) Leaf (node)



PERFORMANCE MONITORING 37

® Reminder: Goal is to use ML to approximate LR that is optimal test statistic for
hypothesis testing (Ho vs H1)

@ From outputs of ML draw a PDF of output test statistics for Hp and Hj

@ Draw a Receiver Operators Curve (ROC) and use it to determine cut value on
your ML output (if it is continuous rather than binary)

I\freq

P

TN

0.8 |

0.6 -
ERAR A

™
x./

Sig eff

TTPR

/

ROC

"

Bkg eff

1.) You can set wanted signal
efficiency and from it determines
what is your background rejection

2.) You can set wanted background
rejection and from it determine what
is your achieved signal efficiency



OVERTRAINING 38

@ Performance of your DT depends on training

® By increasing the complexity of your DT model (number of internal nodes) you

can always improve performance

@ Defining a random test sample important to monitor the possible overtraining

@ different from the training sample!!!

high bias low bias
low variance high variance

&

testsample

prediction error

training sample

high
low model complexity | <



DECISION TREES DON'T WORK... 39

® .. beacause of three main reasons:

1. The variables and the order of cuts are chosen on the base of separation of the given data. If
you change the training sample you will most likely get a different tree.

Whatever variable is the most discriminating will influence the rest of the tree.

3. Extremely sensitive to overtraining. They learn the noise of the particular sample used for
training and miss the general structure, thus having poor performance when applied on
another sample.

@ If we can fix these problems we can build a decision tree that works!
1. Pruning: Re-grouping or removing branches to make the tree more stable.
2. Bagging: Take N independent datasets and improve stability by averaging the resulting trees.
3. Boosting: Sequentially train a model learning from the errors of the previous one.

® These techniques can be applied to classification and regression DT (and any
other learning algorithm)



DECISION TREES BOOSTING

40

® After a first step focus on wrong ones




DECISION TREES BOOSTING

41

® This can be achieved by increasing weight to wrongly classified events and
decreasing weight to correctly classified events




DECISION TREES BOOSTING

42

® Build new tree that focuses more on events with more weight




DECISION TREES BOOSTING

43

® Again increase weight to wrongly classified events and decrease weight to
correctly classified events




DECISION TREES BOOSTING

L4

® Again increase weight to wrongly classified events and decrease weight to
correctly classified events




DECISION TREES BOOSTING 45

® Finally assign numerical values to two classes (b=-1 s=1) and assign a weight
to each of the trees and sum them




DECISION TREES BOOSTING 48

® Finally assign numerical values to two classes (b=-1 s=1) and assignh a weight
to each of the trees and sum them

® Many different algorithms exist to set the weights of different trees




BOOSTED DECISION TREES 47

@ Now you know how Boosted Decision Trees (BDTs) work!

@ Overtraining is completely in our control by taking special care of BDT
parameters (number of trees, max depth of a tree, minimum number of events
In leaves, parameters specific to pruning/boosting/bagging, ...)

@ Adding correlated variables will not degrade the performance of the BDT
because the less discriminating one will be de-weighted
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